1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/vp3.c
Michael Niedermayer 5ee203076f avcodec/vp3: Fix end of bitstream check in unpack_superblocks()
Fixes: regression

Found-by: Frank Liberato <liberato@google.com>
Tested-by: Frank Liberato <liberato@google.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2018-06-02 21:46:40 +02:00

2600 lines
92 KiB
C

/*
* Copyright (C) 2003-2004 The FFmpeg project
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* On2 VP3 Video Decoder
*
* VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
* For more information about the VP3 coding process, visit:
* http://wiki.multimedia.cx/index.php?title=On2_VP3
*
* Theora decoder by Alex Beregszaszi
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "get_bits.h"
#include "hpeldsp.h"
#include "internal.h"
#include "mathops.h"
#include "thread.h"
#include "videodsp.h"
#include "vp3data.h"
#include "vp3dsp.h"
#include "xiph.h"
#define FRAGMENT_PIXELS 8
// FIXME split things out into their own arrays
typedef struct Vp3Fragment {
int16_t dc;
uint8_t coding_method;
uint8_t qpi;
} Vp3Fragment;
#define SB_NOT_CODED 0
#define SB_PARTIALLY_CODED 1
#define SB_FULLY_CODED 2
// This is the maximum length of a single long bit run that can be encoded
// for superblock coding or block qps. Theora special-cases this to read a
// bit instead of flipping the current bit to allow for runs longer than 4129.
#define MAXIMUM_LONG_BIT_RUN 4129
#define MODE_INTER_NO_MV 0
#define MODE_INTRA 1
#define MODE_INTER_PLUS_MV 2
#define MODE_INTER_LAST_MV 3
#define MODE_INTER_PRIOR_LAST 4
#define MODE_USING_GOLDEN 5
#define MODE_GOLDEN_MV 6
#define MODE_INTER_FOURMV 7
#define CODING_MODE_COUNT 8
/* special internal mode */
#define MODE_COPY 8
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
/* There are 6 preset schemes, plus a free-form scheme */
static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
/* scheme 1: Last motion vector dominates */
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
MODE_INTRA, MODE_USING_GOLDEN,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
/* scheme 2 */
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
MODE_INTRA, MODE_USING_GOLDEN,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
/* scheme 3 */
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
MODE_INTRA, MODE_USING_GOLDEN,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
/* scheme 4 */
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
MODE_INTRA, MODE_USING_GOLDEN,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
/* scheme 5: No motion vector dominates */
{ MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
MODE_INTRA, MODE_USING_GOLDEN,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
/* scheme 6 */
{ MODE_INTER_NO_MV, MODE_USING_GOLDEN,
MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
MODE_INTER_PLUS_MV, MODE_INTRA,
MODE_GOLDEN_MV, MODE_INTER_FOURMV },
};
static const uint8_t hilbert_offset[16][2] = {
{ 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
{ 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
{ 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
};
#define MIN_DEQUANT_VAL 2
typedef struct Vp3DecodeContext {
AVCodecContext *avctx;
int theora, theora_tables, theora_header;
int version;
int width, height;
int chroma_x_shift, chroma_y_shift;
ThreadFrame golden_frame;
ThreadFrame last_frame;
ThreadFrame current_frame;
int keyframe;
uint8_t idct_permutation[64];
uint8_t idct_scantable[64];
HpelDSPContext hdsp;
VideoDSPContext vdsp;
VP3DSPContext vp3dsp;
DECLARE_ALIGNED(16, int16_t, block)[64];
int flipped_image;
int last_slice_end;
int skip_loop_filter;
int qps[3];
int nqps;
int last_qps[3];
int superblock_count;
int y_superblock_width;
int y_superblock_height;
int y_superblock_count;
int c_superblock_width;
int c_superblock_height;
int c_superblock_count;
int u_superblock_start;
int v_superblock_start;
unsigned char *superblock_coding;
int macroblock_count;
int macroblock_width;
int macroblock_height;
int fragment_count;
int fragment_width[2];
int fragment_height[2];
Vp3Fragment *all_fragments;
int fragment_start[3];
int data_offset[3];
uint8_t offset_x;
uint8_t offset_y;
int offset_x_warned;
int8_t (*motion_val[2])[2];
/* tables */
uint16_t coded_dc_scale_factor[64];
uint32_t coded_ac_scale_factor[64];
uint8_t base_matrix[384][64];
uint8_t qr_count[2][3];
uint8_t qr_size[2][3][64];
uint16_t qr_base[2][3][64];
/**
* This is a list of all tokens in bitstream order. Reordering takes place
* by pulling from each level during IDCT. As a consequence, IDCT must be
* in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
* otherwise. The 32 different tokens with up to 12 bits of extradata are
* collapsed into 3 types, packed as follows:
* (from the low to high bits)
*
* 2 bits: type (0,1,2)
* 0: EOB run, 14 bits for run length (12 needed)
* 1: zero run, 7 bits for run length
* 7 bits for the next coefficient (3 needed)
* 2: coefficient, 14 bits (11 needed)
*
* Coefficients are signed, so are packed in the highest bits for automatic
* sign extension.
*/
int16_t *dct_tokens[3][64];
int16_t *dct_tokens_base;
#define TOKEN_EOB(eob_run) ((eob_run) << 2)
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
#define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
/**
* number of blocks that contain DCT coefficients at
* the given level or higher
*/
int num_coded_frags[3][64];
int total_num_coded_frags;
/* this is a list of indexes into the all_fragments array indicating
* which of the fragments are coded */
int *coded_fragment_list[3];
VLC dc_vlc[16];
VLC ac_vlc_1[16];
VLC ac_vlc_2[16];
VLC ac_vlc_3[16];
VLC ac_vlc_4[16];
VLC superblock_run_length_vlc;
VLC fragment_run_length_vlc;
VLC mode_code_vlc;
VLC motion_vector_vlc;
/* these arrays need to be on 16-byte boundaries since SSE2 operations
* index into them */
DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
/* This table contains superblock_count * 16 entries. Each set of 16
* numbers corresponds to the fragment indexes 0..15 of the superblock.
* An entry will be -1 to indicate that no entry corresponds to that
* index. */
int *superblock_fragments;
/* This is an array that indicates how a particular macroblock
* is coded. */
unsigned char *macroblock_coding;
uint8_t *edge_emu_buffer;
/* Huffman decode */
int hti;
unsigned int hbits;
int entries;
int huff_code_size;
uint32_t huffman_table[80][32][2];
uint8_t filter_limit_values[64];
DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
} Vp3DecodeContext;
/************************************************************************
* VP3 specific functions
************************************************************************/
static av_cold void free_tables(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
av_freep(&s->superblock_coding);
av_freep(&s->all_fragments);
av_freep(&s->coded_fragment_list[0]);
av_freep(&s->dct_tokens_base);
av_freep(&s->superblock_fragments);
av_freep(&s->macroblock_coding);
av_freep(&s->motion_val[0]);
av_freep(&s->motion_val[1]);
}
static void vp3_decode_flush(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
if (s->golden_frame.f)
ff_thread_release_buffer(avctx, &s->golden_frame);
if (s->last_frame.f)
ff_thread_release_buffer(avctx, &s->last_frame);
if (s->current_frame.f)
ff_thread_release_buffer(avctx, &s->current_frame);
}
static av_cold int vp3_decode_end(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
int i;
free_tables(avctx);
av_freep(&s->edge_emu_buffer);
s->theora_tables = 0;
/* release all frames */
vp3_decode_flush(avctx);
av_frame_free(&s->current_frame.f);
av_frame_free(&s->last_frame.f);
av_frame_free(&s->golden_frame.f);
if (avctx->internal->is_copy)
return 0;
for (i = 0; i < 16; i++) {
ff_free_vlc(&s->dc_vlc[i]);
ff_free_vlc(&s->ac_vlc_1[i]);
ff_free_vlc(&s->ac_vlc_2[i]);
ff_free_vlc(&s->ac_vlc_3[i]);
ff_free_vlc(&s->ac_vlc_4[i]);
}
ff_free_vlc(&s->superblock_run_length_vlc);
ff_free_vlc(&s->fragment_run_length_vlc);
ff_free_vlc(&s->mode_code_vlc);
ff_free_vlc(&s->motion_vector_vlc);
return 0;
}
/**
* This function sets up all of the various blocks mappings:
* superblocks <-> fragments, macroblocks <-> fragments,
* superblocks <-> macroblocks
*
* @return 0 is successful; returns 1 if *anything* went wrong.
*/
static int init_block_mapping(Vp3DecodeContext *s)
{
int sb_x, sb_y, plane;
int x, y, i, j = 0;
for (plane = 0; plane < 3; plane++) {
int sb_width = plane ? s->c_superblock_width
: s->y_superblock_width;
int sb_height = plane ? s->c_superblock_height
: s->y_superblock_height;
int frag_width = s->fragment_width[!!plane];
int frag_height = s->fragment_height[!!plane];
for (sb_y = 0; sb_y < sb_height; sb_y++)
for (sb_x = 0; sb_x < sb_width; sb_x++)
for (i = 0; i < 16; i++) {
x = 4 * sb_x + hilbert_offset[i][0];
y = 4 * sb_y + hilbert_offset[i][1];
if (x < frag_width && y < frag_height)
s->superblock_fragments[j++] = s->fragment_start[plane] +
y * frag_width + x;
else
s->superblock_fragments[j++] = -1;
}
}
return 0; /* successful path out */
}
/*
* This function sets up the dequantization tables used for a particular
* frame.
*/
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
{
int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
int i, plane, inter, qri, bmi, bmj, qistart;
for (inter = 0; inter < 2; inter++) {
for (plane = 0; plane < 3; plane++) {
int sum = 0;
for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
sum += s->qr_size[inter][plane][qri];
if (s->qps[qpi] <= sum)
break;
}
qistart = sum - s->qr_size[inter][plane][qri];
bmi = s->qr_base[inter][plane][qri];
bmj = s->qr_base[inter][plane][qri + 1];
for (i = 0; i < 64; i++) {
int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
s->qr_size[inter][plane][qri]) /
(2 * s->qr_size[inter][plane][qri]);
int qmin = 8 << (inter + !i);
int qscale = i ? ac_scale_factor : dc_scale_factor;
s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
}
/* all DC coefficients use the same quant so as not to interfere
* with DC prediction */
s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
}
}
}
/*
* This function initializes the loop filter boundary limits if the frame's
* quality index is different from the previous frame's.
*
* The filter_limit_values may not be larger than 127.
*/
static void init_loop_filter(Vp3DecodeContext *s)
{
int *bounding_values = s->bounding_values_array + 127;
int filter_limit;
int x;
int value;
filter_limit = s->filter_limit_values[s->qps[0]];
av_assert0(filter_limit < 128U);
/* set up the bounding values */
memset(s->bounding_values_array, 0, 256 * sizeof(int));
for (x = 0; x < filter_limit; x++) {
bounding_values[-x] = -x;
bounding_values[x] = x;
}
for (x = value = filter_limit; x < 128 && value; x++, value--) {
bounding_values[ x] = value;
bounding_values[-x] = -value;
}
if (value)
bounding_values[128] = value;
bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
}
/*
* This function unpacks all of the superblock/macroblock/fragment coding
* information from the bitstream.
*/
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
{
int superblock_starts[3] = {
0, s->u_superblock_start, s->v_superblock_start
};
int bit = 0;
int current_superblock = 0;
int current_run = 0;
int num_partial_superblocks = 0;
int i, j;
int current_fragment;
int plane;
int plane0_num_coded_frags = 0;
if (s->keyframe) {
memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
} else {
/* unpack the list of partially-coded superblocks */
bit = get_bits1(gb) ^ 1;
current_run = 0;
while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
bit = get_bits1(gb);
else
bit ^= 1;
current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
6, 2) + 1;
if (current_run == 34)
current_run += get_bits(gb, 12);
if (current_run > s->superblock_count - current_superblock) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid partially coded superblock run length\n");
return -1;
}
memset(s->superblock_coding + current_superblock, bit, current_run);
current_superblock += current_run;
if (bit)
num_partial_superblocks += current_run;
}
/* unpack the list of fully coded superblocks if any of the blocks were
* not marked as partially coded in the previous step */
if (num_partial_superblocks < s->superblock_count) {
int superblocks_decoded = 0;
current_superblock = 0;
bit = get_bits1(gb) ^ 1;
current_run = 0;
while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
get_bits_left(gb) > 0) {
if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
bit = get_bits1(gb);
else
bit ^= 1;
current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
6, 2) + 1;
if (current_run == 34)
current_run += get_bits(gb, 12);
for (j = 0; j < current_run; current_superblock++) {
if (current_superblock >= s->superblock_count) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid fully coded superblock run length\n");
return -1;
}
/* skip any superblocks already marked as partially coded */
if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
s->superblock_coding[current_superblock] = 2 * bit;
j++;
}
}
superblocks_decoded += current_run;
}
}
/* if there were partial blocks, initialize bitstream for
* unpacking fragment codings */
if (num_partial_superblocks) {
current_run = 0;
bit = get_bits1(gb);
/* toggle the bit because as soon as the first run length is
* fetched the bit will be toggled again */
bit ^= 1;
}
}
/* figure out which fragments are coded; iterate through each
* superblock (all planes) */
s->total_num_coded_frags = 0;
memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
for (plane = 0; plane < 3; plane++) {
int sb_start = superblock_starts[plane];
int sb_end = sb_start + (plane ? s->c_superblock_count
: s->y_superblock_count);
int num_coded_frags = 0;
for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
if (s->keyframe == 0 && get_bits_left(gb) < plane0_num_coded_frags >> 2) {
return AVERROR_INVALIDDATA;
}
/* iterate through all 16 fragments in a superblock */
for (j = 0; j < 16; j++) {
/* if the fragment is in bounds, check its coding status */
current_fragment = s->superblock_fragments[i * 16 + j];
if (current_fragment != -1) {
int coded = s->superblock_coding[i];
if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
/* fragment may or may not be coded; this is the case
* that cares about the fragment coding runs */
if (current_run-- == 0) {
bit ^= 1;
current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
}
coded = bit;
}
if (coded) {
/* default mode; actual mode will be decoded in
* the next phase */
s->all_fragments[current_fragment].coding_method =
MODE_INTER_NO_MV;
s->coded_fragment_list[plane][num_coded_frags++] =
current_fragment;
} else {
/* not coded; copy this fragment from the prior frame */
s->all_fragments[current_fragment].coding_method =
MODE_COPY;
}
}
}
}
if (!plane)
plane0_num_coded_frags = num_coded_frags;
s->total_num_coded_frags += num_coded_frags;
for (i = 0; i < 64; i++)
s->num_coded_frags[plane][i] = num_coded_frags;
if (plane < 2)
s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
num_coded_frags;
}
return 0;
}
/*
* This function unpacks all the coding mode data for individual macroblocks
* from the bitstream.
*/
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
{
int i, j, k, sb_x, sb_y;
int scheme;
int current_macroblock;
int current_fragment;
int coding_mode;
int custom_mode_alphabet[CODING_MODE_COUNT];
const int *alphabet;
Vp3Fragment *frag;
if (s->keyframe) {
for (i = 0; i < s->fragment_count; i++)
s->all_fragments[i].coding_method = MODE_INTRA;
} else {
/* fetch the mode coding scheme for this frame */
scheme = get_bits(gb, 3);
/* is it a custom coding scheme? */
if (scheme == 0) {
for (i = 0; i < 8; i++)
custom_mode_alphabet[i] = MODE_INTER_NO_MV;
for (i = 0; i < 8; i++)
custom_mode_alphabet[get_bits(gb, 3)] = i;
alphabet = custom_mode_alphabet;
} else
alphabet = ModeAlphabet[scheme - 1];
/* iterate through all of the macroblocks that contain 1 or more
* coded fragments */
for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
if (get_bits_left(gb) <= 0)
return -1;
for (j = 0; j < 4; j++) {
int mb_x = 2 * sb_x + (j >> 1);
int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
current_macroblock = mb_y * s->macroblock_width + mb_x;
if (mb_x >= s->macroblock_width ||
mb_y >= s->macroblock_height)
continue;
#define BLOCK_X (2 * mb_x + (k & 1))
#define BLOCK_Y (2 * mb_y + (k >> 1))
/* coding modes are only stored if the macroblock has
* at least one luma block coded, otherwise it must be
* INTER_NO_MV */
for (k = 0; k < 4; k++) {
current_fragment = BLOCK_Y *
s->fragment_width[0] + BLOCK_X;
if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
break;
}
if (k == 4) {
s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
continue;
}
/* mode 7 means get 3 bits for each coding mode */
if (scheme == 7)
coding_mode = get_bits(gb, 3);
else
coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
s->macroblock_coding[current_macroblock] = coding_mode;
for (k = 0; k < 4; k++) {
frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
if (frag->coding_method != MODE_COPY)
frag->coding_method = coding_mode;
}
#define SET_CHROMA_MODES \
if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
frag[s->fragment_start[1]].coding_method = coding_mode; \
if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
frag[s->fragment_start[2]].coding_method = coding_mode;
if (s->chroma_y_shift) {
frag = s->all_fragments + mb_y *
s->fragment_width[1] + mb_x;
SET_CHROMA_MODES
} else if (s->chroma_x_shift) {
frag = s->all_fragments +
2 * mb_y * s->fragment_width[1] + mb_x;
for (k = 0; k < 2; k++) {
SET_CHROMA_MODES
frag += s->fragment_width[1];
}
} else {
for (k = 0; k < 4; k++) {
frag = s->all_fragments +
BLOCK_Y * s->fragment_width[1] + BLOCK_X;
SET_CHROMA_MODES
}
}
}
}
}
}
return 0;
}
/*
* This function unpacks all the motion vectors for the individual
* macroblocks from the bitstream.
*/
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
{
int j, k, sb_x, sb_y;
int coding_mode;
int motion_x[4];
int motion_y[4];
int last_motion_x = 0;
int last_motion_y = 0;
int prior_last_motion_x = 0;
int prior_last_motion_y = 0;
int current_macroblock;
int current_fragment;
int frag;
if (s->keyframe)
return 0;
/* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
coding_mode = get_bits1(gb);
/* iterate through all of the macroblocks that contain 1 or more
* coded fragments */
for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
if (get_bits_left(gb) <= 0)
return -1;
for (j = 0; j < 4; j++) {
int mb_x = 2 * sb_x + (j >> 1);
int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
current_macroblock = mb_y * s->macroblock_width + mb_x;
if (mb_x >= s->macroblock_width ||
mb_y >= s->macroblock_height ||
s->macroblock_coding[current_macroblock] == MODE_COPY)
continue;
switch (s->macroblock_coding[current_macroblock]) {
case MODE_INTER_PLUS_MV:
case MODE_GOLDEN_MV:
/* all 6 fragments use the same motion vector */
if (coding_mode == 0) {
motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
} else {
motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
}
/* vector maintenance, only on MODE_INTER_PLUS_MV */
if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
prior_last_motion_x = last_motion_x;
prior_last_motion_y = last_motion_y;
last_motion_x = motion_x[0];
last_motion_y = motion_y[0];
}
break;
case MODE_INTER_FOURMV:
/* vector maintenance */
prior_last_motion_x = last_motion_x;
prior_last_motion_y = last_motion_y;
/* fetch 4 vectors from the bitstream, one for each
* Y fragment, then average for the C fragment vectors */
for (k = 0; k < 4; k++) {
current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
if (coding_mode == 0) {
motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
} else {
motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
}
last_motion_x = motion_x[k];
last_motion_y = motion_y[k];
} else {
motion_x[k] = 0;
motion_y[k] = 0;
}
}
break;
case MODE_INTER_LAST_MV:
/* all 6 fragments use the last motion vector */
motion_x[0] = last_motion_x;
motion_y[0] = last_motion_y;
/* no vector maintenance (last vector remains the
* last vector) */
break;
case MODE_INTER_PRIOR_LAST:
/* all 6 fragments use the motion vector prior to the
* last motion vector */
motion_x[0] = prior_last_motion_x;
motion_y[0] = prior_last_motion_y;
/* vector maintenance */
prior_last_motion_x = last_motion_x;
prior_last_motion_y = last_motion_y;
last_motion_x = motion_x[0];
last_motion_y = motion_y[0];
break;
default:
/* covers intra, inter without MV, golden without MV */
motion_x[0] = 0;
motion_y[0] = 0;
/* no vector maintenance */
break;
}
/* assign the motion vectors to the correct fragments */
for (k = 0; k < 4; k++) {
current_fragment =
BLOCK_Y * s->fragment_width[0] + BLOCK_X;
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
s->motion_val[0][current_fragment][0] = motion_x[k];
s->motion_val[0][current_fragment][1] = motion_y[k];
} else {
s->motion_val[0][current_fragment][0] = motion_x[0];
s->motion_val[0][current_fragment][1] = motion_y[0];
}
}
if (s->chroma_y_shift) {
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
motion_x[2] + motion_x[3], 2);
motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
motion_y[2] + motion_y[3], 2);
}
motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
frag = mb_y * s->fragment_width[1] + mb_x;
s->motion_val[1][frag][0] = motion_x[0];
s->motion_val[1][frag][1] = motion_y[0];
} else if (s->chroma_x_shift) {
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
} else {
motion_x[1] = motion_x[0];
motion_y[1] = motion_y[0];
}
motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
frag = 2 * mb_y * s->fragment_width[1] + mb_x;
for (k = 0; k < 2; k++) {
s->motion_val[1][frag][0] = motion_x[k];
s->motion_val[1][frag][1] = motion_y[k];
frag += s->fragment_width[1];
}
} else {
for (k = 0; k < 4; k++) {
frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
s->motion_val[1][frag][0] = motion_x[k];
s->motion_val[1][frag][1] = motion_y[k];
} else {
s->motion_val[1][frag][0] = motion_x[0];
s->motion_val[1][frag][1] = motion_y[0];
}
}
}
}
}
}
return 0;
}
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
{
int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
int num_blocks = s->total_num_coded_frags;
for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
i = blocks_decoded = num_blocks_at_qpi = 0;
bit = get_bits1(gb) ^ 1;
run_length = 0;
do {
if (run_length == MAXIMUM_LONG_BIT_RUN)
bit = get_bits1(gb);
else
bit ^= 1;
run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
if (run_length == 34)
run_length += get_bits(gb, 12);
blocks_decoded += run_length;
if (!bit)
num_blocks_at_qpi += run_length;
for (j = 0; j < run_length; i++) {
if (i >= s->total_num_coded_frags)
return -1;
if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
j++;
}
}
} while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
num_blocks -= num_blocks_at_qpi;
}
return 0;
}
/*
* This function is called by unpack_dct_coeffs() to extract the VLCs from
* the bitstream. The VLCs encode tokens which are used to unpack DCT
* data. This function unpacks all the VLCs for either the Y plane or both
* C planes, and is called for DC coefficients or different AC coefficient
* levels (since different coefficient types require different VLC tables.
*
* This function returns a residual eob run. E.g, if a particular token gave
* instructions to EOB the next 5 fragments and there were only 2 fragments
* left in the current fragment range, 3 would be returned so that it could
* be passed into the next call to this same function.
*/
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
VLC *table, int coeff_index,
int plane,
int eob_run)
{
int i, j = 0;
int token;
int zero_run = 0;
int16_t coeff = 0;
int bits_to_get;
int blocks_ended;
int coeff_i = 0;
int num_coeffs = s->num_coded_frags[plane][coeff_index];
int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
/* local references to structure members to avoid repeated dereferences */
int *coded_fragment_list = s->coded_fragment_list[plane];
Vp3Fragment *all_fragments = s->all_fragments;
VLC_TYPE(*vlc_table)[2] = table->table;
if (num_coeffs < 0) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid number of coefficients at level %d\n", coeff_index);
return AVERROR_INVALIDDATA;
}
if (eob_run > num_coeffs) {
coeff_i =
blocks_ended = num_coeffs;
eob_run -= num_coeffs;
} else {
coeff_i =
blocks_ended = eob_run;
eob_run = 0;
}
// insert fake EOB token to cover the split between planes or zzi
if (blocks_ended)
dct_tokens[j++] = blocks_ended << 2;
while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
/* decode a VLC into a token */
token = get_vlc2(gb, vlc_table, 11, 3);
/* use the token to get a zero run, a coefficient, and an eob run */
if ((unsigned) token <= 6U) {
eob_run = eob_run_base[token];
if (eob_run_get_bits[token])
eob_run += get_bits(gb, eob_run_get_bits[token]);
if (!eob_run)
eob_run = INT_MAX;
// record only the number of blocks ended in this plane,
// any spill will be recorded in the next plane.
if (eob_run > num_coeffs - coeff_i) {
dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
blocks_ended += num_coeffs - coeff_i;
eob_run -= num_coeffs - coeff_i;
coeff_i = num_coeffs;
} else {
dct_tokens[j++] = TOKEN_EOB(eob_run);
blocks_ended += eob_run;
coeff_i += eob_run;
eob_run = 0;
}
} else if (token >= 0) {
bits_to_get = coeff_get_bits[token];
if (bits_to_get)
bits_to_get = get_bits(gb, bits_to_get);
coeff = coeff_tables[token][bits_to_get];
zero_run = zero_run_base[token];
if (zero_run_get_bits[token])
zero_run += get_bits(gb, zero_run_get_bits[token]);
if (zero_run) {
dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
} else {
// Save DC into the fragment structure. DC prediction is
// done in raster order, so the actual DC can't be in with
// other tokens. We still need the token in dct_tokens[]
// however, or else the structure collapses on itself.
if (!coeff_index)
all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
dct_tokens[j++] = TOKEN_COEFF(coeff);
}
if (coeff_index + zero_run > 64) {
av_log(s->avctx, AV_LOG_DEBUG,
"Invalid zero run of %d with %d coeffs left\n",
zero_run, 64 - coeff_index);
zero_run = 64 - coeff_index;
}
// zero runs code multiple coefficients,
// so don't try to decode coeffs for those higher levels
for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
s->num_coded_frags[plane][i]--;
coeff_i++;
} else {
av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
return -1;
}
}
if (blocks_ended > s->num_coded_frags[plane][coeff_index])
av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
// decrement the number of blocks that have higher coefficients for each
// EOB run at this level
if (blocks_ended)
for (i = coeff_index + 1; i < 64; i++)
s->num_coded_frags[plane][i] -= blocks_ended;
// setup the next buffer
if (plane < 2)
s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
else if (coeff_index < 63)
s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
return eob_run;
}
static void reverse_dc_prediction(Vp3DecodeContext *s,
int first_fragment,
int fragment_width,
int fragment_height);
/*
* This function unpacks all of the DCT coefficient data from the
* bitstream.
*/
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
{
int i;
int dc_y_table;
int dc_c_table;
int ac_y_table;
int ac_c_table;
int residual_eob_run = 0;
VLC *y_tables[64];
VLC *c_tables[64];
s->dct_tokens[0][0] = s->dct_tokens_base;
if (get_bits_left(gb) < 16)
return AVERROR_INVALIDDATA;
/* fetch the DC table indexes */
dc_y_table = get_bits(gb, 4);
dc_c_table = get_bits(gb, 4);
/* unpack the Y plane DC coefficients */
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
0, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
if (get_bits_left(gb) < 8)
return AVERROR_INVALIDDATA;
/* reverse prediction of the Y-plane DC coefficients */
reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
/* unpack the C plane DC coefficients */
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
2, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
/* reverse prediction of the C-plane DC coefficients */
if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
reverse_dc_prediction(s, s->fragment_start[1],
s->fragment_width[1], s->fragment_height[1]);
reverse_dc_prediction(s, s->fragment_start[2],
s->fragment_width[1], s->fragment_height[1]);
}
if (get_bits_left(gb) < 8)
return AVERROR_INVALIDDATA;
/* fetch the AC table indexes */
ac_y_table = get_bits(gb, 4);
ac_c_table = get_bits(gb, 4);
/* build tables of AC VLC tables */
for (i = 1; i <= 5; i++) {
y_tables[i] = &s->ac_vlc_1[ac_y_table];
c_tables[i] = &s->ac_vlc_1[ac_c_table];
}
for (i = 6; i <= 14; i++) {
y_tables[i] = &s->ac_vlc_2[ac_y_table];
c_tables[i] = &s->ac_vlc_2[ac_c_table];
}
for (i = 15; i <= 27; i++) {
y_tables[i] = &s->ac_vlc_3[ac_y_table];
c_tables[i] = &s->ac_vlc_3[ac_c_table];
}
for (i = 28; i <= 63; i++) {
y_tables[i] = &s->ac_vlc_4[ac_y_table];
c_tables[i] = &s->ac_vlc_4[ac_c_table];
}
/* decode all AC coefficients */
for (i = 1; i <= 63; i++) {
residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
0, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
2, residual_eob_run);
if (residual_eob_run < 0)
return residual_eob_run;
}
return 0;
}
/*
* This function reverses the DC prediction for each coded fragment in
* the frame. Much of this function is adapted directly from the original
* VP3 source code.
*/
#define COMPATIBLE_FRAME(x) \
(compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
#define DC_COEFF(u) s->all_fragments[u].dc
static void reverse_dc_prediction(Vp3DecodeContext *s,
int first_fragment,
int fragment_width,
int fragment_height)
{
#define PUL 8
#define PU 4
#define PUR 2
#define PL 1
int x, y;
int i = first_fragment;
int predicted_dc;
/* DC values for the left, up-left, up, and up-right fragments */
int vl, vul, vu, vur;
/* indexes for the left, up-left, up, and up-right fragments */
int l, ul, u, ur;
/*
* The 6 fields mean:
* 0: up-left multiplier
* 1: up multiplier
* 2: up-right multiplier
* 3: left multiplier
*/
static const int predictor_transform[16][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 128 }, // PL
{ 0, 0, 128, 0 }, // PUR
{ 0, 0, 53, 75 }, // PUR|PL
{ 0, 128, 0, 0 }, // PU
{ 0, 64, 0, 64 }, // PU |PL
{ 0, 128, 0, 0 }, // PU |PUR
{ 0, 0, 53, 75 }, // PU |PUR|PL
{ 128, 0, 0, 0 }, // PUL
{ 0, 0, 0, 128 }, // PUL|PL
{ 64, 0, 64, 0 }, // PUL|PUR
{ 0, 0, 53, 75 }, // PUL|PUR|PL
{ 0, 128, 0, 0 }, // PUL|PU
{ -104, 116, 0, 116 }, // PUL|PU |PL
{ 24, 80, 24, 0 }, // PUL|PU |PUR
{ -104, 116, 0, 116 } // PUL|PU |PUR|PL
};
/* This table shows which types of blocks can use other blocks for
* prediction. For example, INTRA is the only mode in this table to
* have a frame number of 0. That means INTRA blocks can only predict
* from other INTRA blocks. There are 2 golden frame coding types;
* blocks encoding in these modes can only predict from other blocks
* that were encoded with these 1 of these 2 modes. */
static const unsigned char compatible_frame[9] = {
1, /* MODE_INTER_NO_MV */
0, /* MODE_INTRA */
1, /* MODE_INTER_PLUS_MV */
1, /* MODE_INTER_LAST_MV */
1, /* MODE_INTER_PRIOR_MV */
2, /* MODE_USING_GOLDEN */
2, /* MODE_GOLDEN_MV */
1, /* MODE_INTER_FOUR_MV */
3 /* MODE_COPY */
};
int current_frame_type;
/* there is a last DC predictor for each of the 3 frame types */
short last_dc[3];
int transform = 0;
vul =
vu =
vur =
vl = 0;
last_dc[0] =
last_dc[1] =
last_dc[2] = 0;
/* for each fragment row... */
for (y = 0; y < fragment_height; y++) {
/* for each fragment in a row... */
for (x = 0; x < fragment_width; x++, i++) {
/* reverse prediction if this block was coded */
if (s->all_fragments[i].coding_method != MODE_COPY) {
current_frame_type =
compatible_frame[s->all_fragments[i].coding_method];
transform = 0;
if (x) {
l = i - 1;
vl = DC_COEFF(l);
if (COMPATIBLE_FRAME(l))
transform |= PL;
}
if (y) {
u = i - fragment_width;
vu = DC_COEFF(u);
if (COMPATIBLE_FRAME(u))
transform |= PU;
if (x) {
ul = i - fragment_width - 1;
vul = DC_COEFF(ul);
if (COMPATIBLE_FRAME(ul))
transform |= PUL;
}
if (x + 1 < fragment_width) {
ur = i - fragment_width + 1;
vur = DC_COEFF(ur);
if (COMPATIBLE_FRAME(ur))
transform |= PUR;
}
}
if (transform == 0) {
/* if there were no fragments to predict from, use last
* DC saved */
predicted_dc = last_dc[current_frame_type];
} else {
/* apply the appropriate predictor transform */
predicted_dc =
(predictor_transform[transform][0] * vul) +
(predictor_transform[transform][1] * vu) +
(predictor_transform[transform][2] * vur) +
(predictor_transform[transform][3] * vl);
predicted_dc /= 128;
/* check for outranging on the [ul u l] and
* [ul u ur l] predictors */
if ((transform == 15) || (transform == 13)) {
if (FFABS(predicted_dc - vu) > 128)
predicted_dc = vu;
else if (FFABS(predicted_dc - vl) > 128)
predicted_dc = vl;
else if (FFABS(predicted_dc - vul) > 128)
predicted_dc = vul;
}
}
/* at long last, apply the predictor */
DC_COEFF(i) += predicted_dc;
/* save the DC */
last_dc[current_frame_type] = DC_COEFF(i);
}
}
}
}
static void apply_loop_filter(Vp3DecodeContext *s, int plane,
int ystart, int yend)
{
int x, y;
int *bounding_values = s->bounding_values_array + 127;
int width = s->fragment_width[!!plane];
int height = s->fragment_height[!!plane];
int fragment = s->fragment_start[plane] + ystart * width;
ptrdiff_t stride = s->current_frame.f->linesize[plane];
uint8_t *plane_data = s->current_frame.f->data[plane];
if (!s->flipped_image)
stride = -stride;
plane_data += s->data_offset[plane] + 8 * ystart * stride;
for (y = ystart; y < yend; y++) {
for (x = 0; x < width; x++) {
/* This code basically just deblocks on the edges of coded blocks.
* However, it has to be much more complicated because of the
* brain damaged deblock ordering used in VP3/Theora. Order matters
* because some pixels get filtered twice. */
if (s->all_fragments[fragment].coding_method != MODE_COPY) {
/* do not perform left edge filter for left columns frags */
if (x > 0) {
s->vp3dsp.h_loop_filter(
plane_data + 8 * x,
stride, bounding_values);
}
/* do not perform top edge filter for top row fragments */
if (y > 0) {
s->vp3dsp.v_loop_filter(
plane_data + 8 * x,
stride, bounding_values);
}
/* do not perform right edge filter for right column
* fragments or if right fragment neighbor is also coded
* in this frame (it will be filtered in next iteration) */
if ((x < width - 1) &&
(s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
s->vp3dsp.h_loop_filter(
plane_data + 8 * x + 8,
stride, bounding_values);
}
/* do not perform bottom edge filter for bottom row
* fragments or if bottom fragment neighbor is also coded
* in this frame (it will be filtered in the next row) */
if ((y < height - 1) &&
(s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
s->vp3dsp.v_loop_filter(
plane_data + 8 * x + 8 * stride,
stride, bounding_values);
}
}
fragment++;
}
plane_data += 8 * stride;
}
}
/**
* Pull DCT tokens from the 64 levels to decode and dequant the coefficients
* for the next block in coding order
*/
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
int plane, int inter, int16_t block[64])
{
int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
uint8_t *perm = s->idct_scantable;
int i = 0;
do {
int token = *s->dct_tokens[plane][i];
switch (token & 3) {
case 0: // EOB
if (--token < 4) // 0-3 are token types so the EOB run must now be 0
s->dct_tokens[plane][i]++;
else
*s->dct_tokens[plane][i] = token & ~3;
goto end;
case 1: // zero run
s->dct_tokens[plane][i]++;
i += (token >> 2) & 0x7f;
if (i > 63) {
av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
return i;
}
block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
i++;
break;
case 2: // coeff
block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
s->dct_tokens[plane][i++]++;
break;
default: // shouldn't happen
return i;
}
} while (i < 64);
// return value is expected to be a valid level
i--;
end:
// the actual DC+prediction is in the fragment structure
block[0] = frag->dc * s->qmat[0][inter][plane][0];
return i;
}
/**
* called when all pixels up to row y are complete
*/
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
{
int h, cy, i;
int offset[AV_NUM_DATA_POINTERS];
if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
int y_flipped = s->flipped_image ? s->height - y : y;
/* At the end of the frame, report INT_MAX instead of the height of
* the frame. This makes the other threads' ff_thread_await_progress()
* calls cheaper, because they don't have to clip their values. */
ff_thread_report_progress(&s->current_frame,
y_flipped == s->height ? INT_MAX
: y_flipped - 1,
0);
}
if (!s->avctx->draw_horiz_band)
return;
h = y - s->last_slice_end;
s->last_slice_end = y;
y -= h;
if (!s->flipped_image)
y = s->height - y - h;
cy = y >> s->chroma_y_shift;
offset[0] = s->current_frame.f->linesize[0] * y;
offset[1] = s->current_frame.f->linesize[1] * cy;
offset[2] = s->current_frame.f->linesize[2] * cy;
for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
offset[i] = 0;
emms_c();
s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
}
/**
* Wait for the reference frame of the current fragment.
* The progress value is in luma pixel rows.
*/
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
int motion_y, int y)
{
ThreadFrame *ref_frame;
int ref_row;
int border = motion_y & 1;
if (fragment->coding_method == MODE_USING_GOLDEN ||
fragment->coding_method == MODE_GOLDEN_MV)
ref_frame = &s->golden_frame;
else
ref_frame = &s->last_frame;
ref_row = y + (motion_y >> 1);
ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
ff_thread_await_progress(ref_frame, ref_row, 0);
}
/*
* Perform the final rendering for a particular slice of data.
* The slice number ranges from 0..(c_superblock_height - 1).
*/
static void render_slice(Vp3DecodeContext *s, int slice)
{
int x, y, i, j, fragment;
int16_t *block = s->block;
int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
int motion_halfpel_index;
uint8_t *motion_source;
int plane, first_pixel;
if (slice >= s->c_superblock_height)
return;
for (plane = 0; plane < 3; plane++) {
uint8_t *output_plane = s->current_frame.f->data[plane] +
s->data_offset[plane];
uint8_t *last_plane = s->last_frame.f->data[plane] +
s->data_offset[plane];
uint8_t *golden_plane = s->golden_frame.f->data[plane] +
s->data_offset[plane];
ptrdiff_t stride = s->current_frame.f->linesize[plane];
int plane_width = s->width >> (plane && s->chroma_x_shift);
int plane_height = s->height >> (plane && s->chroma_y_shift);
int8_t(*motion_val)[2] = s->motion_val[!!plane];
int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
int slice_width = plane ? s->c_superblock_width
: s->y_superblock_width;
int fragment_width = s->fragment_width[!!plane];
int fragment_height = s->fragment_height[!!plane];
int fragment_start = s->fragment_start[plane];
int do_await = !plane && HAVE_THREADS &&
(s->avctx->active_thread_type & FF_THREAD_FRAME);
if (!s->flipped_image)
stride = -stride;
if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
/* for each superblock row in the slice (both of them)... */
for (; sb_y < slice_height; sb_y++) {
/* for each superblock in a row... */
for (sb_x = 0; sb_x < slice_width; sb_x++) {
/* for each block in a superblock... */
for (j = 0; j < 16; j++) {
x = 4 * sb_x + hilbert_offset[j][0];
y = 4 * sb_y + hilbert_offset[j][1];
fragment = y * fragment_width + x;
i = fragment_start + fragment;
// bounds check
if (x >= fragment_width || y >= fragment_height)
continue;
first_pixel = 8 * y * stride + 8 * x;
if (do_await &&
s->all_fragments[i].coding_method != MODE_INTRA)
await_reference_row(s, &s->all_fragments[i],
motion_val[fragment][1],
(16 * y) >> s->chroma_y_shift);
/* transform if this block was coded */
if (s->all_fragments[i].coding_method != MODE_COPY) {
if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
(s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
motion_source = golden_plane;
else
motion_source = last_plane;
motion_source += first_pixel;
motion_halfpel_index = 0;
/* sort out the motion vector if this fragment is coded
* using a motion vector method */
if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
(s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
int src_x, src_y;
motion_x = motion_val[fragment][0];
motion_y = motion_val[fragment][1];
src_x = (motion_x >> 1) + 8 * x;
src_y = (motion_y >> 1) + 8 * y;
motion_halfpel_index = motion_x & 0x01;
motion_source += (motion_x >> 1);
motion_halfpel_index |= (motion_y & 0x01) << 1;
motion_source += ((motion_y >> 1) * stride);
if (src_x < 0 || src_y < 0 ||
src_x + 9 >= plane_width ||
src_y + 9 >= plane_height) {
uint8_t *temp = s->edge_emu_buffer;
if (stride < 0)
temp -= 8 * stride;
s->vdsp.emulated_edge_mc(temp, motion_source,
stride, stride,
9, 9, src_x, src_y,
plane_width,
plane_height);
motion_source = temp;
}
}
/* first, take care of copying a block from either the
* previous or the golden frame */
if (s->all_fragments[i].coding_method != MODE_INTRA) {
/* Note, it is possible to implement all MC cases
* with put_no_rnd_pixels_l2 which would look more
* like the VP3 source but this would be slower as
* put_no_rnd_pixels_tab is better optimized */
if (motion_halfpel_index != 3) {
s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
output_plane + first_pixel,
motion_source, stride, 8);
} else {
/* d is 0 if motion_x and _y have the same sign,
* else -1 */
int d = (motion_x ^ motion_y) >> 31;
s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
motion_source - d,
motion_source + stride + 1 + d,
stride, 8);
}
}
/* invert DCT and place (or add) in final output */
if (s->all_fragments[i].coding_method == MODE_INTRA) {
vp3_dequant(s, s->all_fragments + i,
plane, 0, block);
s->vp3dsp.idct_put(output_plane + first_pixel,
stride,
block);
} else {
if (vp3_dequant(s, s->all_fragments + i,
plane, 1, block)) {
s->vp3dsp.idct_add(output_plane + first_pixel,
stride,
block);
} else {
s->vp3dsp.idct_dc_add(output_plane + first_pixel,
stride, block);
}
}
} else {
/* copy directly from the previous frame */
s->hdsp.put_pixels_tab[1][0](
output_plane + first_pixel,
last_plane + first_pixel,
stride, 8);
}
}
}
// Filter up to the last row in the superblock row
if (!s->skip_loop_filter)
apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
FFMIN(4 * sb_y + 3, fragment_height - 1));
}
}
/* this looks like a good place for slice dispatch... */
/* algorithm:
* if (slice == s->macroblock_height - 1)
* dispatch (both last slice & 2nd-to-last slice);
* else if (slice > 0)
* dispatch (slice - 1);
*/
vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
s->height - 16));
}
/// Allocate tables for per-frame data in Vp3DecodeContext
static av_cold int allocate_tables(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
int y_fragment_count, c_fragment_count;
free_tables(avctx);
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
s->superblock_coding = av_mallocz(s->superblock_count);
s->all_fragments = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment));
s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int));
s->dct_tokens_base = av_mallocz_array(s->fragment_count,
64 * sizeof(*s->dct_tokens_base));
s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
/* work out the block mapping tables */
s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
s->macroblock_coding = av_mallocz(s->macroblock_count + 1);
if (!s->superblock_coding || !s->all_fragments ||
!s->dct_tokens_base || !s->coded_fragment_list[0] ||
!s->superblock_fragments || !s->macroblock_coding ||
!s->motion_val[0] || !s->motion_val[1]) {
vp3_decode_end(avctx);
return -1;
}
init_block_mapping(s);
return 0;
}
static av_cold int init_frames(Vp3DecodeContext *s)
{
s->current_frame.f = av_frame_alloc();
s->last_frame.f = av_frame_alloc();
s->golden_frame.f = av_frame_alloc();
if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
av_frame_free(&s->current_frame.f);
av_frame_free(&s->last_frame.f);
av_frame_free(&s->golden_frame.f);
return AVERROR(ENOMEM);
}
return 0;
}
static av_cold int vp3_decode_init(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
int i, inter, plane, ret;
int c_width;
int c_height;
int y_fragment_count, c_fragment_count;
ret = init_frames(s);
if (ret < 0)
return ret;
avctx->internal->allocate_progress = 1;
if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
s->version = 0;
else
s->version = 1;
s->avctx = avctx;
s->width = FFALIGN(avctx->coded_width, 16);
s->height = FFALIGN(avctx->coded_height, 16);
if (avctx->codec_id != AV_CODEC_ID_THEORA)
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
ff_videodsp_init(&s->vdsp, 8);
ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
for (i = 0; i < 64; i++) {
#define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
s->idct_permutation[i] = TRANSPOSE(i);
s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]);
#undef TRANSPOSE
}
/* initialize to an impossible value which will force a recalculation
* in the first frame decode */
for (i = 0; i < 3; i++)
s->qps[i] = -1;
ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
if (ret)
return ret;
s->y_superblock_width = (s->width + 31) / 32;
s->y_superblock_height = (s->height + 31) / 32;
s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
/* work out the dimensions for the C planes */
c_width = s->width >> s->chroma_x_shift;
c_height = s->height >> s->chroma_y_shift;
s->c_superblock_width = (c_width + 31) / 32;
s->c_superblock_height = (c_height + 31) / 32;
s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
s->u_superblock_start = s->y_superblock_count;
s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
s->macroblock_width = (s->width + 15) / 16;
s->macroblock_height = (s->height + 15) / 16;
s->macroblock_count = s->macroblock_width * s->macroblock_height;
s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
/* fragment count covers all 8x8 blocks for all 3 planes */
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
s->fragment_count = y_fragment_count + 2 * c_fragment_count;
s->fragment_start[1] = y_fragment_count;
s->fragment_start[2] = y_fragment_count + c_fragment_count;
if (!s->theora_tables) {
for (i = 0; i < 64; i++) {
s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
s->base_matrix[0][i] = vp31_intra_y_dequant[i];
s->base_matrix[1][i] = vp31_intra_c_dequant[i];
s->base_matrix[2][i] = vp31_inter_dequant[i];
s->filter_limit_values[i] = vp31_filter_limit_values[i];
}
for (inter = 0; inter < 2; inter++) {
for (plane = 0; plane < 3; plane++) {
s->qr_count[inter][plane] = 1;
s->qr_size[inter][plane][0] = 63;
s->qr_base[inter][plane][0] =
s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
}
}
/* init VLC tables */
for (i = 0; i < 16; i++) {
/* DC histograms */
init_vlc(&s->dc_vlc[i], 11, 32,
&dc_bias[i][0][1], 4, 2,
&dc_bias[i][0][0], 4, 2, 0);
/* group 1 AC histograms */
init_vlc(&s->ac_vlc_1[i], 11, 32,
&ac_bias_0[i][0][1], 4, 2,
&ac_bias_0[i][0][0], 4, 2, 0);
/* group 2 AC histograms */
init_vlc(&s->ac_vlc_2[i], 11, 32,
&ac_bias_1[i][0][1], 4, 2,
&ac_bias_1[i][0][0], 4, 2, 0);
/* group 3 AC histograms */
init_vlc(&s->ac_vlc_3[i], 11, 32,
&ac_bias_2[i][0][1], 4, 2,
&ac_bias_2[i][0][0], 4, 2, 0);
/* group 4 AC histograms */
init_vlc(&s->ac_vlc_4[i], 11, 32,
&ac_bias_3[i][0][1], 4, 2,
&ac_bias_3[i][0][0], 4, 2, 0);
}
} else {
for (i = 0; i < 16; i++) {
/* DC histograms */
if (init_vlc(&s->dc_vlc[i], 11, 32,
&s->huffman_table[i][0][1], 8, 4,
&s->huffman_table[i][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 1 AC histograms */
if (init_vlc(&s->ac_vlc_1[i], 11, 32,
&s->huffman_table[i + 16][0][1], 8, 4,
&s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 2 AC histograms */
if (init_vlc(&s->ac_vlc_2[i], 11, 32,
&s->huffman_table[i + 16 * 2][0][1], 8, 4,
&s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 3 AC histograms */
if (init_vlc(&s->ac_vlc_3[i], 11, 32,
&s->huffman_table[i + 16 * 3][0][1], 8, 4,
&s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
goto vlc_fail;
/* group 4 AC histograms */
if (init_vlc(&s->ac_vlc_4[i], 11, 32,
&s->huffman_table[i + 16 * 4][0][1], 8, 4,
&s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
goto vlc_fail;
}
}
init_vlc(&s->superblock_run_length_vlc, 6, 34,
&superblock_run_length_vlc_table[0][1], 4, 2,
&superblock_run_length_vlc_table[0][0], 4, 2, 0);
init_vlc(&s->fragment_run_length_vlc, 5, 30,
&fragment_run_length_vlc_table[0][1], 4, 2,
&fragment_run_length_vlc_table[0][0], 4, 2, 0);
init_vlc(&s->mode_code_vlc, 3, 8,
&mode_code_vlc_table[0][1], 2, 1,
&mode_code_vlc_table[0][0], 2, 1, 0);
init_vlc(&s->motion_vector_vlc, 6, 63,
&motion_vector_vlc_table[0][1], 2, 1,
&motion_vector_vlc_table[0][0], 2, 1, 0);
return allocate_tables(avctx);
vlc_fail:
av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
return -1;
}
/// Release and shuffle frames after decode finishes
static int update_frames(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
int ret = 0;
/* shuffle frames (last = current) */
ff_thread_release_buffer(avctx, &s->last_frame);
ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
if (ret < 0)
goto fail;
if (s->keyframe) {
ff_thread_release_buffer(avctx, &s->golden_frame);
ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
}
fail:
ff_thread_release_buffer(avctx, &s->current_frame);
return ret;
}
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
{
ff_thread_release_buffer(s->avctx, dst);
if (src->f->data[0])
return ff_thread_ref_frame(dst, src);
return 0;
}
static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
{
int ret;
if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
(ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
(ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
return ret;
return 0;
}
#if HAVE_THREADS
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
int qps_changed = 0, i, err;
#define copy_fields(to, from, start_field, end_field) \
memcpy(&to->start_field, &from->start_field, \
(char *) &to->end_field - (char *) &to->start_field)
if (!s1->current_frame.f->data[0] ||
s->width != s1->width || s->height != s1->height) {
if (s != s1)
ref_frames(s, s1);
return -1;
}
if (s != s1) {
if (!s->current_frame.f)
return AVERROR(ENOMEM);
// init tables if the first frame hasn't been decoded
if (!s->current_frame.f->data[0]) {
int y_fragment_count, c_fragment_count;
s->avctx = dst;
err = allocate_tables(dst);
if (err)
return err;
y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
memcpy(s->motion_val[0], s1->motion_val[0],
y_fragment_count * sizeof(*s->motion_val[0]));
memcpy(s->motion_val[1], s1->motion_val[1],
c_fragment_count * sizeof(*s->motion_val[1]));
}
// copy previous frame data
if ((err = ref_frames(s, s1)) < 0)
return err;
s->keyframe = s1->keyframe;
// copy qscale data if necessary
for (i = 0; i < 3; i++) {
if (s->qps[i] != s1->qps[1]) {
qps_changed = 1;
memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
}
}
if (s->qps[0] != s1->qps[0])
memcpy(&s->bounding_values_array, &s1->bounding_values_array,
sizeof(s->bounding_values_array));
if (qps_changed)
copy_fields(s, s1, qps, superblock_count);
#undef copy_fields
}
return update_frames(dst);
}
#endif
static int vp3_decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
AVFrame *frame = data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
Vp3DecodeContext *s = avctx->priv_data;
GetBitContext gb;
int i, ret;
if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
return ret;
#if CONFIG_THEORA_DECODER
if (s->theora && get_bits1(&gb)) {
int type = get_bits(&gb, 7);
skip_bits_long(&gb, 6*8); /* "theora" */
if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
return AVERROR_PATCHWELCOME;
}
if (type == 0) {
vp3_decode_end(avctx);
ret = theora_decode_header(avctx, &gb);
if (ret >= 0)
ret = vp3_decode_init(avctx);
if (ret < 0) {
vp3_decode_end(avctx);
return ret;
}
return buf_size;
} else if (type == 2) {
vp3_decode_end(avctx);
ret = theora_decode_tables(avctx, &gb);
if (ret >= 0)
ret = vp3_decode_init(avctx);
if (ret < 0) {
vp3_decode_end(avctx);
return ret;
}
return buf_size;
}
av_log(avctx, AV_LOG_ERROR,
"Header packet passed to frame decoder, skipping\n");
return -1;
}
#endif
s->keyframe = !get_bits1(&gb);
if (!s->all_fragments) {
av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
return -1;
}
if (!s->theora)
skip_bits(&gb, 1);
for (i = 0; i < 3; i++)
s->last_qps[i] = s->qps[i];
s->nqps = 0;
do {
s->qps[s->nqps++] = get_bits(&gb, 6);
} while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
for (i = s->nqps; i < 3; i++)
s->qps[i] = -1;
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
: AVDISCARD_NONKEY);
if (s->qps[0] != s->last_qps[0])
init_loop_filter(s);
for (i = 0; i < s->nqps; i++)
// reinit all dequantizers if the first one changed, because
// the DC of the first quantizer must be used for all matrices
if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
init_dequantizer(s, i);
if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
return buf_size;
s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
: AV_PICTURE_TYPE_P;
s->current_frame.f->key_frame = s->keyframe;
if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
goto error;
if (!s->edge_emu_buffer)
s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
if (s->keyframe) {
if (!s->theora) {
skip_bits(&gb, 4); /* width code */
skip_bits(&gb, 4); /* height code */
if (s->version) {
s->version = get_bits(&gb, 5);
if (avctx->frame_number == 0)
av_log(s->avctx, AV_LOG_DEBUG,
"VP version: %d\n", s->version);
}
}
if (s->version || s->theora) {
if (get_bits1(&gb))
av_log(s->avctx, AV_LOG_ERROR,
"Warning, unsupported keyframe coding type?!\n");
skip_bits(&gb, 2); /* reserved? */
}
} else {
if (!s->golden_frame.f->data[0]) {
av_log(s->avctx, AV_LOG_WARNING,
"vp3: first frame not a keyframe\n");
s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
if (ff_thread_get_buffer(avctx, &s->golden_frame,
AV_GET_BUFFER_FLAG_REF) < 0)
goto error;
ff_thread_release_buffer(avctx, &s->last_frame);
if ((ret = ff_thread_ref_frame(&s->last_frame,
&s->golden_frame)) < 0)
goto error;
ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
}
}
memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
ff_thread_finish_setup(avctx);
if (unpack_superblocks(s, &gb)) {
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
goto error;
}
if (unpack_modes(s, &gb)) {
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
goto error;
}
if (unpack_vectors(s, &gb)) {
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
goto error;
}
if (unpack_block_qpis(s, &gb)) {
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
goto error;
}
if (unpack_dct_coeffs(s, &gb)) {
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
goto error;
}
for (i = 0; i < 3; i++) {
int height = s->height >> (i && s->chroma_y_shift);
if (s->flipped_image)
s->data_offset[i] = 0;
else
s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
}
s->last_slice_end = 0;
for (i = 0; i < s->c_superblock_height; i++)
render_slice(s, i);
// filter the last row
for (i = 0; i < 3; i++) {
int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
apply_loop_filter(s, i, row, row + 1);
}
vp3_draw_horiz_band(s, s->height);
/* output frame, offset as needed */
if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
return ret;
frame->crop_left = s->offset_x;
frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
frame->crop_top = s->offset_y;
frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
*got_frame = 1;
if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
ret = update_frames(avctx);
if (ret < 0)
return ret;
}
return buf_size;
error:
ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
av_frame_unref(s->current_frame.f);
return -1;
}
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
{
Vp3DecodeContext *s = avctx->priv_data;
if (get_bits1(gb)) {
int token;
if (s->entries >= 32) { /* overflow */
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
return -1;
}
token = get_bits(gb, 5);
ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
s->hti, s->hbits, token, s->entries, s->huff_code_size);
s->huffman_table[s->hti][token][0] = s->hbits;
s->huffman_table[s->hti][token][1] = s->huff_code_size;
s->entries++;
} else {
if (s->huff_code_size >= 32) { /* overflow */
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
return -1;
}
s->huff_code_size++;
s->hbits <<= 1;
if (read_huffman_tree(avctx, gb))
return -1;
s->hbits |= 1;
if (read_huffman_tree(avctx, gb))
return -1;
s->hbits >>= 1;
s->huff_code_size--;
}
return 0;
}
#if HAVE_THREADS
static int vp3_init_thread_copy(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
s->superblock_coding = NULL;
s->all_fragments = NULL;
s->coded_fragment_list[0] = NULL;
s->dct_tokens_base = NULL;
s->superblock_fragments = NULL;
s->macroblock_coding = NULL;
s->motion_val[0] = NULL;
s->motion_val[1] = NULL;
s->edge_emu_buffer = NULL;
return init_frames(s);
}
#endif
#if CONFIG_THEORA_DECODER
static const enum AVPixelFormat theora_pix_fmts[4] = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
};
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
{
Vp3DecodeContext *s = avctx->priv_data;
int visible_width, visible_height, colorspace;
uint8_t offset_x = 0, offset_y = 0;
int ret;
AVRational fps, aspect;
s->theora_header = 0;
s->theora = get_bits_long(gb, 24);
av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
/* 3.2.0 aka alpha3 has the same frame orientation as original vp3
* but previous versions have the image flipped relative to vp3 */
if (s->theora < 0x030200) {
s->flipped_image = 1;
av_log(avctx, AV_LOG_DEBUG,
"Old (<alpha3) Theora bitstream, flipped image\n");
}
visible_width =
s->width = get_bits(gb, 16) << 4;
visible_height =
s->height = get_bits(gb, 16) << 4;
if (s->theora >= 0x030200) {
visible_width = get_bits_long(gb, 24);
visible_height = get_bits_long(gb, 24);
offset_x = get_bits(gb, 8); /* offset x */
offset_y = get_bits(gb, 8); /* offset y, from bottom */
}
/* sanity check */
if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
visible_width + offset_x > s->width ||
visible_height + offset_y > s->height) {
av_log(avctx, AV_LOG_ERROR,
"Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
visible_width, visible_height, offset_x, offset_y,
s->width, s->height);
return AVERROR_INVALIDDATA;
}
fps.num = get_bits_long(gb, 32);
fps.den = get_bits_long(gb, 32);
if (fps.num && fps.den) {
if (fps.num < 0 || fps.den < 0) {
av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
return AVERROR_INVALIDDATA;
}
av_reduce(&avctx->framerate.den, &avctx->framerate.num,
fps.den, fps.num, 1 << 30);
}
aspect.num = get_bits_long(gb, 24);
aspect.den = get_bits_long(gb, 24);
if (aspect.num && aspect.den) {
av_reduce(&avctx->sample_aspect_ratio.num,
&avctx->sample_aspect_ratio.den,
aspect.num, aspect.den, 1 << 30);
ff_set_sar(avctx, avctx->sample_aspect_ratio);
}
if (s->theora < 0x030200)
skip_bits(gb, 5); /* keyframe frequency force */
colorspace = get_bits(gb, 8);
skip_bits(gb, 24); /* bitrate */
skip_bits(gb, 6); /* quality hint */
if (s->theora >= 0x030200) {
skip_bits(gb, 5); /* keyframe frequency force */
avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
return AVERROR_INVALIDDATA;
}
skip_bits(gb, 3); /* reserved */
} else
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
ret = ff_set_dimensions(avctx, s->width, s->height);
if (ret < 0)
return ret;
if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
avctx->width = visible_width;
avctx->height = visible_height;
// translate offsets from theora axis ([0,0] lower left)
// to normal axis ([0,0] upper left)
s->offset_x = offset_x;
s->offset_y = s->height - visible_height - offset_y;
}
if (colorspace == 1)
avctx->color_primaries = AVCOL_PRI_BT470M;
else if (colorspace == 2)
avctx->color_primaries = AVCOL_PRI_BT470BG;
if (colorspace == 1 || colorspace == 2) {
avctx->colorspace = AVCOL_SPC_BT470BG;
avctx->color_trc = AVCOL_TRC_BT709;
}
s->theora_header = 1;
return 0;
}
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
{
Vp3DecodeContext *s = avctx->priv_data;
int i, n, matrices, inter, plane;
if (!s->theora_header)
return AVERROR_INVALIDDATA;
if (s->theora >= 0x030200) {
n = get_bits(gb, 3);
/* loop filter limit values table */
if (n)
for (i = 0; i < 64; i++)
s->filter_limit_values[i] = get_bits(gb, n);
}
if (s->theora >= 0x030200)
n = get_bits(gb, 4) + 1;
else
n = 16;
/* quality threshold table */
for (i = 0; i < 64; i++)
s->coded_ac_scale_factor[i] = get_bits(gb, n);
if (s->theora >= 0x030200)
n = get_bits(gb, 4) + 1;
else
n = 16;
/* dc scale factor table */
for (i = 0; i < 64; i++)
s->coded_dc_scale_factor[i] = get_bits(gb, n);
if (s->theora >= 0x030200)
matrices = get_bits(gb, 9) + 1;
else
matrices = 3;
if (matrices > 384) {
av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
return -1;
}
for (n = 0; n < matrices; n++)
for (i = 0; i < 64; i++)
s->base_matrix[n][i] = get_bits(gb, 8);
for (inter = 0; inter <= 1; inter++) {
for (plane = 0; plane <= 2; plane++) {
int newqr = 1;
if (inter || plane > 0)
newqr = get_bits1(gb);
if (!newqr) {
int qtj, plj;
if (inter && get_bits1(gb)) {
qtj = 0;
plj = plane;
} else {
qtj = (3 * inter + plane - 1) / 3;
plj = (plane + 2) % 3;
}
s->qr_count[inter][plane] = s->qr_count[qtj][plj];
memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
sizeof(s->qr_size[0][0]));
memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
sizeof(s->qr_base[0][0]));
} else {
int qri = 0;
int qi = 0;
for (;;) {
i = get_bits(gb, av_log2(matrices - 1) + 1);
if (i >= matrices) {
av_log(avctx, AV_LOG_ERROR,
"invalid base matrix index\n");
return -1;
}
s->qr_base[inter][plane][qri] = i;
if (qi >= 63)
break;
i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
s->qr_size[inter][plane][qri++] = i;
qi += i;
}
if (qi > 63) {
av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
return -1;
}
s->qr_count[inter][plane] = qri;
}
}
}
/* Huffman tables */
for (s->hti = 0; s->hti < 80; s->hti++) {
s->entries = 0;
s->huff_code_size = 1;
if (!get_bits1(gb)) {
s->hbits = 0;
if (read_huffman_tree(avctx, gb))
return -1;
s->hbits = 1;
if (read_huffman_tree(avctx, gb))
return -1;
}
}
s->theora_tables = 1;
return 0;
}
static av_cold int theora_decode_init(AVCodecContext *avctx)
{
Vp3DecodeContext *s = avctx->priv_data;
GetBitContext gb;
int ptype;
const uint8_t *header_start[3];
int header_len[3];
int i;
int ret;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
s->theora = 1;
if (!avctx->extradata_size) {
av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
return -1;
}
if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
42, header_start, header_len) < 0) {
av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
return -1;
}
for (i = 0; i < 3; i++) {
if (header_len[i] <= 0)
continue;
ret = init_get_bits8(&gb, header_start[i], header_len[i]);
if (ret < 0)
return ret;
ptype = get_bits(&gb, 8);
if (!(ptype & 0x80)) {
av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
// return -1;
}
// FIXME: Check for this as well.
skip_bits_long(&gb, 6 * 8); /* "theora" */
switch (ptype) {
case 0x80:
if (theora_decode_header(avctx, &gb) < 0)
return -1;
break;
case 0x81:
// FIXME: is this needed? it breaks sometimes
// theora_decode_comments(avctx, gb);
break;
case 0x82:
if (theora_decode_tables(avctx, &gb))
return -1;
break;
default:
av_log(avctx, AV_LOG_ERROR,
"Unknown Theora config packet: %d\n", ptype & ~0x80);
break;
}
if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
av_log(avctx, AV_LOG_WARNING,
"%d bits left in packet %X\n",
8 * header_len[i] - get_bits_count(&gb), ptype);
if (s->theora < 0x030200)
break;
}
return vp3_decode_init(avctx);
}
AVCodec ff_theora_decoder = {
.name = "theora",
.long_name = NULL_IF_CONFIG_SMALL("Theora"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_THEORA,
.priv_data_size = sizeof(Vp3DecodeContext),
.init = theora_decode_init,
.close = vp3_decode_end,
.decode = vp3_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
AV_CODEC_CAP_FRAME_THREADS,
.flush = vp3_decode_flush,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
.caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING,
};
#endif
AVCodec ff_vp3_decoder = {
.name = "vp3",
.long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP3,
.priv_data_size = sizeof(Vp3DecodeContext),
.init = vp3_decode_init,
.close = vp3_decode_end,
.decode = vp3_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
AV_CODEC_CAP_FRAME_THREADS,
.flush = vp3_decode_flush,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
};