1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/dnxhdenc.c
James Almer 1b9af306da avcodec: use the renamed av_zero_extend
Signed-off-by: James Almer <jamrial@gmail.com>
2024-06-13 20:36:09 -03:00

1382 lines
49 KiB
C

/*
* VC3/DNxHD encoder
* Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
* Copyright (c) 2011 MirriAd Ltd
*
* VC-3 encoder funded by the British Broadcasting Corporation
* 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/attributes.h"
#include "libavutil/internal.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "blockdsp.h"
#include "codec_internal.h"
#include "encode.h"
#include "fdctdsp.h"
#include "mathops.h"
#include "mpegvideo.h"
#include "mpegvideoenc.h"
#include "pixblockdsp.h"
#include "packet_internal.h"
#include "profiles.h"
#include "dnxhdenc.h"
// The largest value that will not lead to overflow for 10-bit samples.
#define DNX10BIT_QMAT_SHIFT 18
#define RC_VARIANCE 1 // use variance or ssd for fast rc
#define LAMBDA_FRAC_BITS 10
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "nitris_compat", "encode with Avid Nitris compatibility",
offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "ibias", "intra quant bias",
offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
{ .i64 = 0 }, INT_MIN, INT_MAX, VE },
{ "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
{ .i64 = AV_PROFILE_DNXHD },
AV_PROFILE_DNXHD, AV_PROFILE_DNXHR_444, VE, .unit = "profile" },
{ "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHD },
0, 0, VE, .unit = "profile" },
{ "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_444 },
0, 0, VE, .unit = "profile" },
{ "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQX },
0, 0, VE, .unit = "profile" },
{ "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQ },
0, 0, VE, .unit = "profile" },
{ "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_SQ },
0, 0, VE, .unit = "profile" },
{ "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_LB },
0, 0, VE, .unit = "profile" },
{ NULL }
};
static const AVClass dnxhd_class = {
.class_name = "dnxhd",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
const uint8_t *pixels,
ptrdiff_t line_size)
{
int i;
for (i = 0; i < 4; i++) {
block[0] = pixels[0];
block[1] = pixels[1];
block[2] = pixels[2];
block[3] = pixels[3];
block[4] = pixels[4];
block[5] = pixels[5];
block[6] = pixels[6];
block[7] = pixels[7];
pixels += line_size;
block += 8;
}
memcpy(block, block - 8, sizeof(*block) * 8);
memcpy(block + 8, block - 16, sizeof(*block) * 8);
memcpy(block + 16, block - 24, sizeof(*block) * 8);
memcpy(block + 24, block - 32, sizeof(*block) * 8);
}
static av_always_inline
void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
const uint8_t *pixels,
ptrdiff_t line_size)
{
memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
}
static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
int n, int qscale, int *overflow)
{
int i, j, level, last_non_zero, start_i;
const int *qmat;
const uint8_t *scantable= ctx->intra_scantable.scantable;
int bias;
int max = 0;
unsigned int threshold1, threshold2;
ctx->fdsp.fdct(block);
block[0] = (block[0] + 2) >> 2;
start_i = 1;
last_non_zero = 0;
qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
bias= ctx->intra_quant_bias * (1 << (16 - 8));
threshold1 = (1 << 16) - bias - 1;
threshold2 = (threshold1 << 1);
for (i = 63; i >= start_i; i--) {
j = scantable[i];
level = block[j] * qmat[j];
if (((unsigned)(level + threshold1)) > threshold2) {
last_non_zero = i;
break;
} else{
block[j]=0;
}
}
for (i = start_i; i <= last_non_zero; i++) {
j = scantable[i];
level = block[j] * qmat[j];
if (((unsigned)(level + threshold1)) > threshold2) {
if (level > 0) {
level = (bias + level) >> 16;
block[j] = level;
} else{
level = (bias - level) >> 16;
block[j] = -level;
}
max |= level;
} else {
block[j] = 0;
}
}
*overflow = ctx->max_qcoeff < max; //overflow might have happened
/* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
ff_block_permute(block, ctx->idsp.idct_permutation,
scantable, last_non_zero);
return last_non_zero;
}
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
int n, int qscale, int *overflow)
{
const uint8_t *scantable= ctx->intra_scantable.scantable;
const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
int last_non_zero = 0;
int i;
ctx->fdsp.fdct(block);
// Divide by 4 with rounding, to compensate scaling of DCT coefficients
block[0] = (block[0] + 2) >> 2;
for (i = 1; i < 64; ++i) {
int j = scantable[i];
int sign = FF_SIGNBIT(block[j]);
int level = (block[j] ^ sign) - sign;
level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
block[j] = (level ^ sign) - sign;
if (level)
last_non_zero = i;
}
/* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
ff_block_permute(block, ctx->idsp.idct_permutation,
scantable, last_non_zero);
return last_non_zero;
}
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
{
int i, j, level, run;
int max_level = 1 << (ctx->bit_depth + 2);
if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) ||
!(ctx->run_codes = av_mallocz(63 * 2)) ||
!(ctx->run_bits = av_mallocz(63)))
return AVERROR(ENOMEM);
ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
for (level = -max_level; level < max_level; level++) {
for (run = 0; run < 2; run++) {
int index = level * (1 << 1) | run;
int sign, offset = 0, alevel = level;
MASK_ABS(sign, alevel);
if (alevel > 64) {
offset = (alevel - 1) >> 6;
alevel -= offset << 6;
}
for (j = 0; j < 257; j++) {
if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
(!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
(!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
av_assert1(!ctx->vlc_codes[index]);
if (alevel) {
ctx->vlc_codes[index] =
(ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
} else {
ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
}
break;
}
}
av_assert0(!alevel || j < 257);
if (offset) {
ctx->vlc_codes[index] =
(ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
ctx->vlc_bits[index] += ctx->cid_table->index_bits;
}
}
}
for (i = 0; i < 62; i++) {
int run = ctx->cid_table->run[i];
av_assert0(run < 63);
ctx->run_codes[run] = ctx->cid_table->run_codes[i];
ctx->run_bits[run] = ctx->cid_table->run_bits[i];
}
return 0;
}
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
{
// init first elem to 1 to avoid div by 0 in convert_matrix
uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
int qscale, i;
const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.avctx->qmax + 1) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.avctx->qmax + 1) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
return AVERROR(ENOMEM);
if (ctx->bit_depth == 8) {
for (i = 1; i < 64; i++) {
int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->luma_weight[i];
}
ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
weight_matrix, ctx->intra_quant_bias, 1,
ctx->m.avctx->qmax, 1);
for (i = 1; i < 64; i++) {
int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
weight_matrix[j] = ctx->cid_table->chroma_weight[i];
}
ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
weight_matrix, ctx->intra_quant_bias, 1,
ctx->m.avctx->qmax, 1);
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
for (i = 0; i < 64; i++) {
ctx->qmatrix_l[qscale][i] <<= 2;
ctx->qmatrix_c[qscale][i] <<= 2;
ctx->qmatrix_l16[qscale][0][i] <<= 2;
ctx->qmatrix_l16[qscale][1][i] <<= 2;
ctx->qmatrix_c16[qscale][0][i] <<= 2;
ctx->qmatrix_c16[qscale][1][i] <<= 2;
}
}
} else {
// 10-bit
for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
for (i = 1; i < 64; i++) {
int j = ff_zigzag_direct[i];
/* The quantization formula from the VC-3 standard is:
* quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
* (qscale * weight_table[i]))
* Where p is 32 for 8-bit samples and 8 for 10-bit ones.
* The s factor compensates scaling of DCT coefficients done by
* the DCT routines, and therefore is not present in standard.
* It's 8 for 8-bit samples and 4 for 10-bit ones.
* We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
* ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
* (qscale * weight_table[i])
* For 10-bit samples, p / s == 2 */
ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
(qscale * luma_weight_table[i]);
ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
(qscale * chroma_weight_table[i]);
}
}
}
ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
ctx->m.q_intra_matrix = ctx->qmatrix_l;
return 0;
}
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
{
if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
return AVERROR(ENOMEM);
if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
return AVERROR(ENOMEM);
}
ctx->frame_bits = (ctx->coding_unit_size -
ctx->data_offset - 4 - ctx->min_padding) * 8;
ctx->qscale = 1;
ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
return 0;
}
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
{
DNXHDEncContext *ctx = avctx->priv_data;
int i, ret;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV422P:
ctx->bit_depth = 8;
break;
case AV_PIX_FMT_YUV422P10:
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_GBRP10:
ctx->bit_depth = 10;
break;
}
if ((ctx->profile == AV_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
(ctx->profile != AV_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
av_log(avctx, AV_LOG_ERROR,
"pixel format is incompatible with DNxHD profile\n");
return AVERROR(EINVAL);
}
if (ctx->profile == AV_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
av_log(avctx, AV_LOG_ERROR,
"pixel format is incompatible with DNxHR HQX profile\n");
return AVERROR(EINVAL);
}
if ((ctx->profile == AV_PROFILE_DNXHR_LB ||
ctx->profile == AV_PROFILE_DNXHR_SQ ||
ctx->profile == AV_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
av_log(avctx, AV_LOG_ERROR,
"pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
return AVERROR(EINVAL);
}
ctx->is_444 = ctx->profile == AV_PROFILE_DNXHR_444;
avctx->profile = ctx->profile;
ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
if (!ctx->cid) {
av_log(avctx, AV_LOG_ERROR,
"video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
return AVERROR(EINVAL);
}
av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
if (ctx->cid >= 1270 && ctx->cid <= 1274)
avctx->codec_tag = MKTAG('A','V','d','h');
if (avctx->width < 256 || avctx->height < 120) {
av_log(avctx, AV_LOG_ERROR,
"Input dimensions too small, input must be at least 256x120\n");
return AVERROR(EINVAL);
}
ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
av_assert0(ctx->cid_table);
ctx->m.avctx = avctx;
ctx->m.mb_intra = 1;
ctx->m.h263_aic = 1;
avctx->bits_per_raw_sample = ctx->bit_depth;
ff_blockdsp_init(&ctx->bdsp);
ff_fdctdsp_init(&ctx->m.fdsp, avctx);
ff_mpv_idct_init(&ctx->m);
ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
ff_dct_encode_init(&ctx->m);
if (ctx->profile != AV_PROFILE_DNXHD)
ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
if (ctx->is_444 || ctx->profile == AV_PROFILE_DNXHR_HQX) {
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 4;
} else if (ctx->bit_depth == 10) {
ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 4;
} else {
ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
ctx->block_width_l2 = 3;
}
ff_dnxhdenc_init(ctx);
ctx->m.mb_height = (avctx->height + 15) / 16;
ctx->m.mb_width = (avctx->width + 15) / 16;
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ctx->interlaced = 1;
ctx->m.mb_height /= 2;
}
if (ctx->interlaced && ctx->profile != AV_PROFILE_DNXHD) {
av_log(avctx, AV_LOG_ERROR,
"Interlaced encoding is not supported for DNxHR profiles.\n");
return AVERROR(EINVAL);
}
ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
avctx->width, avctx->height);
av_assert0(ctx->frame_size >= 0);
ctx->coding_unit_size = ctx->frame_size;
} else {
ctx->frame_size = ctx->cid_table->frame_size;
ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
}
if (ctx->m.mb_height > 68)
ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
else
ctx->data_offset = 0x280;
// XXX tune lbias/cbias
if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
return ret;
/* Avid Nitris hardware decoder requires a minimum amount of padding
* in the coding unit payload */
if (ctx->nitris_compat)
ctx->min_padding = 1600;
if ((ret = dnxhd_init_vlc(ctx)) < 0)
return ret;
if ((ret = dnxhd_init_rc(ctx)) < 0)
return ret;
if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.mb_num) ||
!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.mb_num))
return AVERROR(ENOMEM);
if (avctx->active_thread_type == FF_THREAD_SLICE) {
if (avctx->thread_count > MAX_THREADS) {
av_log(avctx, AV_LOG_ERROR, "too many threads\n");
return AVERROR(EINVAL);
}
}
if (avctx->qmax <= 1) {
av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
return AVERROR(EINVAL);
}
ctx->thread[0] = ctx;
if (avctx->active_thread_type == FF_THREAD_SLICE) {
for (i = 1; i < avctx->thread_count; i++) {
ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
if (!ctx->thread[i])
return AVERROR(ENOMEM);
}
}
return 0;
}
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
{
DNXHDEncContext *ctx = avctx->priv_data;
memset(buf, 0, ctx->data_offset);
// * write prefix */
AV_WB16(buf + 0x02, ctx->data_offset);
if (ctx->cid >= 1270 && ctx->cid <= 1274)
buf[4] = 0x03;
else
buf[4] = 0x01;
buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
buf[6] = 0x80; // crc flag off
buf[7] = 0xa0; // reserved
AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
AV_WB16(buf + 0x1a, avctx->width); // SPL
AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
buf[0x22] = 0x88 + (ctx->interlaced << 2);
AV_WB32(buf + 0x28, ctx->cid); // CID
buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
buf[0x5f] = 0x01; // UDL
buf[0x167] = 0x02; // reserved
AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
buf[0x16f] = 0x10; // reserved
ctx->msip = buf + 0x170;
return 0;
}
static av_always_inline void dnxhd_encode_dc(PutBitContext *pb, DNXHDEncContext *ctx, int diff)
{
int nbits;
if (diff < 0) {
nbits = av_log2_16bit(-2 * diff);
diff--;
} else {
nbits = av_log2_16bit(2 * diff);
}
put_bits(pb, ctx->cid_table->dc_bits[nbits] + nbits,
(ctx->cid_table->dc_codes[nbits] << nbits) +
av_zero_extend(diff, nbits));
}
static av_always_inline
void dnxhd_encode_block(PutBitContext *pb, DNXHDEncContext *ctx,
int16_t *block, int last_index, int n)
{
int last_non_zero = 0;
int slevel, i, j;
dnxhd_encode_dc(pb, ctx, block[0] - ctx->m.last_dc[n]);
ctx->m.last_dc[n] = block[0];
for (i = 1; i <= last_index; i++) {
j = ctx->m.intra_scantable.permutated[i];
slevel = block[j];
if (slevel) {
int run_level = i - last_non_zero - 1;
int rlevel = slevel * (1 << 1) | !!run_level;
put_bits(pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
if (run_level)
put_bits(pb, ctx->run_bits[run_level],
ctx->run_codes[run_level]);
last_non_zero = i;
}
}
put_bits(pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
}
static av_always_inline
void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
int qscale, int last_index)
{
const uint8_t *weight_matrix;
int level;
int i;
if (ctx->is_444) {
weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
: ctx->cid_table->chroma_weight;
} else {
weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
: ctx->cid_table->luma_weight;
}
for (i = 1; i <= last_index; i++) {
int j = ctx->m.intra_scantable.permutated[i];
level = block[j];
if (level) {
if (level < 0) {
level = (1 - 2 * level) * qscale * weight_matrix[i];
if (ctx->bit_depth == 10) {
if (weight_matrix[i] != 8)
level += 8;
level >>= 4;
} else {
if (weight_matrix[i] != 32)
level += 32;
level >>= 6;
}
level = -level;
} else {
level = (2 * level + 1) * qscale * weight_matrix[i];
if (ctx->bit_depth == 10) {
if (weight_matrix[i] != 8)
level += 8;
level >>= 4;
} else {
if (weight_matrix[i] != 32)
level += 32;
level >>= 6;
}
}
block[j] = level;
}
}
}
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
{
int score = 0;
int i;
for (i = 0; i < 64; i++)
score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
return score;
}
static av_always_inline
int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
{
int last_non_zero = 0;
int bits = 0;
int i, j, level;
for (i = 1; i <= last_index; i++) {
j = ctx->m.intra_scantable.permutated[i];
level = block[j];
if (level) {
int run_level = i - last_non_zero - 1;
bits += ctx->vlc_bits[level * (1 << 1) |
!!run_level] + ctx->run_bits[run_level];
last_non_zero = i;
}
}
return bits;
}
static av_always_inline
void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
{
const int bs = ctx->block_width_l2;
const int bw = 1 << bs;
int dct_y_offset = ctx->dct_y_offset;
int dct_uv_offset = ctx->dct_uv_offset;
int linesize = ctx->m.linesize;
int uvlinesize = ctx->m.uvlinesize;
const uint8_t *ptr_y = ctx->thread[0]->src[0] +
((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
const uint8_t *ptr_u = ctx->thread[0]->src[1] +
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
const uint8_t *ptr_v = ctx->thread[0]->src[2] +
((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
PixblockDSPContext *pdsp = &ctx->m.pdsp;
VideoDSPContext *vdsp = &ctx->m.vdsp;
if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
(mb_y << 4) + 16 > ctx->m.avctx->height)) {
int y_w = ctx->m.avctx->width - (mb_x << 4);
int y_h = ctx->m.avctx->height - (mb_y << 4);
int uv_w = (y_w + 1) / 2;
int uv_h = y_h;
linesize = 16;
uvlinesize = 8;
vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
linesize, ctx->m.linesize,
linesize, 16,
0, 0, y_w, y_h);
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
uvlinesize, ctx->m.uvlinesize,
uvlinesize, 16,
0, 0, uv_w, uv_h);
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
uvlinesize, ctx->m.uvlinesize,
uvlinesize, 16,
0, 0, uv_w, uv_h);
dct_y_offset = bw * linesize;
dct_uv_offset = bw * uvlinesize;
ptr_y = &ctx->edge_buf_y[0];
ptr_u = &ctx->edge_buf_uv[0][0];
ptr_v = &ctx->edge_buf_uv[1][0];
} else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
(mb_y << 4) + 16 > ctx->m.avctx->height)) {
int y_w = ctx->m.avctx->width - (mb_x << 4);
int y_h = ctx->m.avctx->height - (mb_y << 4);
int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
int uv_h = y_h;
linesize = 32;
uvlinesize = 16 + 16 * ctx->is_444;
vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
linesize, ctx->m.linesize,
linesize / 2, 16,
0, 0, y_w, y_h);
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
uvlinesize, ctx->m.uvlinesize,
uvlinesize / 2, 16,
0, 0, uv_w, uv_h);
vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
uvlinesize, ctx->m.uvlinesize,
uvlinesize / 2, 16,
0, 0, uv_w, uv_h);
dct_y_offset = bw * linesize / 2;
dct_uv_offset = bw * uvlinesize / 2;
ptr_y = &ctx->edge_buf_y[0];
ptr_u = &ctx->edge_buf_uv[0][0];
ptr_v = &ctx->edge_buf_uv[1][0];
}
if (!ctx->is_444) {
pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
if (ctx->interlaced) {
ctx->get_pixels_8x4_sym(ctx->blocks[4],
ptr_y + dct_y_offset,
linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[5],
ptr_y + dct_y_offset + bw,
linesize);
ctx->get_pixels_8x4_sym(ctx->blocks[6],
ptr_u + dct_uv_offset,
uvlinesize);
ctx->get_pixels_8x4_sym(ctx->blocks[7],
ptr_v + dct_uv_offset,
uvlinesize);
} else {
ctx->bdsp.clear_block(ctx->blocks[4]);
ctx->bdsp.clear_block(ctx->blocks[5]);
ctx->bdsp.clear_block(ctx->blocks[6]);
ctx->bdsp.clear_block(ctx->blocks[7]);
}
} else {
pdsp->get_pixels(ctx->blocks[4],
ptr_y + dct_y_offset, linesize);
pdsp->get_pixels(ctx->blocks[5],
ptr_y + dct_y_offset + bw, linesize);
pdsp->get_pixels(ctx->blocks[6],
ptr_u + dct_uv_offset, uvlinesize);
pdsp->get_pixels(ctx->blocks[7],
ptr_v + dct_uv_offset, uvlinesize);
}
} else {
pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
}
}
static av_always_inline
int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
{
int x;
if (ctx->is_444) {
x = (i >> 1) % 3;
} else {
const static uint8_t component[8]={0,0,1,2,0,0,1,2};
x = component[i];
}
return x;
}
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x;
int qscale = ctx->qscale;
LOCAL_ALIGNED_16(int16_t, block, [64]);
ctx = ctx->thread[threadnr];
ctx->m.last_dc[0] =
ctx->m.last_dc[1] =
ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int ssd = 0;
int ac_bits = 0;
int dc_bits = 0;
int i;
dnxhd_get_blocks(ctx, mb_x, mb_y);
for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
int16_t *src_block = ctx->blocks[i];
int overflow, nbits, diff, last_index;
int n = dnxhd_switch_matrix(ctx, i);
memcpy(block, src_block, 64 * sizeof(*block));
last_index = ctx->m.dct_quantize(&ctx->m, block,
ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
qscale, &overflow);
ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
diff = block[0] - ctx->m.last_dc[n];
if (diff < 0)
nbits = av_log2_16bit(-2 * diff);
else
nbits = av_log2_16bit(2 * diff);
av_assert1(nbits < ctx->bit_depth + 4);
dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
ctx->m.last_dc[n] = block[0];
if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
ctx->m.idsp.idct(block);
ssd += dnxhd_ssd_block(block, src_block);
}
}
ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd = ssd;
ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
(1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
}
return 0;
}
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
PutBitContext pb0, *const pb = &pb0;
int mb_y = jobnr, mb_x;
ctx = ctx->thread[threadnr];
init_put_bits(pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
ctx->slice_size[jobnr]);
ctx->m.last_dc[0] =
ctx->m.last_dc[1] =
ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int qscale = ctx->mb_qscale[mb];
int i;
put_bits(pb, 11, qscale);
put_bits(pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
dnxhd_get_blocks(ctx, mb_x, mb_y);
for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
int16_t *block = ctx->blocks[i];
int overflow, n = dnxhd_switch_matrix(ctx, i);
int last_index = ctx->m.dct_quantize(&ctx->m, block,
ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
qscale, &overflow);
dnxhd_encode_block(pb, ctx, block, last_index, n);
}
}
flush_put_bits(pb);
memset(put_bits_ptr(pb), 0, put_bytes_left(pb, 0));
return 0;
}
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
{
int mb_y, mb_x;
int offset = 0;
for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
int thread_size;
ctx->slice_offs[mb_y] = offset;
ctx->slice_size[mb_y] = 0;
for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
ctx->slice_size[mb_y] += ctx->mb_bits[mb];
}
ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31U) & ~31U;
ctx->slice_size[mb_y] >>= 3;
thread_size = ctx->slice_size[mb_y];
offset += thread_size;
}
}
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
int jobnr, int threadnr)
{
DNXHDEncContext *ctx = avctx->priv_data;
int mb_y = jobnr, mb_x, x, y;
int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
((avctx->height >> ctx->interlaced) & 0xF);
ctx = ctx->thread[threadnr];
if (ctx->bit_depth == 8) {
const uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum;
int varc;
if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
} else {
int bw = FFMIN(avctx->width - 16 * mb_x, 16);
int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
sum = varc = 0;
for (y = 0; y < bh; y++) {
for (x = 0; x < bw; x++) {
uint8_t val = pix[x + y * ctx->m.linesize];
sum += val;
varc += val * val;
}
}
}
varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
ctx->mb_cmp[mb].value = varc;
ctx->mb_cmp[mb].mb = mb;
}
} else { // 10-bit
const int linesize = ctx->m.linesize >> 1;
for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
const uint16_t *pix = (const uint16_t *)ctx->thread[0]->src[0] +
((mb_y << 4) * linesize) + (mb_x << 4);
unsigned mb = mb_y * ctx->m.mb_width + mb_x;
int sum = 0;
int sqsum = 0;
int bw = FFMIN(avctx->width - 16 * mb_x, 16);
int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
int mean, sqmean;
int i, j;
// Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
// Turn 16-bit pixels into 10-bit ones.
const int sample = (unsigned) pix[j] >> 6;
sum += sample;
sqsum += sample * sample;
// 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
}
pix += linesize;
}
mean = sum >> 8; // 16*16 == 2^8
sqmean = sqsum >> 8;
ctx->mb_cmp[mb].value = sqmean - mean * mean;
ctx->mb_cmp[mb].mb = mb;
}
}
return 0;
}
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
{
int lambda, up_step, down_step;
int last_lower = INT_MAX, last_higher = 0;
int x, y, q;
for (q = 1; q < avctx->qmax; q++) {
ctx->qscale = q;
avctx->execute2(avctx, dnxhd_calc_bits_thread,
NULL, NULL, ctx->m.mb_height);
}
up_step = down_step = 2 << LAMBDA_FRAC_BITS;
lambda = ctx->lambda;
for (;;) {
int bits = 0;
int end = 0;
if (lambda == last_higher) {
lambda++;
end = 1; // need to set final qscales/bits
}
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) {
unsigned min = UINT_MAX;
int qscale = 1;
int mb = y * ctx->m.mb_width + x;
int rc = 0;
for (q = 1; q < avctx->qmax; q++) {
int i = (q*ctx->m.mb_num) + mb;
unsigned score = ctx->mb_rc[i].bits * lambda +
((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
if (score < min) {
min = score;
qscale = q;
rc = i;
}
}
bits += ctx->mb_rc[rc].bits;
ctx->mb_qscale[mb] = qscale;
ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
}
bits = (bits + 31) & ~31; // padding
if (bits > ctx->frame_bits)
break;
}
if (end) {
if (bits > ctx->frame_bits)
return AVERROR(EINVAL);
break;
}
if (bits < ctx->frame_bits) {
last_lower = FFMIN(lambda, last_lower);
if (last_higher != 0)
lambda = (lambda+last_higher)>>1;
else
lambda -= down_step;
down_step = FFMIN((int64_t)down_step*5, INT_MAX);
up_step = 1<<LAMBDA_FRAC_BITS;
lambda = FFMAX(1, lambda);
if (lambda == last_lower)
break;
} else {
last_higher = FFMAX(lambda, last_higher);
if (last_lower != INT_MAX)
lambda = (lambda+last_lower)>>1;
else if ((int64_t)lambda + up_step > INT_MAX)
return AVERROR(EINVAL);
else
lambda += up_step;
up_step = FFMIN((int64_t)up_step*5, INT_MAX);
down_step = 1<<LAMBDA_FRAC_BITS;
}
}
ctx->lambda = lambda;
return 0;
}
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
{
int bits = 0;
int up_step = 1;
int down_step = 1;
int last_higher = 0;
int last_lower = INT_MAX;
int qscale;
int x, y;
qscale = ctx->qscale;
for (;;) {
bits = 0;
ctx->qscale = qscale;
// XXX avoid recalculating bits
ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
NULL, NULL, ctx->m.mb_height);
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++)
bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
bits = (bits+31)&~31; // padding
if (bits > ctx->frame_bits)
break;
}
if (bits < ctx->frame_bits) {
if (qscale == 1)
return 1;
if (last_higher == qscale - 1) {
qscale = last_higher;
break;
}
last_lower = FFMIN(qscale, last_lower);
if (last_higher != 0)
qscale = (qscale + last_higher) >> 1;
else
qscale -= down_step++;
if (qscale < 1)
qscale = 1;
up_step = 1;
} else {
if (last_lower == qscale + 1)
break;
last_higher = FFMAX(qscale, last_higher);
if (last_lower != INT_MAX)
qscale = (qscale + last_lower) >> 1;
else
qscale += up_step++;
down_step = 1;
if (qscale >= ctx->m.avctx->qmax)
return AVERROR(EINVAL);
}
}
ctx->qscale = qscale;
return 0;
}
#define BUCKET_BITS 8
#define RADIX_PASSES 4
#define NBUCKETS (1 << BUCKET_BITS)
static inline int get_bucket(int value, int shift)
{
value >>= shift;
value &= NBUCKETS - 1;
return NBUCKETS - 1 - value;
}
static void radix_count(const RCCMPEntry *data, int size,
int buckets[RADIX_PASSES][NBUCKETS])
{
int i, j;
memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
for (i = 0; i < size; i++) {
int v = data[i].value;
for (j = 0; j < RADIX_PASSES; j++) {
buckets[j][get_bucket(v, 0)]++;
v >>= BUCKET_BITS;
}
av_assert1(!v);
}
for (j = 0; j < RADIX_PASSES; j++) {
int offset = size;
for (i = NBUCKETS - 1; i >= 0; i--)
buckets[j][i] = offset -= buckets[j][i];
av_assert1(!buckets[j][0]);
}
}
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
int size, int buckets[NBUCKETS], int pass)
{
int shift = pass * BUCKET_BITS;
int i;
for (i = 0; i < size; i++) {
int v = get_bucket(data[i].value, shift);
int pos = buckets[v]++;
dst[pos] = data[i];
}
}
static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
{
int buckets[RADIX_PASSES][NBUCKETS];
radix_count(data, size, buckets);
radix_sort_pass(tmp, data, size, buckets[0], 0);
radix_sort_pass(data, tmp, size, buckets[1], 1);
if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
radix_sort_pass(tmp, data, size, buckets[2], 2);
radix_sort_pass(data, tmp, size, buckets[3], 3);
}
}
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
{
int max_bits = 0;
int ret, x, y;
if ((ret = dnxhd_find_qscale(ctx)) < 0)
return ret;
for (y = 0; y < ctx->m.mb_height; y++) {
for (x = 0; x < ctx->m.mb_width; x++) {
int mb = y * ctx->m.mb_width + x;
int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
int delta_bits;
ctx->mb_qscale[mb] = ctx->qscale;
ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
max_bits += ctx->mb_rc[rc].bits;
if (!RC_VARIANCE) {
delta_bits = ctx->mb_rc[rc].bits -
ctx->mb_rc[rc + ctx->m.mb_num].bits;
ctx->mb_cmp[mb].mb = mb;
ctx->mb_cmp[mb].value =
delta_bits ? ((ctx->mb_rc[rc].ssd -
ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
delta_bits
: INT_MIN; // avoid increasing qscale
}
}
max_bits += 31; // worst padding
}
if (!ret) {
if (RC_VARIANCE)
avctx->execute2(avctx, dnxhd_mb_var_thread,
NULL, NULL, ctx->m.mb_height);
radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
retry:
for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
int mb = ctx->mb_cmp[x].mb;
int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
max_bits -= ctx->mb_rc[rc].bits -
ctx->mb_rc[rc + ctx->m.mb_num].bits;
if (ctx->mb_qscale[mb] < 255)
ctx->mb_qscale[mb]++;
ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.mb_num].bits;
}
if (max_bits > ctx->frame_bits)
goto retry;
}
return 0;
}
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
{
int i;
for (i = 0; i < ctx->m.avctx->thread_count; i++) {
ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
}
ctx->cur_field = (frame->flags & AV_FRAME_FLAG_INTERLACED) &&
!(frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST);
}
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
DNXHDEncContext *ctx = avctx->priv_data;
int first_field = 1;
int offset, i, ret;
uint8_t *buf;
if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
return ret;
buf = pkt->data;
dnxhd_load_picture(ctx, frame);
encode_coding_unit:
for (i = 0; i < 3; i++) {
ctx->src[i] = frame->data[i];
if (ctx->interlaced && ctx->cur_field)
ctx->src[i] += frame->linesize[i];
}
dnxhd_write_header(avctx, buf);
if (avctx->mb_decision == FF_MB_DECISION_RD)
ret = dnxhd_encode_rdo(avctx, ctx);
else
ret = dnxhd_encode_fast(avctx, ctx);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"picture could not fit ratecontrol constraints, increase qmax\n");
return ret;
}
dnxhd_setup_threads_slices(ctx);
offset = 0;
for (i = 0; i < ctx->m.mb_height; i++) {
AV_WB32(ctx->msip + i * 4, offset);
offset += ctx->slice_size[i];
av_assert1(!(ctx->slice_size[i] & 3));
}
avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
memset(buf + ctx->data_offset + offset, 0,
ctx->coding_unit_size - 4 - offset - ctx->data_offset);
AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
if (ctx->interlaced && first_field) {
first_field = 0;
ctx->cur_field ^= 1;
buf += ctx->coding_unit_size;
goto encode_coding_unit;
}
ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
*got_packet = 1;
return 0;
}
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
{
DNXHDEncContext *ctx = avctx->priv_data;
int i;
av_freep(&ctx->orig_vlc_codes);
av_freep(&ctx->orig_vlc_bits);
av_freep(&ctx->run_codes);
av_freep(&ctx->run_bits);
av_freep(&ctx->mb_bits);
av_freep(&ctx->mb_qscale);
av_freep(&ctx->mb_rc);
av_freep(&ctx->mb_cmp);
av_freep(&ctx->mb_cmp_tmp);
av_freep(&ctx->slice_size);
av_freep(&ctx->slice_offs);
av_freep(&ctx->qmatrix_c);
av_freep(&ctx->qmatrix_l);
av_freep(&ctx->qmatrix_c16);
av_freep(&ctx->qmatrix_l16);
if (ctx->thread[1]) {
for (i = 1; i < avctx->thread_count; i++)
av_freep(&ctx->thread[i]);
}
return 0;
}
static const FFCodecDefault dnxhd_defaults[] = {
{ "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
{ NULL },
};
const FFCodec ff_dnxhd_encoder = {
.p.name = "dnxhd",
CODEC_LONG_NAME("VC3/DNxHD"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DNXHD,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(DNXHDEncContext),
.init = dnxhd_encode_init,
FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
.close = dnxhd_encode_end,
.p.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV422P10,
AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_GBRP10,
AV_PIX_FMT_NONE
},
.p.priv_class = &dnxhd_class,
.defaults = dnxhd_defaults,
.p.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
void ff_dnxhdenc_init(DNXHDEncContext *ctx)
{
#if ARCH_X86
ff_dnxhdenc_init_x86(ctx);
#endif
}