1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libswresample/swresample.c
Andreas Rheinhardt 1ea3650823 Replace all occurences of av_mallocz_array() by av_calloc()
They do the same.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-09-20 01:03:52 +02:00

950 lines
33 KiB
C

/*
* Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "swresample_internal.h"
#include "audioconvert.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/internal.h"
#include <float.h>
#define ALIGN 32
#include "libavutil/ffversion.h"
const char swr_ffversion[] = "FFmpeg version " FFMPEG_VERSION;
unsigned swresample_version(void)
{
av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
return LIBSWRESAMPLE_VERSION_INT;
}
const char *swresample_configuration(void)
{
return FFMPEG_CONFIGURATION;
}
const char *swresample_license(void)
{
#define LICENSE_PREFIX "libswresample license: "
return &LICENSE_PREFIX FFMPEG_LICENSE[sizeof(LICENSE_PREFIX) - 1];
}
int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
if(!s || s->in_convert) // s needs to be allocated but not initialized
return AVERROR(EINVAL);
s->channel_map = channel_map;
return 0;
}
struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
int log_offset, void *log_ctx){
if(!s) s= swr_alloc();
if(!s) return NULL;
s->log_level_offset= log_offset;
s->log_ctx= log_ctx;
if (av_opt_set_int(s, "ocl", out_ch_layout, 0) < 0)
goto fail;
if (av_opt_set_int(s, "osf", out_sample_fmt, 0) < 0)
goto fail;
if (av_opt_set_int(s, "osr", out_sample_rate, 0) < 0)
goto fail;
if (av_opt_set_int(s, "icl", in_ch_layout, 0) < 0)
goto fail;
if (av_opt_set_int(s, "isf", in_sample_fmt, 0) < 0)
goto fail;
if (av_opt_set_int(s, "isr", in_sample_rate, 0) < 0)
goto fail;
if (av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> user_in_ch_layout), 0) < 0)
goto fail;
if (av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->user_out_ch_layout), 0) < 0)
goto fail;
av_opt_set_int(s, "uch", 0, 0);
return s;
fail:
av_log(s, AV_LOG_ERROR, "Failed to set option\n");
swr_free(&s);
return NULL;
}
static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
a->fmt = fmt;
a->bps = av_get_bytes_per_sample(fmt);
a->planar= av_sample_fmt_is_planar(fmt);
if (a->ch_count == 1)
a->planar = 1;
}
static void free_temp(AudioData *a){
av_free(a->data);
memset(a, 0, sizeof(*a));
}
static void clear_context(SwrContext *s){
s->in_buffer_index= 0;
s->in_buffer_count= 0;
s->resample_in_constraint= 0;
memset(s->in.ch, 0, sizeof(s->in.ch));
memset(s->out.ch, 0, sizeof(s->out.ch));
free_temp(&s->postin);
free_temp(&s->midbuf);
free_temp(&s->preout);
free_temp(&s->in_buffer);
free_temp(&s->silence);
free_temp(&s->drop_temp);
free_temp(&s->dither.noise);
free_temp(&s->dither.temp);
swri_audio_convert_free(&s-> in_convert);
swri_audio_convert_free(&s->out_convert);
swri_audio_convert_free(&s->full_convert);
swri_rematrix_free(s);
s->delayed_samples_fixup = 0;
s->flushed = 0;
}
av_cold void swr_free(SwrContext **ss){
SwrContext *s= *ss;
if(s){
clear_context(s);
if (s->resampler)
s->resampler->free(&s->resample);
}
av_freep(ss);
}
av_cold void swr_close(SwrContext *s){
clear_context(s);
}
av_cold int swr_init(struct SwrContext *s){
int ret;
char l1[1024], l2[1024];
clear_context(s);
if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
return AVERROR(EINVAL);
}
if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
return AVERROR(EINVAL);
}
if(s-> in_sample_rate <= 0){
av_log(s, AV_LOG_ERROR, "Requested input sample rate %d is invalid\n", s->in_sample_rate);
return AVERROR(EINVAL);
}
if(s->out_sample_rate <= 0){
av_log(s, AV_LOG_ERROR, "Requested output sample rate %d is invalid\n", s->out_sample_rate);
return AVERROR(EINVAL);
}
s->out.ch_count = s-> user_out_ch_count;
s-> in.ch_count = s-> user_in_ch_count;
s->used_ch_count = s->user_used_ch_count;
s-> in_ch_layout = s-> user_in_ch_layout;
s->out_ch_layout = s->user_out_ch_layout;
s->int_sample_fmt= s->user_int_sample_fmt;
s->dither.method = s->user_dither_method;
if(av_get_channel_layout_nb_channels(s-> in_ch_layout) > SWR_CH_MAX) {
av_log(s, AV_LOG_WARNING, "Input channel layout 0x%"PRIx64" is invalid or unsupported.\n", s-> in_ch_layout);
s->in_ch_layout = 0;
}
if(av_get_channel_layout_nb_channels(s->out_ch_layout) > SWR_CH_MAX) {
av_log(s, AV_LOG_WARNING, "Output channel layout 0x%"PRIx64" is invalid or unsupported.\n", s->out_ch_layout);
s->out_ch_layout = 0;
}
switch(s->engine){
#if CONFIG_LIBSOXR
case SWR_ENGINE_SOXR: s->resampler = &swri_soxr_resampler; break;
#endif
case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
default:
av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
return AVERROR(EINVAL);
}
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
s-> in_ch_layout= 0;
}
if(!s-> in_ch_layout)
s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
if(!s->out_ch_layout)
s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
s->rematrix_custom;
if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
if( av_get_bytes_per_sample(s-> in_sample_fmt) <= 2
&& av_get_bytes_per_sample(s->out_sample_fmt) <= 2){
s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
}else if( av_get_bytes_per_sample(s-> in_sample_fmt) <= 2
&& !s->rematrix
&& s->out_sample_rate==s->in_sample_rate
&& !(s->flags & SWR_FLAG_RESAMPLE)){
s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
}else if( av_get_planar_sample_fmt(s-> in_sample_fmt) == AV_SAMPLE_FMT_S32P
&& av_get_planar_sample_fmt(s->out_sample_fmt) == AV_SAMPLE_FMT_S32P
&& !s->rematrix
&& s->out_sample_rate == s->in_sample_rate
&& !(s->flags & SWR_FLAG_RESAMPLE)
&& s->engine != SWR_ENGINE_SOXR){
s->int_sample_fmt= AV_SAMPLE_FMT_S32P;
}else if(av_get_bytes_per_sample(s->in_sample_fmt) <= 4){
s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
}else{
s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
}
}
av_log(s, AV_LOG_DEBUG, "Using %s internally between filters\n", av_get_sample_fmt_name(s->int_sample_fmt));
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&&s->int_sample_fmt != AV_SAMPLE_FMT_S64P
&&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, s16p/s32p/s64p/fltp/dblp are supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
return AVERROR(EINVAL);
}
set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
set_audiodata_fmt(&s->out, s->out_sample_fmt);
if (s->firstpts_in_samples != AV_NOPTS_VALUE) {
if (!s->async && s->min_compensation >= FLT_MAX/2)
s->async = 1;
s->firstpts =
s->outpts = s->firstpts_in_samples * s->out_sample_rate;
} else
s->firstpts = AV_NOPTS_VALUE;
if (s->async) {
if (s->min_compensation >= FLT_MAX/2)
s->min_compensation = 0.001;
if (s->async > 1.0001) {
s->max_soft_compensation = s->async / (double) s->in_sample_rate;
}
}
if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby, s->exact_rational);
if (!s->resample) {
av_log(s, AV_LOG_ERROR, "Failed to initialize resampler\n");
return AVERROR(ENOMEM);
}
}else
s->resampler->free(&s->resample);
if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
&& s->int_sample_fmt != AV_SAMPLE_FMT_S32P
&& s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
&& s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
&& s->resample){
av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16p/s32p/fltp/dblp\n");
ret = AVERROR(EINVAL);
goto fail;
}
#define RSC 1 //FIXME finetune
if(!s-> in.ch_count)
s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
if(!s->used_ch_count)
s->used_ch_count= s->in.ch_count;
if(!s->out.ch_count)
s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
if(!s-> in.ch_count){
av_assert0(!s->in_ch_layout);
av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
ret = AVERROR(EINVAL);
goto fail;
}
av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
if (s->out_ch_layout && s->out.ch_count != av_get_channel_layout_nb_channels(s->out_ch_layout)) {
av_log(s, AV_LOG_ERROR, "Output channel layout %s mismatches specified channel count %d\n", l2, s->out.ch_count);
ret = AVERROR(EINVAL);
goto fail;
}
if (s->in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s->in_ch_layout)) {
av_log(s, AV_LOG_ERROR, "Input channel layout %s mismatches specified channel count %d\n", l1, s->used_ch_count);
ret = AVERROR(EINVAL);
goto fail;
}
if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
"but there is not enough information to do it\n", l1, l2);
ret = AVERROR(EINVAL);
goto fail;
}
av_assert0(s->used_ch_count);
av_assert0(s->out.ch_count);
s->resample_first= RSC*s->out.ch_count/s->used_ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
s->in_buffer= s->in;
s->silence = s->in;
s->drop_temp= s->out;
if ((ret = swri_dither_init(s, s->out_sample_fmt, s->int_sample_fmt)) < 0)
goto fail;
if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
return 0;
}
s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
s->int_sample_fmt, s->out.ch_count, NULL, 0);
if (!s->in_convert || !s->out_convert) {
ret = AVERROR(ENOMEM);
goto fail;
}
s->postin= s->in;
s->preout= s->out;
s->midbuf= s->in;
if(s->channel_map){
s->postin.ch_count=
s->midbuf.ch_count= s->used_ch_count;
if(s->resample)
s->in_buffer.ch_count= s->used_ch_count;
}
if(!s->resample_first){
s->midbuf.ch_count= s->out.ch_count;
if(s->resample)
s->in_buffer.ch_count = s->out.ch_count;
}
set_audiodata_fmt(&s->postin, s->int_sample_fmt);
set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
set_audiodata_fmt(&s->preout, s->int_sample_fmt);
if(s->resample){
set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
}
av_assert0(!s->preout.count);
s->dither.noise = s->preout;
s->dither.temp = s->preout;
if (s->dither.method > SWR_DITHER_NS) {
s->dither.noise.bps = 4;
s->dither.noise.fmt = AV_SAMPLE_FMT_FLTP;
s->dither.noise_scale = 1;
}
if(s->rematrix || s->dither.method) {
ret = swri_rematrix_init(s);
if (ret < 0)
goto fail;
}
return 0;
fail:
swr_close(s);
return ret;
}
int swri_realloc_audio(AudioData *a, int count){
int i, countb;
AudioData old;
if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
return AVERROR(EINVAL);
if(a->count >= count)
return 0;
count*=2;
countb= FFALIGN(count*a->bps, ALIGN);
old= *a;
av_assert0(a->bps);
av_assert0(a->ch_count);
a->data = av_calloc(countb, a->ch_count);
if(!a->data)
return AVERROR(ENOMEM);
for(i=0; i<a->ch_count; i++){
a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
if(a->count && a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
}
if(a->count && !a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
av_freep(&old.data);
a->count= count;
return 1;
}
static void copy(AudioData *out, AudioData *in,
int count){
av_assert0(out->planar == in->planar);
av_assert0(out->bps == in->bps);
av_assert0(out->ch_count == in->ch_count);
if(out->planar){
int ch;
for(ch=0; ch<out->ch_count; ch++)
memcpy(out->ch[ch], in->ch[ch], count*out->bps);
}else
memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
}
static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(!in_arg){
memset(out->ch, 0, sizeof(out->ch));
}else if(out->planar){
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[i];
}else{
for(i=0; i<out->ch_count; i++)
out->ch[i]= in_arg[0] + i*out->bps;
}
}
static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
int i;
if(out->planar){
for(i=0; i<out->ch_count; i++)
in_arg[i]= out->ch[i];
}else{
in_arg[0]= out->ch[0];
}
}
/**
*
* out may be equal in.
*/
static void buf_set(AudioData *out, AudioData *in, int count){
int ch;
if(in->planar){
for(ch=0; ch<out->ch_count; ch++)
out->ch[ch]= in->ch[ch] + count*out->bps;
}else{
for(ch=out->ch_count-1; ch>=0; ch--)
out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
}
}
/**
*
* @return number of samples output per channel
*/
static int resample(SwrContext *s, AudioData *out_param, int out_count,
const AudioData * in_param, int in_count){
AudioData in, out, tmp;
int ret_sum=0;
int border=0;
int padless = ARCH_X86 && s->engine == SWR_ENGINE_SWR ? 7 : 0;
av_assert1(s->in_buffer.ch_count == in_param->ch_count);
av_assert1(s->in_buffer.planar == in_param->planar);
av_assert1(s->in_buffer.fmt == in_param->fmt);
tmp=out=*out_param;
in = *in_param;
border = s->resampler->invert_initial_buffer(s->resample, &s->in_buffer,
&in, in_count, &s->in_buffer_index, &s->in_buffer_count);
if (border == INT_MAX) {
return 0;
} else if (border < 0) {
return border;
} else if (border) {
buf_set(&in, &in, border);
in_count -= border;
s->resample_in_constraint = 0;
}
do{
int ret, size, consumed;
if(!s->resample_in_constraint && s->in_buffer_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
s->in_buffer_count -= consumed;
s->in_buffer_index += consumed;
if(!in_count)
break;
if(s->in_buffer_count <= border){
buf_set(&in, &in, -s->in_buffer_count);
in_count += s->in_buffer_count;
s->in_buffer_count=0;
s->in_buffer_index=0;
border = 0;
}
}
if((s->flushed || in_count > padless) && !s->in_buffer_count){
s->in_buffer_index=0;
ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, FFMAX(in_count-padless, 0), &consumed);
out_count -= ret;
ret_sum += ret;
buf_set(&out, &out, ret);
in_count -= consumed;
buf_set(&in, &in, consumed);
}
//TODO is this check sane considering the advanced copy avoidance below
size= s->in_buffer_index + s->in_buffer_count + in_count;
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
return ret;
if(in_count){
int count= in_count;
if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, &in, /*in_*/count);
s->in_buffer_count += count;
in_count -= count;
border += count;
buf_set(&in, &in, count);
s->resample_in_constraint= 0;
if(s->in_buffer_count != count || in_count)
continue;
if (padless) {
padless = 0;
continue;
}
}
break;
}while(1);
s->resample_in_constraint= !!out_count;
return ret_sum;
}
static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
AudioData *in , int in_count){
AudioData *postin, *midbuf, *preout;
int ret/*, in_max*/;
AudioData preout_tmp, midbuf_tmp;
if(s->full_convert){
av_assert0(!s->resample);
swri_audio_convert(s->full_convert, out, in, in_count);
return out_count;
}
// in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
// in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
if((ret=swri_realloc_audio(&s->postin, in_count))<0)
return ret;
if(s->resample_first){
av_assert0(s->midbuf.ch_count == s->used_ch_count);
if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
return ret;
}else{
av_assert0(s->midbuf.ch_count == s->out.ch_count);
if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
return ret;
}
if((ret=swri_realloc_audio(&s->preout, out_count))<0)
return ret;
postin= &s->postin;
midbuf_tmp= s->midbuf;
midbuf= &midbuf_tmp;
preout_tmp= s->preout;
preout= &preout_tmp;
if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
postin= in;
if(s->resample_first ? !s->resample : !s->rematrix)
midbuf= postin;
if(s->resample_first ? !s->rematrix : !s->resample)
preout= midbuf;
if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar
&& !(s->out_sample_fmt==AV_SAMPLE_FMT_S32P && (s->dither.output_sample_bits&31))){
if(preout==in){
out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
copy(out, in, out_count);
return out_count;
}
else if(preout==postin) preout= midbuf= postin= out;
else if(preout==midbuf) preout= midbuf= out;
else preout= out;
}
if(in != postin){
swri_audio_convert(s->in_convert, postin, in, in_count);
}
if(s->resample_first){
if(postin != midbuf)
out_count= resample(s, midbuf, out_count, postin, in_count);
if(midbuf != preout)
swri_rematrix(s, preout, midbuf, out_count, preout==out);
}else{
if(postin != midbuf)
swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
if(midbuf != preout)
out_count= resample(s, preout, out_count, midbuf, in_count);
}
if(preout != out && out_count){
AudioData *conv_src = preout;
if(s->dither.method){
int ch;
int dither_count= FFMAX(out_count, 1<<16);
if (preout == in) {
conv_src = &s->dither.temp;
if((ret=swri_realloc_audio(&s->dither.temp, dither_count))<0)
return ret;
}
if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
return ret;
if(ret)
for(ch=0; ch<s->dither.noise.ch_count; ch++)
if((ret=swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, (12345678913579ULL*ch + 3141592) % 2718281828U, s->dither.noise.fmt))<0)
return ret;
av_assert0(s->dither.noise.ch_count == preout->ch_count);
if(s->dither.noise_pos + out_count > s->dither.noise.count)
s->dither.noise_pos = 0;
if (s->dither.method < SWR_DITHER_NS){
if (s->mix_2_1_simd) {
int len1= out_count&~15;
int off = len1 * preout->bps;
if(len1)
for(ch=0; ch<preout->ch_count; ch++)
s->mix_2_1_simd(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_simd_one, 0, 0, len1);
if(out_count != len1)
for(ch=0; ch<preout->ch_count; ch++)
s->mix_2_1_f(conv_src->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos + off, s->native_one, 0, 0, out_count - len1);
} else {
for(ch=0; ch<preout->ch_count; ch++)
s->mix_2_1_f(conv_src->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.noise_pos, s->native_one, 0, 0, out_count);
}
} else {
switch(s->int_sample_fmt) {
case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, conv_src, preout, &s->dither.noise, out_count); break;
case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, conv_src, preout, &s->dither.noise, out_count); break;
case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, conv_src, preout, &s->dither.noise, out_count); break;
case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,conv_src, preout, &s->dither.noise, out_count); break;
}
}
s->dither.noise_pos += out_count;
}
//FIXME packed doesn't need more than 1 chan here!
swri_audio_convert(s->out_convert, out, conv_src, out_count);
}
return out_count;
}
int swr_is_initialized(struct SwrContext *s) {
return !!s->in_buffer.ch_count;
}
int attribute_align_arg swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
const uint8_t *in_arg [SWR_CH_MAX], int in_count){
AudioData * in= &s->in;
AudioData *out= &s->out;
int av_unused max_output;
if (!swr_is_initialized(s)) {
av_log(s, AV_LOG_ERROR, "Context has not been initialized\n");
return AVERROR(EINVAL);
}
#if defined(ASSERT_LEVEL) && ASSERT_LEVEL >1
max_output = swr_get_out_samples(s, in_count);
#endif
while(s->drop_output > 0){
int ret;
uint8_t *tmp_arg[SWR_CH_MAX];
#define MAX_DROP_STEP 16384
if((ret=swri_realloc_audio(&s->drop_temp, FFMIN(s->drop_output, MAX_DROP_STEP)))<0)
return ret;
reversefill_audiodata(&s->drop_temp, tmp_arg);
s->drop_output *= -1; //FIXME find a less hackish solution
ret = swr_convert(s, tmp_arg, FFMIN(-s->drop_output, MAX_DROP_STEP), in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesn't matter
s->drop_output *= -1;
in_count = 0;
if(ret>0) {
s->drop_output -= ret;
if (!s->drop_output && !out_arg)
return 0;
continue;
}
av_assert0(s->drop_output);
return 0;
}
if(!in_arg){
if(s->resample){
if (!s->flushed)
s->resampler->flush(s);
s->resample_in_constraint = 0;
s->flushed = 1;
}else if(!s->in_buffer_count){
return 0;
}
}else
fill_audiodata(in , (void*)in_arg);
fill_audiodata(out, out_arg);
if(s->resample){
int ret = swr_convert_internal(s, out, out_count, in, in_count);
if(ret>0 && !s->drop_output)
s->outpts += ret * (int64_t)s->in_sample_rate;
av_assert2(max_output < 0 || ret < 0 || ret <= max_output);
return ret;
}else{
AudioData tmp= *in;
int ret2=0;
int ret, size;
size = FFMIN(out_count, s->in_buffer_count);
if(size){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
ret= swr_convert_internal(s, out, size, &tmp, size);
if(ret<0)
return ret;
ret2= ret;
s->in_buffer_count -= ret;
s->in_buffer_index += ret;
buf_set(out, out, ret);
out_count -= ret;
if(!s->in_buffer_count)
s->in_buffer_index = 0;
}
if(in_count){
size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
if(in_count > out_count) { //FIXME move after swr_convert_internal
if( size > s->in_buffer.count
&& s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
copy(&s->in_buffer, &tmp, s->in_buffer_count);
s->in_buffer_index=0;
}else
if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
return ret;
}
if(out_count){
size = FFMIN(in_count, out_count);
ret= swr_convert_internal(s, out, size, in, size);
if(ret<0)
return ret;
buf_set(in, in, ret);
in_count -= ret;
ret2 += ret;
}
if(in_count){
buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
copy(&tmp, in, in_count);
s->in_buffer_count += in_count;
}
}
if(ret2>0 && !s->drop_output)
s->outpts += ret2 * (int64_t)s->in_sample_rate;
av_assert2(max_output < 0 || ret2 < 0 || ret2 <= max_output);
return ret2;
}
}
int swr_drop_output(struct SwrContext *s, int count){
const uint8_t *tmp_arg[SWR_CH_MAX];
s->drop_output += count;
if(s->drop_output <= 0)
return 0;
av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
return swr_convert(s, NULL, s->drop_output, tmp_arg, 0);
}
int swr_inject_silence(struct SwrContext *s, int count){
int ret, i;
uint8_t *tmp_arg[SWR_CH_MAX];
if(count <= 0)
return 0;
#define MAX_SILENCE_STEP 16384
while (count > MAX_SILENCE_STEP) {
if ((ret = swr_inject_silence(s, MAX_SILENCE_STEP)) < 0)
return ret;
count -= MAX_SILENCE_STEP;
}
if((ret=swri_realloc_audio(&s->silence, count))<0)
return ret;
if(s->silence.planar) for(i=0; i<s->silence.ch_count; i++) {
memset(s->silence.ch[i], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps);
} else
memset(s->silence.ch[0], s->silence.bps==1 ? 0x80 : 0, count*s->silence.bps*s->silence.ch_count);
reversefill_audiodata(&s->silence, tmp_arg);
av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
return ret;
}
int64_t swr_get_delay(struct SwrContext *s, int64_t base){
if (s->resampler && s->resample){
return s->resampler->get_delay(s, base);
}else{
return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
}
}
int swr_get_out_samples(struct SwrContext *s, int in_samples)
{
int64_t out_samples;
if (in_samples < 0)
return AVERROR(EINVAL);
if (s->resampler && s->resample) {
if (!s->resampler->get_out_samples)
return AVERROR(ENOSYS);
out_samples = s->resampler->get_out_samples(s, in_samples);
} else {
out_samples = s->in_buffer_count + in_samples;
av_assert0(s->out_sample_rate == s->in_sample_rate);
}
if (out_samples > INT_MAX)
return AVERROR(EINVAL);
return out_samples;
}
int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
int ret;
if (!s || compensation_distance < 0)
return AVERROR(EINVAL);
if (!compensation_distance && sample_delta)
return AVERROR(EINVAL);
if (!s->resample) {
s->flags |= SWR_FLAG_RESAMPLE;
ret = swr_init(s);
if (ret < 0)
return ret;
}
if (!s->resampler->set_compensation){
return AVERROR(EINVAL);
}else{
return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
}
}
int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
if(pts == INT64_MIN)
return s->outpts;
if (s->firstpts == AV_NOPTS_VALUE)
s->outpts = s->firstpts = pts;
if(s->min_compensation >= FLT_MAX) {
return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
} else {
int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts + s->drop_output*(int64_t)s->in_sample_rate;
double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
if(fabs(fdelta) > s->min_compensation) {
if(s->outpts == s->firstpts || fabs(fdelta) > s->min_hard_compensation){
int ret;
if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
if(ret<0){
av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
}
} else if(s->soft_compensation_duration && s->max_soft_compensation) {
int duration = s->out_sample_rate * s->soft_compensation_duration;
double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
swr_set_compensation(s, comp, duration);
}
}
return s->outpts;
}
}