mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-21 10:55:51 +02:00
393 lines
14 KiB
C
393 lines
14 KiB
C
/*
|
|
* Copyright (c) 2017 Paul B Mahol
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "avfilter.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
#include "audio.h"
|
|
|
|
#undef ctype
|
|
#undef ftype
|
|
#undef SQRT
|
|
#undef SAMPLE_FORMAT
|
|
#if DEPTH == 32
|
|
#define SAMPLE_FORMAT float
|
|
#define SQRT sqrtf
|
|
#define ctype AVComplexFloat
|
|
#define ftype float
|
|
#else
|
|
#define SAMPLE_FORMAT double
|
|
#define SQRT sqrt
|
|
#define ctype AVComplexDouble
|
|
#define ftype double
|
|
#endif
|
|
|
|
#define fn3(a,b) a##_##b
|
|
#define fn2(a,b) fn3(a,b)
|
|
#define fn(a) fn2(a, SAMPLE_FORMAT)
|
|
|
|
static void fn(draw_response)(AVFilterContext *ctx, AVFrame *out)
|
|
{
|
|
AudioFIRContext *s = ctx->priv;
|
|
ftype *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
|
|
ftype min_delay = FLT_MAX, max_delay = FLT_MIN;
|
|
int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
|
|
char text[32];
|
|
int channel, i, x;
|
|
|
|
memset(out->data[0], 0, s->h * out->linesize[0]);
|
|
|
|
phase = av_malloc_array(s->w, sizeof(*phase));
|
|
mag = av_malloc_array(s->w, sizeof(*mag));
|
|
delay = av_malloc_array(s->w, sizeof(*delay));
|
|
if (!mag || !phase || !delay)
|
|
goto end;
|
|
|
|
channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->ch_layout.nb_channels - 1);
|
|
for (i = 0; i < s->w; i++) {
|
|
const ftype *src = (const ftype *)s->ir[s->selir]->extended_data[channel];
|
|
double w = i * M_PI / (s->w - 1);
|
|
double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
|
|
|
|
for (x = 0; x < s->nb_taps; x++) {
|
|
real += cos(-x * w) * src[x];
|
|
imag += sin(-x * w) * src[x];
|
|
real_num += cos(-x * w) * src[x] * x;
|
|
imag_num += sin(-x * w) * src[x] * x;
|
|
}
|
|
|
|
mag[i] = hypot(real, imag);
|
|
phase[i] = atan2(imag, real);
|
|
div = real * real + imag * imag;
|
|
delay[i] = (real_num * real + imag_num * imag) / div;
|
|
min = fminf(min, mag[i]);
|
|
max = fmaxf(max, mag[i]);
|
|
min_delay = fminf(min_delay, delay[i]);
|
|
max_delay = fmaxf(max_delay, delay[i]);
|
|
}
|
|
|
|
for (i = 0; i < s->w; i++) {
|
|
int ymag = mag[i] / max * (s->h - 1);
|
|
int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
|
|
int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
|
|
|
|
ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
|
|
yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
|
|
ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
|
|
|
|
if (prev_ymag < 0)
|
|
prev_ymag = ymag;
|
|
if (prev_yphase < 0)
|
|
prev_yphase = yphase;
|
|
if (prev_ydelay < 0)
|
|
prev_ydelay = ydelay;
|
|
|
|
draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
|
|
draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
|
|
draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
|
|
|
|
prev_ymag = ymag;
|
|
prev_yphase = yphase;
|
|
prev_ydelay = ydelay;
|
|
}
|
|
|
|
if (s->w > 400 && s->h > 100) {
|
|
drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", max);
|
|
drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", min);
|
|
drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", max_delay);
|
|
drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", min_delay);
|
|
drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
|
|
}
|
|
|
|
end:
|
|
av_free(delay);
|
|
av_free(phase);
|
|
av_free(mag);
|
|
}
|
|
|
|
static void fn(convert_channels)(AVFilterContext *ctx, AudioFIRContext *s)
|
|
{
|
|
for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
|
|
ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
|
|
int toffset = 0;
|
|
|
|
for (int i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
|
|
time[i] = 0;
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
|
|
|
|
for (int segment = 0; segment < s->nb_segments; segment++) {
|
|
AudioFIRSegment *seg = &s->seg[segment];
|
|
ftype *blockin = (ftype *)seg->blockin->extended_data[ch];
|
|
ftype *blockout = (ftype *)seg->blockout->extended_data[ch];
|
|
ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
|
|
|
|
for (int i = 0; i < seg->nb_partitions; i++) {
|
|
const int coffset = i * seg->coeff_size;
|
|
const int remaining = s->nb_taps - toffset;
|
|
const int size = remaining >= seg->part_size ? seg->part_size : remaining;
|
|
|
|
if (size < 8) {
|
|
for (int n = 0; n < size; n++)
|
|
coeff[coffset + n].re = time[toffset + n];
|
|
|
|
toffset += size;
|
|
continue;
|
|
}
|
|
|
|
memset(blockin, 0, sizeof(*blockin) * seg->fft_length);
|
|
memcpy(blockin, time + toffset, size * sizeof(*blockin));
|
|
|
|
seg->tx_fn(seg->tx[0], blockout, blockin, sizeof(ftype));
|
|
|
|
for (int n = 0; n < seg->part_size + 1; n++) {
|
|
coeff[coffset + n].re = blockout[2 * n];
|
|
coeff[coffset + n].im = blockout[2 * n + 1];
|
|
}
|
|
|
|
toffset += size;
|
|
}
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
|
|
av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
|
|
av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fn(get_power)(AVFilterContext *ctx, AudioFIRContext *s, int cur_nb_taps)
|
|
{
|
|
ftype power = 0;
|
|
int ch;
|
|
|
|
switch (s->gtype) {
|
|
case -1:
|
|
/* nothing to do */
|
|
break;
|
|
case 0:
|
|
for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
|
|
ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
power += FFABS(time[i]);
|
|
}
|
|
s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power;
|
|
break;
|
|
case 1:
|
|
for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
|
|
ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
power += time[i];
|
|
}
|
|
s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power;
|
|
break;
|
|
case 2:
|
|
for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
|
|
ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
power += time[i] * time[i];
|
|
}
|
|
s->gain = SQRT(ch / power);
|
|
break;
|
|
default:
|
|
return AVERROR_BUG;
|
|
}
|
|
|
|
s->gain = FFMIN(s->gain * s->ir_gain, 1.);
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
|
|
|
|
for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
|
|
ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
|
|
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 8));
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fn(direct)(const ftype *in, const ctype *ir, int len, ftype *out)
|
|
{
|
|
for (int n = 0; n < len; n++)
|
|
for (int m = 0; m <= n; m++)
|
|
out[n] += ir[m].re * in[n - m];
|
|
}
|
|
|
|
static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
|
|
{
|
|
if ((nb_samples & 15) == 0 && nb_samples >= 16) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
|
|
#else
|
|
s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
|
|
#endif
|
|
} else {
|
|
for (int n = 0; n < nb_samples; n++)
|
|
dst[n] += src[n];
|
|
}
|
|
}
|
|
|
|
static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
|
|
{
|
|
AudioFIRContext *s = ctx->priv;
|
|
const ftype *in = (const ftype *)s->in->extended_data[ch] + offset;
|
|
ftype *blockin, *blockout, *buf, *ptr = (ftype *)out->extended_data[ch] + offset;
|
|
const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
|
|
int n, i, j;
|
|
|
|
for (int segment = 0; segment < s->nb_segments; segment++) {
|
|
AudioFIRSegment *seg = &s->seg[segment];
|
|
ftype *src = (ftype *)seg->input->extended_data[ch];
|
|
ftype *dst = (ftype *)seg->output->extended_data[ch];
|
|
ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
|
|
ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
|
|
|
|
if (s->min_part_size >= 8) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 8));
|
|
#endif
|
|
emms_c();
|
|
} else {
|
|
for (n = 0; n < nb_samples; n++)
|
|
src[seg->input_offset + n] = in[n] * s->dry_gain;
|
|
}
|
|
|
|
seg->output_offset[ch] += s->min_part_size;
|
|
if (seg->output_offset[ch] == seg->part_size) {
|
|
seg->output_offset[ch] = 0;
|
|
} else {
|
|
memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
|
|
|
|
dst += seg->output_offset[ch];
|
|
fn(fir_fadd)(s, ptr, dst, nb_samples);
|
|
continue;
|
|
}
|
|
|
|
if (seg->part_size < 8) {
|
|
memset(dst, 0, sizeof(*dst) * seg->part_size * seg->nb_partitions);
|
|
|
|
j = seg->part_index[ch];
|
|
|
|
for (i = 0; i < seg->nb_partitions; i++) {
|
|
const int coffset = j * seg->coeff_size;
|
|
const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
|
|
|
|
fn(direct)(src, coeff, nb_samples, dst);
|
|
|
|
if (j == 0)
|
|
j = seg->nb_partitions;
|
|
j--;
|
|
}
|
|
|
|
seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
|
|
|
|
memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
|
|
|
|
for (n = 0; n < nb_samples; n++) {
|
|
ptr[n] += dst[n];
|
|
}
|
|
continue;
|
|
}
|
|
|
|
memset(sumin, 0, sizeof(*sumin) * seg->fft_length);
|
|
blockin = (ftype *)seg->blockin->extended_data[ch] + seg->part_index[ch] * seg->block_size;
|
|
blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
|
|
memset(blockin + seg->part_size, 0, sizeof(*blockin) * (seg->fft_length - seg->part_size));
|
|
|
|
memcpy(blockin, src, sizeof(*src) * seg->part_size);
|
|
|
|
seg->tx_fn(seg->tx[ch], blockout, blockin, sizeof(ftype));
|
|
|
|
j = seg->part_index[ch];
|
|
|
|
for (i = 0; i < seg->nb_partitions; i++) {
|
|
const int coffset = j * seg->coeff_size;
|
|
const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + i * seg->block_size;
|
|
const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
|
|
|
|
#if DEPTH == 32
|
|
s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size);
|
|
#else
|
|
s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size);
|
|
#endif
|
|
|
|
if (j == 0)
|
|
j = seg->nb_partitions;
|
|
j--;
|
|
}
|
|
|
|
seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ftype));
|
|
|
|
buf = (ftype *)seg->buffer->extended_data[ch];
|
|
fn(fir_fadd)(s, buf, sumout, seg->part_size);
|
|
|
|
memcpy(dst, buf, seg->part_size * sizeof(*dst));
|
|
|
|
buf = (ftype *)seg->buffer->extended_data[ch];
|
|
memcpy(buf, sumout + seg->part_size, seg->part_size * sizeof(*buf));
|
|
|
|
seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
|
|
|
|
memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
|
|
|
|
fn(fir_fadd)(s, ptr, dst, nb_samples);
|
|
}
|
|
|
|
if (s->min_part_size >= 8) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 8));
|
|
#endif
|
|
emms_c();
|
|
} else {
|
|
for (n = 0; n < nb_samples; n++)
|
|
ptr[n] *= s->wet_gain;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|