mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
f4a86bc981
Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2390 lines
73 KiB
C
2390 lines
73 KiB
C
/*
|
|
* MPEG Audio decoder
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* MPEG Audio decoder.
|
|
*/
|
|
|
|
#include "avcodec.h"
|
|
#include "get_bits.h"
|
|
#include "dsputil.h"
|
|
|
|
/*
|
|
* TODO:
|
|
* - in low precision mode, use more 16 bit multiplies in synth filter
|
|
* - test lsf / mpeg25 extensively.
|
|
*/
|
|
|
|
#include "mpegaudio.h"
|
|
#include "mpegaudiodecheader.h"
|
|
|
|
#include "mathops.h"
|
|
|
|
#if CONFIG_FLOAT
|
|
# define SHR(a,b) ((a)*(1.0f/(1<<(b))))
|
|
# define compute_antialias compute_antialias_float
|
|
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
|
|
# define FIXR(x) ((float)(x))
|
|
# define FIXHR(x) ((float)(x))
|
|
# define MULH3(x, y, s) ((s)*(y)*(x))
|
|
# define MULLx(x, y, s) ((y)*(x))
|
|
# define RENAME(a) a ## _float
|
|
#else
|
|
# define SHR(a,b) ((a)>>(b))
|
|
# define compute_antialias compute_antialias_integer
|
|
/* WARNING: only correct for posititive numbers */
|
|
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
|
|
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
|
|
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
|
|
# define MULH3(x, y, s) MULH((s)*(x), y)
|
|
# define MULLx(x, y, s) MULL(x,y,s)
|
|
# define RENAME(a) a
|
|
#endif
|
|
|
|
/****************/
|
|
|
|
#define HEADER_SIZE 4
|
|
|
|
#include "mpegaudiodata.h"
|
|
#include "mpegaudiodectab.h"
|
|
|
|
#if CONFIG_FLOAT
|
|
# include "fft.h"
|
|
#else
|
|
# include "dct32.c"
|
|
#endif
|
|
|
|
static void compute_antialias(MPADecodeContext *s, GranuleDef *g);
|
|
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
|
|
int *dither_state, OUT_INT *samples, int incr);
|
|
|
|
/* vlc structure for decoding layer 3 huffman tables */
|
|
static VLC huff_vlc[16];
|
|
static VLC_TYPE huff_vlc_tables[
|
|
0+128+128+128+130+128+154+166+
|
|
142+204+190+170+542+460+662+414
|
|
][2];
|
|
static const int huff_vlc_tables_sizes[16] = {
|
|
0, 128, 128, 128, 130, 128, 154, 166,
|
|
142, 204, 190, 170, 542, 460, 662, 414
|
|
};
|
|
static VLC huff_quad_vlc[2];
|
|
static VLC_TYPE huff_quad_vlc_tables[128+16][2];
|
|
static const int huff_quad_vlc_tables_sizes[2] = {
|
|
128, 16
|
|
};
|
|
/* computed from band_size_long */
|
|
static uint16_t band_index_long[9][23];
|
|
#include "mpegaudio_tablegen.h"
|
|
/* intensity stereo coef table */
|
|
static INTFLOAT is_table[2][16];
|
|
static INTFLOAT is_table_lsf[2][2][16];
|
|
static int32_t csa_table[8][4];
|
|
static float csa_table_float[8][4];
|
|
static INTFLOAT mdct_win[8][36];
|
|
|
|
static int16_t division_tab3[1<<6 ];
|
|
static int16_t division_tab5[1<<8 ];
|
|
static int16_t division_tab9[1<<11];
|
|
|
|
static int16_t * const division_tabs[4] = {
|
|
division_tab3, division_tab5, NULL, division_tab9
|
|
};
|
|
|
|
/* lower 2 bits: modulo 3, higher bits: shift */
|
|
static uint16_t scale_factor_modshift[64];
|
|
/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
|
|
static int32_t scale_factor_mult[15][3];
|
|
/* mult table for layer 2 group quantization */
|
|
|
|
#define SCALE_GEN(v) \
|
|
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
|
|
|
|
static const int32_t scale_factor_mult2[3][3] = {
|
|
SCALE_GEN(4.0 / 3.0), /* 3 steps */
|
|
SCALE_GEN(4.0 / 5.0), /* 5 steps */
|
|
SCALE_GEN(4.0 / 9.0), /* 9 steps */
|
|
};
|
|
|
|
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
|
|
|
|
/**
|
|
* Convert region offsets to region sizes and truncate
|
|
* size to big_values.
|
|
*/
|
|
static void ff_region_offset2size(GranuleDef *g){
|
|
int i, k, j=0;
|
|
g->region_size[2] = (576 / 2);
|
|
for(i=0;i<3;i++) {
|
|
k = FFMIN(g->region_size[i], g->big_values);
|
|
g->region_size[i] = k - j;
|
|
j = k;
|
|
}
|
|
}
|
|
|
|
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
|
|
if (g->block_type == 2)
|
|
g->region_size[0] = (36 / 2);
|
|
else {
|
|
if (s->sample_rate_index <= 2)
|
|
g->region_size[0] = (36 / 2);
|
|
else if (s->sample_rate_index != 8)
|
|
g->region_size[0] = (54 / 2);
|
|
else
|
|
g->region_size[0] = (108 / 2);
|
|
}
|
|
g->region_size[1] = (576 / 2);
|
|
}
|
|
|
|
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
|
|
int l;
|
|
g->region_size[0] =
|
|
band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
|
|
/* should not overflow */
|
|
l = FFMIN(ra1 + ra2 + 2, 22);
|
|
g->region_size[1] =
|
|
band_index_long[s->sample_rate_index][l] >> 1;
|
|
}
|
|
|
|
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
|
|
if (g->block_type == 2) {
|
|
if (g->switch_point) {
|
|
/* if switched mode, we handle the 36 first samples as
|
|
long blocks. For 8000Hz, we handle the 48 first
|
|
exponents as long blocks (XXX: check this!) */
|
|
if (s->sample_rate_index <= 2)
|
|
g->long_end = 8;
|
|
else if (s->sample_rate_index != 8)
|
|
g->long_end = 6;
|
|
else
|
|
g->long_end = 4; /* 8000 Hz */
|
|
|
|
g->short_start = 2 + (s->sample_rate_index != 8);
|
|
} else {
|
|
g->long_end = 0;
|
|
g->short_start = 0;
|
|
}
|
|
} else {
|
|
g->short_start = 13;
|
|
g->long_end = 22;
|
|
}
|
|
}
|
|
|
|
/* layer 1 unscaling */
|
|
/* n = number of bits of the mantissa minus 1 */
|
|
static inline int l1_unscale(int n, int mant, int scale_factor)
|
|
{
|
|
int shift, mod;
|
|
int64_t val;
|
|
|
|
shift = scale_factor_modshift[scale_factor];
|
|
mod = shift & 3;
|
|
shift >>= 2;
|
|
val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
|
|
shift += n;
|
|
/* NOTE: at this point, 1 <= shift >= 21 + 15 */
|
|
return (int)((val + (1LL << (shift - 1))) >> shift);
|
|
}
|
|
|
|
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
|
|
{
|
|
int shift, mod, val;
|
|
|
|
shift = scale_factor_modshift[scale_factor];
|
|
mod = shift & 3;
|
|
shift >>= 2;
|
|
|
|
val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
|
|
/* NOTE: at this point, 0 <= shift <= 21 */
|
|
if (shift > 0)
|
|
val = (val + (1 << (shift - 1))) >> shift;
|
|
return val;
|
|
}
|
|
|
|
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
|
|
static inline int l3_unscale(int value, int exponent)
|
|
{
|
|
unsigned int m;
|
|
int e;
|
|
|
|
e = table_4_3_exp [4*value + (exponent&3)];
|
|
m = table_4_3_value[4*value + (exponent&3)];
|
|
e -= (exponent >> 2);
|
|
assert(e>=1);
|
|
if (e > 31)
|
|
return 0;
|
|
m = (m + (1 << (e-1))) >> e;
|
|
|
|
return m;
|
|
}
|
|
|
|
/* all integer n^(4/3) computation code */
|
|
#define DEV_ORDER 13
|
|
|
|
#define POW_FRAC_BITS 24
|
|
#define POW_FRAC_ONE (1 << POW_FRAC_BITS)
|
|
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
|
|
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
|
|
|
|
static int dev_4_3_coefs[DEV_ORDER];
|
|
|
|
#if 0 /* unused */
|
|
static int pow_mult3[3] = {
|
|
POW_FIX(1.0),
|
|
POW_FIX(1.25992104989487316476),
|
|
POW_FIX(1.58740105196819947474),
|
|
};
|
|
#endif
|
|
|
|
static av_cold void int_pow_init(void)
|
|
{
|
|
int i, a;
|
|
|
|
a = POW_FIX(1.0);
|
|
for(i=0;i<DEV_ORDER;i++) {
|
|
a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
|
|
dev_4_3_coefs[i] = a;
|
|
}
|
|
}
|
|
|
|
#if 0 /* unused, remove? */
|
|
/* return the mantissa and the binary exponent */
|
|
static int int_pow(int i, int *exp_ptr)
|
|
{
|
|
int e, er, eq, j;
|
|
int a, a1;
|
|
|
|
/* renormalize */
|
|
a = i;
|
|
e = POW_FRAC_BITS;
|
|
while (a < (1 << (POW_FRAC_BITS - 1))) {
|
|
a = a << 1;
|
|
e--;
|
|
}
|
|
a -= (1 << POW_FRAC_BITS);
|
|
a1 = 0;
|
|
for(j = DEV_ORDER - 1; j >= 0; j--)
|
|
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
|
|
a = (1 << POW_FRAC_BITS) + a1;
|
|
/* exponent compute (exact) */
|
|
e = e * 4;
|
|
er = e % 3;
|
|
eq = e / 3;
|
|
a = POW_MULL(a, pow_mult3[er]);
|
|
while (a >= 2 * POW_FRAC_ONE) {
|
|
a = a >> 1;
|
|
eq++;
|
|
}
|
|
/* convert to float */
|
|
while (a < POW_FRAC_ONE) {
|
|
a = a << 1;
|
|
eq--;
|
|
}
|
|
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
|
|
#if POW_FRAC_BITS > FRAC_BITS
|
|
a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
|
|
/* correct overflow */
|
|
if (a >= 2 * (1 << FRAC_BITS)) {
|
|
a = a >> 1;
|
|
eq++;
|
|
}
|
|
#endif
|
|
*exp_ptr = eq;
|
|
return a;
|
|
}
|
|
#endif
|
|
|
|
static av_cold int decode_init(AVCodecContext * avctx)
|
|
{
|
|
MPADecodeContext *s = avctx->priv_data;
|
|
static int init=0;
|
|
int i, j, k;
|
|
|
|
s->avctx = avctx;
|
|
s->apply_window_mp3 = apply_window_mp3_c;
|
|
#if HAVE_MMX && CONFIG_FLOAT
|
|
ff_mpegaudiodec_init_mmx(s);
|
|
#endif
|
|
#if CONFIG_FLOAT
|
|
ff_dct_init(&s->dct, 5, DCT_II);
|
|
#endif
|
|
if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
|
|
|
|
avctx->sample_fmt= OUT_FMT;
|
|
s->error_recognition= avctx->error_recognition;
|
|
|
|
if (!init && !avctx->parse_only) {
|
|
int offset;
|
|
|
|
/* scale factors table for layer 1/2 */
|
|
for(i=0;i<64;i++) {
|
|
int shift, mod;
|
|
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
|
|
shift = (i / 3);
|
|
mod = i % 3;
|
|
scale_factor_modshift[i] = mod | (shift << 2);
|
|
}
|
|
|
|
/* scale factor multiply for layer 1 */
|
|
for(i=0;i<15;i++) {
|
|
int n, norm;
|
|
n = i + 2;
|
|
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
|
|
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
|
|
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
|
|
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
|
|
av_dlog(avctx, "%d: norm=%x s=%x %x %x\n",
|
|
i, norm,
|
|
scale_factor_mult[i][0],
|
|
scale_factor_mult[i][1],
|
|
scale_factor_mult[i][2]);
|
|
}
|
|
|
|
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
|
|
|
|
/* huffman decode tables */
|
|
offset = 0;
|
|
for(i=1;i<16;i++) {
|
|
const HuffTable *h = &mpa_huff_tables[i];
|
|
int xsize, x, y;
|
|
uint8_t tmp_bits [512];
|
|
uint16_t tmp_codes[512];
|
|
|
|
memset(tmp_bits , 0, sizeof(tmp_bits ));
|
|
memset(tmp_codes, 0, sizeof(tmp_codes));
|
|
|
|
xsize = h->xsize;
|
|
|
|
j = 0;
|
|
for(x=0;x<xsize;x++) {
|
|
for(y=0;y<xsize;y++){
|
|
tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
|
|
tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
|
|
}
|
|
}
|
|
|
|
/* XXX: fail test */
|
|
huff_vlc[i].table = huff_vlc_tables+offset;
|
|
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
|
|
init_vlc(&huff_vlc[i], 7, 512,
|
|
tmp_bits, 1, 1, tmp_codes, 2, 2,
|
|
INIT_VLC_USE_NEW_STATIC);
|
|
offset += huff_vlc_tables_sizes[i];
|
|
}
|
|
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
|
|
|
|
offset = 0;
|
|
for(i=0;i<2;i++) {
|
|
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
|
|
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
|
|
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
|
|
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
|
|
INIT_VLC_USE_NEW_STATIC);
|
|
offset += huff_quad_vlc_tables_sizes[i];
|
|
}
|
|
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
|
|
|
|
for(i=0;i<9;i++) {
|
|
k = 0;
|
|
for(j=0;j<22;j++) {
|
|
band_index_long[i][j] = k;
|
|
k += band_size_long[i][j];
|
|
}
|
|
band_index_long[i][22] = k;
|
|
}
|
|
|
|
/* compute n ^ (4/3) and store it in mantissa/exp format */
|
|
|
|
int_pow_init();
|
|
mpegaudio_tableinit();
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (ff_mpa_quant_bits[i] < 0)
|
|
for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) {
|
|
int val1, val2, val3, steps;
|
|
int val = j;
|
|
steps = ff_mpa_quant_steps[i];
|
|
val1 = val % steps;
|
|
val /= steps;
|
|
val2 = val % steps;
|
|
val3 = val / steps;
|
|
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
|
|
}
|
|
|
|
|
|
for(i=0;i<7;i++) {
|
|
float f;
|
|
INTFLOAT v;
|
|
if (i != 6) {
|
|
f = tan((double)i * M_PI / 12.0);
|
|
v = FIXR(f / (1.0 + f));
|
|
} else {
|
|
v = FIXR(1.0);
|
|
}
|
|
is_table[0][i] = v;
|
|
is_table[1][6 - i] = v;
|
|
}
|
|
/* invalid values */
|
|
for(i=7;i<16;i++)
|
|
is_table[0][i] = is_table[1][i] = 0.0;
|
|
|
|
for(i=0;i<16;i++) {
|
|
double f;
|
|
int e, k;
|
|
|
|
for(j=0;j<2;j++) {
|
|
e = -(j + 1) * ((i + 1) >> 1);
|
|
f = pow(2.0, e / 4.0);
|
|
k = i & 1;
|
|
is_table_lsf[j][k ^ 1][i] = FIXR(f);
|
|
is_table_lsf[j][k][i] = FIXR(1.0);
|
|
av_dlog(avctx, "is_table_lsf %d %d: %x %x\n",
|
|
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
|
|
}
|
|
}
|
|
|
|
for(i=0;i<8;i++) {
|
|
float ci, cs, ca;
|
|
ci = ci_table[i];
|
|
cs = 1.0 / sqrt(1.0 + ci * ci);
|
|
ca = cs * ci;
|
|
csa_table[i][0] = FIXHR(cs/4);
|
|
csa_table[i][1] = FIXHR(ca/4);
|
|
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
|
|
csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
|
|
csa_table_float[i][0] = cs;
|
|
csa_table_float[i][1] = ca;
|
|
csa_table_float[i][2] = ca + cs;
|
|
csa_table_float[i][3] = ca - cs;
|
|
}
|
|
|
|
/* compute mdct windows */
|
|
for(i=0;i<36;i++) {
|
|
for(j=0; j<4; j++){
|
|
double d;
|
|
|
|
if(j==2 && i%3 != 1)
|
|
continue;
|
|
|
|
d= sin(M_PI * (i + 0.5) / 36.0);
|
|
if(j==1){
|
|
if (i>=30) d= 0;
|
|
else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
|
|
else if(i>=18) d= 1;
|
|
}else if(j==3){
|
|
if (i< 6) d= 0;
|
|
else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
|
|
else if(i< 18) d= 1;
|
|
}
|
|
//merge last stage of imdct into the window coefficients
|
|
d*= 0.5 / cos(M_PI*(2*i + 19)/72);
|
|
|
|
if(j==2)
|
|
mdct_win[j][i/3] = FIXHR((d / (1<<5)));
|
|
else
|
|
mdct_win[j][i ] = FIXHR((d / (1<<5)));
|
|
}
|
|
}
|
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing
|
|
the sign of the right window coefs */
|
|
for(j=0;j<4;j++) {
|
|
for(i=0;i<36;i+=2) {
|
|
mdct_win[j + 4][i] = mdct_win[j][i];
|
|
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
|
|
}
|
|
}
|
|
|
|
init = 1;
|
|
}
|
|
|
|
if (avctx->codec_id == CODEC_ID_MP3ADU)
|
|
s->adu_mode = 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if CONFIG_FLOAT
|
|
static inline float round_sample(float *sum)
|
|
{
|
|
float sum1=*sum;
|
|
*sum = 0;
|
|
return sum1;
|
|
}
|
|
|
|
/* signed 16x16 -> 32 multiply add accumulate */
|
|
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
|
|
|
|
/* signed 16x16 -> 32 multiply */
|
|
#define MULS(ra, rb) ((ra)*(rb))
|
|
|
|
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
|
|
|
|
#elif FRAC_BITS <= 15
|
|
|
|
static inline int round_sample(int *sum)
|
|
{
|
|
int sum1;
|
|
sum1 = (*sum) >> OUT_SHIFT;
|
|
*sum &= (1<<OUT_SHIFT)-1;
|
|
return av_clip(sum1, OUT_MIN, OUT_MAX);
|
|
}
|
|
|
|
/* signed 16x16 -> 32 multiply add accumulate */
|
|
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
|
|
|
|
/* signed 16x16 -> 32 multiply */
|
|
#define MULS(ra, rb) MUL16(ra, rb)
|
|
|
|
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
|
|
|
|
#else
|
|
|
|
static inline int round_sample(int64_t *sum)
|
|
{
|
|
int sum1;
|
|
sum1 = (int)((*sum) >> OUT_SHIFT);
|
|
*sum &= (1<<OUT_SHIFT)-1;
|
|
return av_clip(sum1, OUT_MIN, OUT_MAX);
|
|
}
|
|
|
|
# define MULS(ra, rb) MUL64(ra, rb)
|
|
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
|
|
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
|
|
#endif
|
|
|
|
#define SUM8(op, sum, w, p) \
|
|
{ \
|
|
op(sum, (w)[0 * 64], (p)[0 * 64]); \
|
|
op(sum, (w)[1 * 64], (p)[1 * 64]); \
|
|
op(sum, (w)[2 * 64], (p)[2 * 64]); \
|
|
op(sum, (w)[3 * 64], (p)[3 * 64]); \
|
|
op(sum, (w)[4 * 64], (p)[4 * 64]); \
|
|
op(sum, (w)[5 * 64], (p)[5 * 64]); \
|
|
op(sum, (w)[6 * 64], (p)[6 * 64]); \
|
|
op(sum, (w)[7 * 64], (p)[7 * 64]); \
|
|
}
|
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
|
|
{ \
|
|
INTFLOAT tmp;\
|
|
tmp = p[0 * 64];\
|
|
op1(sum1, (w1)[0 * 64], tmp);\
|
|
op2(sum2, (w2)[0 * 64], tmp);\
|
|
tmp = p[1 * 64];\
|
|
op1(sum1, (w1)[1 * 64], tmp);\
|
|
op2(sum2, (w2)[1 * 64], tmp);\
|
|
tmp = p[2 * 64];\
|
|
op1(sum1, (w1)[2 * 64], tmp);\
|
|
op2(sum2, (w2)[2 * 64], tmp);\
|
|
tmp = p[3 * 64];\
|
|
op1(sum1, (w1)[3 * 64], tmp);\
|
|
op2(sum2, (w2)[3 * 64], tmp);\
|
|
tmp = p[4 * 64];\
|
|
op1(sum1, (w1)[4 * 64], tmp);\
|
|
op2(sum2, (w2)[4 * 64], tmp);\
|
|
tmp = p[5 * 64];\
|
|
op1(sum1, (w1)[5 * 64], tmp);\
|
|
op2(sum2, (w2)[5 * 64], tmp);\
|
|
tmp = p[6 * 64];\
|
|
op1(sum1, (w1)[6 * 64], tmp);\
|
|
op2(sum2, (w2)[6 * 64], tmp);\
|
|
tmp = p[7 * 64];\
|
|
op1(sum1, (w1)[7 * 64], tmp);\
|
|
op2(sum2, (w2)[7 * 64], tmp);\
|
|
}
|
|
|
|
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
|
|
{
|
|
int i, j;
|
|
|
|
/* max = 18760, max sum over all 16 coefs : 44736 */
|
|
for(i=0;i<257;i++) {
|
|
INTFLOAT v;
|
|
v = ff_mpa_enwindow[i];
|
|
#if CONFIG_FLOAT
|
|
v *= 1.0 / (1LL<<(16 + FRAC_BITS));
|
|
#elif WFRAC_BITS < 16
|
|
v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
|
|
#endif
|
|
window[i] = v;
|
|
if ((i & 63) != 0)
|
|
v = -v;
|
|
if (i != 0)
|
|
window[512 - i] = v;
|
|
}
|
|
|
|
// Needed for avoiding shuffles in ASM implementations
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+16*i+j] = window[64*i+32-j];
|
|
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+128+16*i+j] = window[64*i+48-j];
|
|
}
|
|
|
|
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
|
|
int *dither_state, OUT_INT *samples, int incr)
|
|
{
|
|
register const MPA_INT *w, *w2, *p;
|
|
int j;
|
|
OUT_INT *samples2;
|
|
#if CONFIG_FLOAT
|
|
float sum, sum2;
|
|
#elif FRAC_BITS <= 15
|
|
int sum, sum2;
|
|
#else
|
|
int64_t sum, sum2;
|
|
#endif
|
|
|
|
/* copy to avoid wrap */
|
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
|
|
|
|
samples2 = samples + 31 * incr;
|
|
w = window;
|
|
w2 = window + 31;
|
|
|
|
sum = *dither_state;
|
|
p = synth_buf + 16;
|
|
SUM8(MACS, sum, w, p);
|
|
p = synth_buf + 48;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
w++;
|
|
|
|
/* we calculate two samples at the same time to avoid one memory
|
|
access per two sample */
|
|
for(j=1;j<16;j++) {
|
|
sum2 = 0;
|
|
p = synth_buf + 16 + j;
|
|
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
|
|
p = synth_buf + 48 - j;
|
|
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
|
|
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
sum += sum2;
|
|
*samples2 = round_sample(&sum);
|
|
samples2 -= incr;
|
|
w++;
|
|
w2--;
|
|
}
|
|
|
|
p = synth_buf + 32;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
*dither_state= sum;
|
|
}
|
|
|
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
|
|
32 samples. */
|
|
/* XXX: optimize by avoiding ring buffer usage */
|
|
#if !CONFIG_FLOAT
|
|
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
|
|
MPA_INT *window, int *dither_state,
|
|
OUT_INT *samples, int incr,
|
|
INTFLOAT sb_samples[SBLIMIT])
|
|
{
|
|
register MPA_INT *synth_buf;
|
|
int offset;
|
|
#if FRAC_BITS <= 15
|
|
int32_t tmp[32];
|
|
int j;
|
|
#endif
|
|
|
|
offset = *synth_buf_offset;
|
|
synth_buf = synth_buf_ptr + offset;
|
|
|
|
#if FRAC_BITS <= 15
|
|
dct32(tmp, sb_samples);
|
|
for(j=0;j<32;j++) {
|
|
/* NOTE: can cause a loss in precision if very high amplitude
|
|
sound */
|
|
synth_buf[j] = av_clip_int16(tmp[j]);
|
|
}
|
|
#else
|
|
dct32(synth_buf, sb_samples);
|
|
#endif
|
|
|
|
apply_window_mp3_c(synth_buf, window, dither_state, samples, incr);
|
|
|
|
offset = (offset - 32) & 511;
|
|
*synth_buf_offset = offset;
|
|
}
|
|
#endif
|
|
|
|
#define C3 FIXHR(0.86602540378443864676/2)
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36[9] = {
|
|
FIXR(0.50190991877167369479),
|
|
FIXR(0.51763809020504152469), //0
|
|
FIXR(0.55168895948124587824),
|
|
FIXR(0.61038729438072803416),
|
|
FIXR(0.70710678118654752439), //1
|
|
FIXR(0.87172339781054900991),
|
|
FIXR(1.18310079157624925896),
|
|
FIXR(1.93185165257813657349), //2
|
|
FIXR(5.73685662283492756461),
|
|
};
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36h[9] = {
|
|
FIXHR(0.50190991877167369479/2),
|
|
FIXHR(0.51763809020504152469/2), //0
|
|
FIXHR(0.55168895948124587824/2),
|
|
FIXHR(0.61038729438072803416/2),
|
|
FIXHR(0.70710678118654752439/2), //1
|
|
FIXHR(0.87172339781054900991/2),
|
|
FIXHR(1.18310079157624925896/4),
|
|
FIXHR(1.93185165257813657349/4), //2
|
|
// FIXHR(5.73685662283492756461),
|
|
};
|
|
|
|
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
|
|
cases. */
|
|
static void imdct12(INTFLOAT *out, INTFLOAT *in)
|
|
{
|
|
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
|
|
|
|
in0= in[0*3];
|
|
in1= in[1*3] + in[0*3];
|
|
in2= in[2*3] + in[1*3];
|
|
in3= in[3*3] + in[2*3];
|
|
in4= in[4*3] + in[3*3];
|
|
in5= in[5*3] + in[4*3];
|
|
in5 += in3;
|
|
in3 += in1;
|
|
|
|
in2= MULH3(in2, C3, 2);
|
|
in3= MULH3(in3, C3, 4);
|
|
|
|
t1 = in0 - in4;
|
|
t2 = MULH3(in1 - in5, icos36h[4], 2);
|
|
|
|
out[ 7]=
|
|
out[10]= t1 + t2;
|
|
out[ 1]=
|
|
out[ 4]= t1 - t2;
|
|
|
|
in0 += SHR(in4, 1);
|
|
in4 = in0 + in2;
|
|
in5 += 2*in1;
|
|
in1 = MULH3(in5 + in3, icos36h[1], 1);
|
|
out[ 8]=
|
|
out[ 9]= in4 + in1;
|
|
out[ 2]=
|
|
out[ 3]= in4 - in1;
|
|
|
|
in0 -= in2;
|
|
in5 = MULH3(in5 - in3, icos36h[7], 2);
|
|
out[ 0]=
|
|
out[ 5]= in0 - in5;
|
|
out[ 6]=
|
|
out[11]= in0 + in5;
|
|
}
|
|
|
|
/* cos(pi*i/18) */
|
|
#define C1 FIXHR(0.98480775301220805936/2)
|
|
#define C2 FIXHR(0.93969262078590838405/2)
|
|
#define C3 FIXHR(0.86602540378443864676/2)
|
|
#define C4 FIXHR(0.76604444311897803520/2)
|
|
#define C5 FIXHR(0.64278760968653932632/2)
|
|
#define C6 FIXHR(0.5/2)
|
|
#define C7 FIXHR(0.34202014332566873304/2)
|
|
#define C8 FIXHR(0.17364817766693034885/2)
|
|
|
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */
|
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
|
|
{
|
|
int i, j;
|
|
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
|
|
INTFLOAT tmp[18], *tmp1, *in1;
|
|
|
|
for(i=17;i>=1;i--)
|
|
in[i] += in[i-1];
|
|
for(i=17;i>=3;i-=2)
|
|
in[i] += in[i-2];
|
|
|
|
for(j=0;j<2;j++) {
|
|
tmp1 = tmp + j;
|
|
in1 = in + j;
|
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2];
|
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1);
|
|
t1 = in1[2*0] - in1[2*6];
|
|
tmp1[ 6] = t1 - SHR(t2,1);
|
|
tmp1[16] = t1 + t2;
|
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
|
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
|
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
|
|
|
|
tmp1[10] = t3 - t0 - t2;
|
|
tmp1[ 2] = t3 + t0 + t1;
|
|
tmp1[14] = t3 + t2 - t1;
|
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
|
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
|
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
|
|
t0 = MULH3(in1[2*3], C3, 2);
|
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
|
|
|
|
tmp1[ 0] = t2 + t3 + t0;
|
|
tmp1[12] = t2 + t1 - t0;
|
|
tmp1[ 8] = t3 - t1 - t0;
|
|
}
|
|
|
|
i = 0;
|
|
for(j=0;j<4;j++) {
|
|
t0 = tmp[i];
|
|
t1 = tmp[i + 2];
|
|
s0 = t1 + t0;
|
|
s2 = t1 - t0;
|
|
|
|
t2 = tmp[i + 1];
|
|
t3 = tmp[i + 3];
|
|
s1 = MULH3(t3 + t2, icos36h[j], 2);
|
|
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
|
|
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
|
|
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
|
|
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
|
|
buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
|
|
|
|
t0 = s2 + s3;
|
|
t1 = s2 - s3;
|
|
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
|
|
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
|
|
buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
|
|
buf[ + j] = MULH3(t0, win[18 + j], 1);
|
|
i += 4;
|
|
}
|
|
|
|
s0 = tmp[16];
|
|
s1 = MULH3(tmp[17], icos36h[4], 2);
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
|
|
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
|
|
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
|
|
buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
|
|
}
|
|
|
|
/* return the number of decoded frames */
|
|
static int mp_decode_layer1(MPADecodeContext *s)
|
|
{
|
|
int bound, i, v, n, ch, j, mant;
|
|
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
|
|
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
|
|
|
|
if (s->mode == MPA_JSTEREO)
|
|
bound = (s->mode_ext + 1) * 4;
|
|
else
|
|
bound = SBLIMIT;
|
|
|
|
/* allocation bits */
|
|
for(i=0;i<bound;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
allocation[ch][i] = get_bits(&s->gb, 4);
|
|
}
|
|
}
|
|
for(i=bound;i<SBLIMIT;i++) {
|
|
allocation[0][i] = get_bits(&s->gb, 4);
|
|
}
|
|
|
|
/* scale factors */
|
|
for(i=0;i<bound;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
if (allocation[ch][i])
|
|
scale_factors[ch][i] = get_bits(&s->gb, 6);
|
|
}
|
|
}
|
|
for(i=bound;i<SBLIMIT;i++) {
|
|
if (allocation[0][i]) {
|
|
scale_factors[0][i] = get_bits(&s->gb, 6);
|
|
scale_factors[1][i] = get_bits(&s->gb, 6);
|
|
}
|
|
}
|
|
|
|
/* compute samples */
|
|
for(j=0;j<12;j++) {
|
|
for(i=0;i<bound;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
n = allocation[ch][i];
|
|
if (n) {
|
|
mant = get_bits(&s->gb, n + 1);
|
|
v = l1_unscale(n, mant, scale_factors[ch][i]);
|
|
} else {
|
|
v = 0;
|
|
}
|
|
s->sb_samples[ch][j][i] = v;
|
|
}
|
|
}
|
|
for(i=bound;i<SBLIMIT;i++) {
|
|
n = allocation[0][i];
|
|
if (n) {
|
|
mant = get_bits(&s->gb, n + 1);
|
|
v = l1_unscale(n, mant, scale_factors[0][i]);
|
|
s->sb_samples[0][j][i] = v;
|
|
v = l1_unscale(n, mant, scale_factors[1][i]);
|
|
s->sb_samples[1][j][i] = v;
|
|
} else {
|
|
s->sb_samples[0][j][i] = 0;
|
|
s->sb_samples[1][j][i] = 0;
|
|
}
|
|
}
|
|
}
|
|
return 12;
|
|
}
|
|
|
|
static int mp_decode_layer2(MPADecodeContext *s)
|
|
{
|
|
int sblimit; /* number of used subbands */
|
|
const unsigned char *alloc_table;
|
|
int table, bit_alloc_bits, i, j, ch, bound, v;
|
|
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
|
|
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
|
|
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
|
|
int scale, qindex, bits, steps, k, l, m, b;
|
|
|
|
/* select decoding table */
|
|
table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
|
|
s->sample_rate, s->lsf);
|
|
sblimit = ff_mpa_sblimit_table[table];
|
|
alloc_table = ff_mpa_alloc_tables[table];
|
|
|
|
if (s->mode == MPA_JSTEREO)
|
|
bound = (s->mode_ext + 1) * 4;
|
|
else
|
|
bound = sblimit;
|
|
|
|
av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
|
|
|
|
/* sanity check */
|
|
if( bound > sblimit ) bound = sblimit;
|
|
|
|
/* parse bit allocation */
|
|
j = 0;
|
|
for(i=0;i<bound;i++) {
|
|
bit_alloc_bits = alloc_table[j];
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
|
|
}
|
|
j += 1 << bit_alloc_bits;
|
|
}
|
|
for(i=bound;i<sblimit;i++) {
|
|
bit_alloc_bits = alloc_table[j];
|
|
v = get_bits(&s->gb, bit_alloc_bits);
|
|
bit_alloc[0][i] = v;
|
|
bit_alloc[1][i] = v;
|
|
j += 1 << bit_alloc_bits;
|
|
}
|
|
|
|
/* scale codes */
|
|
for(i=0;i<sblimit;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
if (bit_alloc[ch][i])
|
|
scale_code[ch][i] = get_bits(&s->gb, 2);
|
|
}
|
|
}
|
|
|
|
/* scale factors */
|
|
for(i=0;i<sblimit;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
if (bit_alloc[ch][i]) {
|
|
sf = scale_factors[ch][i];
|
|
switch(scale_code[ch][i]) {
|
|
default:
|
|
case 0:
|
|
sf[0] = get_bits(&s->gb, 6);
|
|
sf[1] = get_bits(&s->gb, 6);
|
|
sf[2] = get_bits(&s->gb, 6);
|
|
break;
|
|
case 2:
|
|
sf[0] = get_bits(&s->gb, 6);
|
|
sf[1] = sf[0];
|
|
sf[2] = sf[0];
|
|
break;
|
|
case 1:
|
|
sf[0] = get_bits(&s->gb, 6);
|
|
sf[2] = get_bits(&s->gb, 6);
|
|
sf[1] = sf[0];
|
|
break;
|
|
case 3:
|
|
sf[0] = get_bits(&s->gb, 6);
|
|
sf[2] = get_bits(&s->gb, 6);
|
|
sf[1] = sf[2];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* samples */
|
|
for(k=0;k<3;k++) {
|
|
for(l=0;l<12;l+=3) {
|
|
j = 0;
|
|
for(i=0;i<bound;i++) {
|
|
bit_alloc_bits = alloc_table[j];
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
b = bit_alloc[ch][i];
|
|
if (b) {
|
|
scale = scale_factors[ch][i][k];
|
|
qindex = alloc_table[j+b];
|
|
bits = ff_mpa_quant_bits[qindex];
|
|
if (bits < 0) {
|
|
int v2;
|
|
/* 3 values at the same time */
|
|
v = get_bits(&s->gb, -bits);
|
|
v2 = division_tabs[qindex][v];
|
|
steps = ff_mpa_quant_steps[qindex];
|
|
|
|
s->sb_samples[ch][k * 12 + l + 0][i] =
|
|
l2_unscale_group(steps, v2 & 15, scale);
|
|
s->sb_samples[ch][k * 12 + l + 1][i] =
|
|
l2_unscale_group(steps, (v2 >> 4) & 15, scale);
|
|
s->sb_samples[ch][k * 12 + l + 2][i] =
|
|
l2_unscale_group(steps, v2 >> 8 , scale);
|
|
} else {
|
|
for(m=0;m<3;m++) {
|
|
v = get_bits(&s->gb, bits);
|
|
v = l1_unscale(bits - 1, v, scale);
|
|
s->sb_samples[ch][k * 12 + l + m][i] = v;
|
|
}
|
|
}
|
|
} else {
|
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0;
|
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0;
|
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0;
|
|
}
|
|
}
|
|
/* next subband in alloc table */
|
|
j += 1 << bit_alloc_bits;
|
|
}
|
|
/* XXX: find a way to avoid this duplication of code */
|
|
for(i=bound;i<sblimit;i++) {
|
|
bit_alloc_bits = alloc_table[j];
|
|
b = bit_alloc[0][i];
|
|
if (b) {
|
|
int mant, scale0, scale1;
|
|
scale0 = scale_factors[0][i][k];
|
|
scale1 = scale_factors[1][i][k];
|
|
qindex = alloc_table[j+b];
|
|
bits = ff_mpa_quant_bits[qindex];
|
|
if (bits < 0) {
|
|
/* 3 values at the same time */
|
|
v = get_bits(&s->gb, -bits);
|
|
steps = ff_mpa_quant_steps[qindex];
|
|
mant = v % steps;
|
|
v = v / steps;
|
|
s->sb_samples[0][k * 12 + l + 0][i] =
|
|
l2_unscale_group(steps, mant, scale0);
|
|
s->sb_samples[1][k * 12 + l + 0][i] =
|
|
l2_unscale_group(steps, mant, scale1);
|
|
mant = v % steps;
|
|
v = v / steps;
|
|
s->sb_samples[0][k * 12 + l + 1][i] =
|
|
l2_unscale_group(steps, mant, scale0);
|
|
s->sb_samples[1][k * 12 + l + 1][i] =
|
|
l2_unscale_group(steps, mant, scale1);
|
|
s->sb_samples[0][k * 12 + l + 2][i] =
|
|
l2_unscale_group(steps, v, scale0);
|
|
s->sb_samples[1][k * 12 + l + 2][i] =
|
|
l2_unscale_group(steps, v, scale1);
|
|
} else {
|
|
for(m=0;m<3;m++) {
|
|
mant = get_bits(&s->gb, bits);
|
|
s->sb_samples[0][k * 12 + l + m][i] =
|
|
l1_unscale(bits - 1, mant, scale0);
|
|
s->sb_samples[1][k * 12 + l + m][i] =
|
|
l1_unscale(bits - 1, mant, scale1);
|
|
}
|
|
}
|
|
} else {
|
|
s->sb_samples[0][k * 12 + l + 0][i] = 0;
|
|
s->sb_samples[0][k * 12 + l + 1][i] = 0;
|
|
s->sb_samples[0][k * 12 + l + 2][i] = 0;
|
|
s->sb_samples[1][k * 12 + l + 0][i] = 0;
|
|
s->sb_samples[1][k * 12 + l + 1][i] = 0;
|
|
s->sb_samples[1][k * 12 + l + 2][i] = 0;
|
|
}
|
|
/* next subband in alloc table */
|
|
j += 1 << bit_alloc_bits;
|
|
}
|
|
/* fill remaining samples to zero */
|
|
for(i=sblimit;i<SBLIMIT;i++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0;
|
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0;
|
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 3 * 12;
|
|
}
|
|
|
|
#define SPLIT(dst,sf,n)\
|
|
if(n==3){\
|
|
int m= (sf*171)>>9;\
|
|
dst= sf - 3*m;\
|
|
sf=m;\
|
|
}else if(n==4){\
|
|
dst= sf&3;\
|
|
sf>>=2;\
|
|
}else if(n==5){\
|
|
int m= (sf*205)>>10;\
|
|
dst= sf - 5*m;\
|
|
sf=m;\
|
|
}else if(n==6){\
|
|
int m= (sf*171)>>10;\
|
|
dst= sf - 6*m;\
|
|
sf=m;\
|
|
}else{\
|
|
dst=0;\
|
|
}
|
|
|
|
static av_always_inline void lsf_sf_expand(int *slen,
|
|
int sf, int n1, int n2, int n3)
|
|
{
|
|
SPLIT(slen[3], sf, n3)
|
|
SPLIT(slen[2], sf, n2)
|
|
SPLIT(slen[1], sf, n1)
|
|
slen[0] = sf;
|
|
}
|
|
|
|
static void exponents_from_scale_factors(MPADecodeContext *s,
|
|
GranuleDef *g,
|
|
int16_t *exponents)
|
|
{
|
|
const uint8_t *bstab, *pretab;
|
|
int len, i, j, k, l, v0, shift, gain, gains[3];
|
|
int16_t *exp_ptr;
|
|
|
|
exp_ptr = exponents;
|
|
gain = g->global_gain - 210;
|
|
shift = g->scalefac_scale + 1;
|
|
|
|
bstab = band_size_long[s->sample_rate_index];
|
|
pretab = mpa_pretab[g->preflag];
|
|
for(i=0;i<g->long_end;i++) {
|
|
v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
|
|
len = bstab[i];
|
|
for(j=len;j>0;j--)
|
|
*exp_ptr++ = v0;
|
|
}
|
|
|
|
if (g->short_start < 13) {
|
|
bstab = band_size_short[s->sample_rate_index];
|
|
gains[0] = gain - (g->subblock_gain[0] << 3);
|
|
gains[1] = gain - (g->subblock_gain[1] << 3);
|
|
gains[2] = gain - (g->subblock_gain[2] << 3);
|
|
k = g->long_end;
|
|
for(i=g->short_start;i<13;i++) {
|
|
len = bstab[i];
|
|
for(l=0;l<3;l++) {
|
|
v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
|
|
for(j=len;j>0;j--)
|
|
*exp_ptr++ = v0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* handle n = 0 too */
|
|
static inline int get_bitsz(GetBitContext *s, int n)
|
|
{
|
|
if (n == 0)
|
|
return 0;
|
|
else
|
|
return get_bits(s, n);
|
|
}
|
|
|
|
|
|
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
|
|
if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
|
|
s->gb= s->in_gb;
|
|
s->in_gb.buffer=NULL;
|
|
assert((get_bits_count(&s->gb) & 7) == 0);
|
|
skip_bits_long(&s->gb, *pos - *end_pos);
|
|
*end_pos2=
|
|
*end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
|
|
*pos= get_bits_count(&s->gb);
|
|
}
|
|
}
|
|
|
|
/* Following is a optimized code for
|
|
INTFLOAT v = *src
|
|
if(get_bits1(&s->gb))
|
|
v = -v;
|
|
*dst = v;
|
|
*/
|
|
#if CONFIG_FLOAT
|
|
#define READ_FLIP_SIGN(dst,src)\
|
|
v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
|
|
AV_WN32A(dst, v);
|
|
#else
|
|
#define READ_FLIP_SIGN(dst,src)\
|
|
v= -get_bits1(&s->gb);\
|
|
*(dst) = (*(src) ^ v) - v;
|
|
#endif
|
|
|
|
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
|
|
int16_t *exponents, int end_pos2)
|
|
{
|
|
int s_index;
|
|
int i;
|
|
int last_pos, bits_left;
|
|
VLC *vlc;
|
|
int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
|
|
|
|
/* low frequencies (called big values) */
|
|
s_index = 0;
|
|
for(i=0;i<3;i++) {
|
|
int j, k, l, linbits;
|
|
j = g->region_size[i];
|
|
if (j == 0)
|
|
continue;
|
|
/* select vlc table */
|
|
k = g->table_select[i];
|
|
l = mpa_huff_data[k][0];
|
|
linbits = mpa_huff_data[k][1];
|
|
vlc = &huff_vlc[l];
|
|
|
|
if(!l){
|
|
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
|
|
s_index += 2*j;
|
|
continue;
|
|
}
|
|
|
|
/* read huffcode and compute each couple */
|
|
for(;j>0;j--) {
|
|
int exponent, x, y;
|
|
int v;
|
|
int pos= get_bits_count(&s->gb);
|
|
|
|
if (pos >= end_pos){
|
|
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
|
|
switch_buffer(s, &pos, &end_pos, &end_pos2);
|
|
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
|
|
if(pos >= end_pos)
|
|
break;
|
|
}
|
|
y = get_vlc2(&s->gb, vlc->table, 7, 3);
|
|
|
|
if(!y){
|
|
g->sb_hybrid[s_index ] =
|
|
g->sb_hybrid[s_index+1] = 0;
|
|
s_index += 2;
|
|
continue;
|
|
}
|
|
|
|
exponent= exponents[s_index];
|
|
|
|
av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
|
|
i, g->region_size[i] - j, x, y, exponent);
|
|
if(y&16){
|
|
x = y >> 5;
|
|
y = y & 0x0f;
|
|
if (x < 15){
|
|
READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
|
|
}else{
|
|
x += get_bitsz(&s->gb, linbits);
|
|
v = l3_unscale(x, exponent);
|
|
if (get_bits1(&s->gb))
|
|
v = -v;
|
|
g->sb_hybrid[s_index] = v;
|
|
}
|
|
if (y < 15){
|
|
READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
|
|
}else{
|
|
y += get_bitsz(&s->gb, linbits);
|
|
v = l3_unscale(y, exponent);
|
|
if (get_bits1(&s->gb))
|
|
v = -v;
|
|
g->sb_hybrid[s_index+1] = v;
|
|
}
|
|
}else{
|
|
x = y >> 5;
|
|
y = y & 0x0f;
|
|
x += y;
|
|
if (x < 15){
|
|
READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
|
|
}else{
|
|
x += get_bitsz(&s->gb, linbits);
|
|
v = l3_unscale(x, exponent);
|
|
if (get_bits1(&s->gb))
|
|
v = -v;
|
|
g->sb_hybrid[s_index+!!y] = v;
|
|
}
|
|
g->sb_hybrid[s_index+ !y] = 0;
|
|
}
|
|
s_index+=2;
|
|
}
|
|
}
|
|
|
|
/* high frequencies */
|
|
vlc = &huff_quad_vlc[g->count1table_select];
|
|
last_pos=0;
|
|
while (s_index <= 572) {
|
|
int pos, code;
|
|
pos = get_bits_count(&s->gb);
|
|
if (pos >= end_pos) {
|
|
if (pos > end_pos2 && last_pos){
|
|
/* some encoders generate an incorrect size for this
|
|
part. We must go back into the data */
|
|
s_index -= 4;
|
|
skip_bits_long(&s->gb, last_pos - pos);
|
|
av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
|
|
if(s->error_recognition >= FF_ER_COMPLIANT)
|
|
s_index=0;
|
|
break;
|
|
}
|
|
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
|
|
switch_buffer(s, &pos, &end_pos, &end_pos2);
|
|
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
|
|
if(pos >= end_pos)
|
|
break;
|
|
}
|
|
last_pos= pos;
|
|
|
|
code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
|
|
av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
|
|
g->sb_hybrid[s_index+0]=
|
|
g->sb_hybrid[s_index+1]=
|
|
g->sb_hybrid[s_index+2]=
|
|
g->sb_hybrid[s_index+3]= 0;
|
|
while(code){
|
|
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
|
|
int v;
|
|
int pos= s_index+idxtab[code];
|
|
code ^= 8>>idxtab[code];
|
|
READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
|
|
}
|
|
s_index+=4;
|
|
}
|
|
/* skip extension bits */
|
|
bits_left = end_pos2 - get_bits_count(&s->gb);
|
|
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
|
|
if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
|
|
s_index=0;
|
|
}else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
|
|
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
|
|
s_index=0;
|
|
}
|
|
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
|
|
skip_bits_long(&s->gb, bits_left);
|
|
|
|
i= get_bits_count(&s->gb);
|
|
switch_buffer(s, &i, &end_pos, &end_pos2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reorder short blocks from bitstream order to interleaved order. It
|
|
would be faster to do it in parsing, but the code would be far more
|
|
complicated */
|
|
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
|
|
{
|
|
int i, j, len;
|
|
INTFLOAT *ptr, *dst, *ptr1;
|
|
INTFLOAT tmp[576];
|
|
|
|
if (g->block_type != 2)
|
|
return;
|
|
|
|
if (g->switch_point) {
|
|
if (s->sample_rate_index != 8) {
|
|
ptr = g->sb_hybrid + 36;
|
|
} else {
|
|
ptr = g->sb_hybrid + 48;
|
|
}
|
|
} else {
|
|
ptr = g->sb_hybrid;
|
|
}
|
|
|
|
for(i=g->short_start;i<13;i++) {
|
|
len = band_size_short[s->sample_rate_index][i];
|
|
ptr1 = ptr;
|
|
dst = tmp;
|
|
for(j=len;j>0;j--) {
|
|
*dst++ = ptr[0*len];
|
|
*dst++ = ptr[1*len];
|
|
*dst++ = ptr[2*len];
|
|
ptr++;
|
|
}
|
|
ptr+=2*len;
|
|
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
|
|
}
|
|
}
|
|
|
|
#define ISQRT2 FIXR(0.70710678118654752440)
|
|
|
|
static void compute_stereo(MPADecodeContext *s,
|
|
GranuleDef *g0, GranuleDef *g1)
|
|
{
|
|
int i, j, k, l;
|
|
int sf_max, sf, len, non_zero_found;
|
|
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
|
|
int non_zero_found_short[3];
|
|
|
|
/* intensity stereo */
|
|
if (s->mode_ext & MODE_EXT_I_STEREO) {
|
|
if (!s->lsf) {
|
|
is_tab = is_table;
|
|
sf_max = 7;
|
|
} else {
|
|
is_tab = is_table_lsf[g1->scalefac_compress & 1];
|
|
sf_max = 16;
|
|
}
|
|
|
|
tab0 = g0->sb_hybrid + 576;
|
|
tab1 = g1->sb_hybrid + 576;
|
|
|
|
non_zero_found_short[0] = 0;
|
|
non_zero_found_short[1] = 0;
|
|
non_zero_found_short[2] = 0;
|
|
k = (13 - g1->short_start) * 3 + g1->long_end - 3;
|
|
for(i = 12;i >= g1->short_start;i--) {
|
|
/* for last band, use previous scale factor */
|
|
if (i != 11)
|
|
k -= 3;
|
|
len = band_size_short[s->sample_rate_index][i];
|
|
for(l=2;l>=0;l--) {
|
|
tab0 -= len;
|
|
tab1 -= len;
|
|
if (!non_zero_found_short[l]) {
|
|
/* test if non zero band. if so, stop doing i-stereo */
|
|
for(j=0;j<len;j++) {
|
|
if (tab1[j] != 0) {
|
|
non_zero_found_short[l] = 1;
|
|
goto found1;
|
|
}
|
|
}
|
|
sf = g1->scale_factors[k + l];
|
|
if (sf >= sf_max)
|
|
goto found1;
|
|
|
|
v1 = is_tab[0][sf];
|
|
v2 = is_tab[1][sf];
|
|
for(j=0;j<len;j++) {
|
|
tmp0 = tab0[j];
|
|
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
|
|
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
|
|
}
|
|
} else {
|
|
found1:
|
|
if (s->mode_ext & MODE_EXT_MS_STEREO) {
|
|
/* lower part of the spectrum : do ms stereo
|
|
if enabled */
|
|
for(j=0;j<len;j++) {
|
|
tmp0 = tab0[j];
|
|
tmp1 = tab1[j];
|
|
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
|
|
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
non_zero_found = non_zero_found_short[0] |
|
|
non_zero_found_short[1] |
|
|
non_zero_found_short[2];
|
|
|
|
for(i = g1->long_end - 1;i >= 0;i--) {
|
|
len = band_size_long[s->sample_rate_index][i];
|
|
tab0 -= len;
|
|
tab1 -= len;
|
|
/* test if non zero band. if so, stop doing i-stereo */
|
|
if (!non_zero_found) {
|
|
for(j=0;j<len;j++) {
|
|
if (tab1[j] != 0) {
|
|
non_zero_found = 1;
|
|
goto found2;
|
|
}
|
|
}
|
|
/* for last band, use previous scale factor */
|
|
k = (i == 21) ? 20 : i;
|
|
sf = g1->scale_factors[k];
|
|
if (sf >= sf_max)
|
|
goto found2;
|
|
v1 = is_tab[0][sf];
|
|
v2 = is_tab[1][sf];
|
|
for(j=0;j<len;j++) {
|
|
tmp0 = tab0[j];
|
|
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
|
|
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
|
|
}
|
|
} else {
|
|
found2:
|
|
if (s->mode_ext & MODE_EXT_MS_STEREO) {
|
|
/* lower part of the spectrum : do ms stereo
|
|
if enabled */
|
|
for(j=0;j<len;j++) {
|
|
tmp0 = tab0[j];
|
|
tmp1 = tab1[j];
|
|
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
|
|
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (s->mode_ext & MODE_EXT_MS_STEREO) {
|
|
/* ms stereo ONLY */
|
|
/* NOTE: the 1/sqrt(2) normalization factor is included in the
|
|
global gain */
|
|
tab0 = g0->sb_hybrid;
|
|
tab1 = g1->sb_hybrid;
|
|
for(i=0;i<576;i++) {
|
|
tmp0 = tab0[i];
|
|
tmp1 = tab1[i];
|
|
tab0[i] = tmp0 + tmp1;
|
|
tab1[i] = tmp0 - tmp1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_FLOAT
|
|
static void compute_antialias_integer(MPADecodeContext *s,
|
|
GranuleDef *g)
|
|
{
|
|
int32_t *ptr, *csa;
|
|
int n, i;
|
|
|
|
/* we antialias only "long" bands */
|
|
if (g->block_type == 2) {
|
|
if (!g->switch_point)
|
|
return;
|
|
/* XXX: check this for 8000Hz case */
|
|
n = 1;
|
|
} else {
|
|
n = SBLIMIT - 1;
|
|
}
|
|
|
|
ptr = g->sb_hybrid + 18;
|
|
for(i = n;i > 0;i--) {
|
|
int tmp0, tmp1, tmp2;
|
|
csa = &csa_table[0][0];
|
|
#define INT_AA(j) \
|
|
tmp0 = ptr[-1-j];\
|
|
tmp1 = ptr[ j];\
|
|
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
|
|
ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
|
|
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
|
|
|
|
INT_AA(0)
|
|
INT_AA(1)
|
|
INT_AA(2)
|
|
INT_AA(3)
|
|
INT_AA(4)
|
|
INT_AA(5)
|
|
INT_AA(6)
|
|
INT_AA(7)
|
|
|
|
ptr += 18;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void compute_imdct(MPADecodeContext *s,
|
|
GranuleDef *g,
|
|
INTFLOAT *sb_samples,
|
|
INTFLOAT *mdct_buf)
|
|
{
|
|
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
|
|
INTFLOAT out2[12];
|
|
int i, j, mdct_long_end, sblimit;
|
|
|
|
/* find last non zero block */
|
|
ptr = g->sb_hybrid + 576;
|
|
ptr1 = g->sb_hybrid + 2 * 18;
|
|
while (ptr >= ptr1) {
|
|
int32_t *p;
|
|
ptr -= 6;
|
|
p= (int32_t*)ptr;
|
|
if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
|
|
break;
|
|
}
|
|
sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
|
|
|
|
if (g->block_type == 2) {
|
|
/* XXX: check for 8000 Hz */
|
|
if (g->switch_point)
|
|
mdct_long_end = 2;
|
|
else
|
|
mdct_long_end = 0;
|
|
} else {
|
|
mdct_long_end = sblimit;
|
|
}
|
|
|
|
buf = mdct_buf;
|
|
ptr = g->sb_hybrid;
|
|
for(j=0;j<mdct_long_end;j++) {
|
|
/* apply window & overlap with previous buffer */
|
|
out_ptr = sb_samples + j;
|
|
/* select window */
|
|
if (g->switch_point && j < 2)
|
|
win1 = mdct_win[0];
|
|
else
|
|
win1 = mdct_win[g->block_type];
|
|
/* select frequency inversion */
|
|
win = win1 + ((4 * 36) & -(j & 1));
|
|
imdct36(out_ptr, buf, ptr, win);
|
|
out_ptr += 18*SBLIMIT;
|
|
ptr += 18;
|
|
buf += 18;
|
|
}
|
|
for(j=mdct_long_end;j<sblimit;j++) {
|
|
/* select frequency inversion */
|
|
win = mdct_win[2] + ((4 * 36) & -(j & 1));
|
|
out_ptr = sb_samples + j;
|
|
|
|
for(i=0; i<6; i++){
|
|
*out_ptr = buf[i];
|
|
out_ptr += SBLIMIT;
|
|
}
|
|
imdct12(out2, ptr + 0);
|
|
for(i=0;i<6;i++) {
|
|
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
|
|
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
|
|
out_ptr += SBLIMIT;
|
|
}
|
|
imdct12(out2, ptr + 1);
|
|
for(i=0;i<6;i++) {
|
|
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
|
|
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
|
|
out_ptr += SBLIMIT;
|
|
}
|
|
imdct12(out2, ptr + 2);
|
|
for(i=0;i<6;i++) {
|
|
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
|
|
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
|
|
buf[i + 6*2] = 0;
|
|
}
|
|
ptr += 18;
|
|
buf += 18;
|
|
}
|
|
/* zero bands */
|
|
for(j=sblimit;j<SBLIMIT;j++) {
|
|
/* overlap */
|
|
out_ptr = sb_samples + j;
|
|
for(i=0;i<18;i++) {
|
|
*out_ptr = buf[i];
|
|
buf[i] = 0;
|
|
out_ptr += SBLIMIT;
|
|
}
|
|
buf += 18;
|
|
}
|
|
}
|
|
|
|
/* main layer3 decoding function */
|
|
static int mp_decode_layer3(MPADecodeContext *s)
|
|
{
|
|
int nb_granules, main_data_begin, private_bits;
|
|
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
|
|
GranuleDef *g;
|
|
int16_t exponents[576]; //FIXME try INTFLOAT
|
|
|
|
/* read side info */
|
|
if (s->lsf) {
|
|
main_data_begin = get_bits(&s->gb, 8);
|
|
private_bits = get_bits(&s->gb, s->nb_channels);
|
|
nb_granules = 1;
|
|
} else {
|
|
main_data_begin = get_bits(&s->gb, 9);
|
|
if (s->nb_channels == 2)
|
|
private_bits = get_bits(&s->gb, 3);
|
|
else
|
|
private_bits = get_bits(&s->gb, 5);
|
|
nb_granules = 2;
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
|
|
s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
|
|
}
|
|
}
|
|
|
|
for(gr=0;gr<nb_granules;gr++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
|
|
g = &s->granules[ch][gr];
|
|
g->part2_3_length = get_bits(&s->gb, 12);
|
|
g->big_values = get_bits(&s->gb, 9);
|
|
if(g->big_values > 288){
|
|
av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
|
|
return -1;
|
|
}
|
|
|
|
g->global_gain = get_bits(&s->gb, 8);
|
|
/* if MS stereo only is selected, we precompute the
|
|
1/sqrt(2) renormalization factor */
|
|
if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
|
|
MODE_EXT_MS_STEREO)
|
|
g->global_gain -= 2;
|
|
if (s->lsf)
|
|
g->scalefac_compress = get_bits(&s->gb, 9);
|
|
else
|
|
g->scalefac_compress = get_bits(&s->gb, 4);
|
|
blocksplit_flag = get_bits1(&s->gb);
|
|
if (blocksplit_flag) {
|
|
g->block_type = get_bits(&s->gb, 2);
|
|
if (g->block_type == 0){
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
|
|
return -1;
|
|
}
|
|
g->switch_point = get_bits1(&s->gb);
|
|
for(i=0;i<2;i++)
|
|
g->table_select[i] = get_bits(&s->gb, 5);
|
|
for(i=0;i<3;i++)
|
|
g->subblock_gain[i] = get_bits(&s->gb, 3);
|
|
ff_init_short_region(s, g);
|
|
} else {
|
|
int region_address1, region_address2;
|
|
g->block_type = 0;
|
|
g->switch_point = 0;
|
|
for(i=0;i<3;i++)
|
|
g->table_select[i] = get_bits(&s->gb, 5);
|
|
/* compute huffman coded region sizes */
|
|
region_address1 = get_bits(&s->gb, 4);
|
|
region_address2 = get_bits(&s->gb, 3);
|
|
av_dlog(s->avctx, "region1=%d region2=%d\n",
|
|
region_address1, region_address2);
|
|
ff_init_long_region(s, g, region_address1, region_address2);
|
|
}
|
|
ff_region_offset2size(g);
|
|
ff_compute_band_indexes(s, g);
|
|
|
|
g->preflag = 0;
|
|
if (!s->lsf)
|
|
g->preflag = get_bits1(&s->gb);
|
|
g->scalefac_scale = get_bits1(&s->gb);
|
|
g->count1table_select = get_bits1(&s->gb);
|
|
av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
|
|
g->block_type, g->switch_point);
|
|
}
|
|
}
|
|
|
|
if (!s->adu_mode) {
|
|
const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
|
|
assert((get_bits_count(&s->gb) & 7) == 0);
|
|
/* now we get bits from the main_data_begin offset */
|
|
av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
|
|
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
|
|
|
|
memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
|
|
s->in_gb= s->gb;
|
|
init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
|
|
skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
|
|
}
|
|
|
|
for(gr=0;gr<nb_granules;gr++) {
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
g = &s->granules[ch][gr];
|
|
if(get_bits_count(&s->gb)<0){
|
|
av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
|
|
main_data_begin, s->last_buf_size, gr);
|
|
skip_bits_long(&s->gb, g->part2_3_length);
|
|
memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
|
|
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
|
|
skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
|
|
s->gb= s->in_gb;
|
|
s->in_gb.buffer=NULL;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bits_pos = get_bits_count(&s->gb);
|
|
|
|
if (!s->lsf) {
|
|
uint8_t *sc;
|
|
int slen, slen1, slen2;
|
|
|
|
/* MPEG1 scale factors */
|
|
slen1 = slen_table[0][g->scalefac_compress];
|
|
slen2 = slen_table[1][g->scalefac_compress];
|
|
av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
|
|
if (g->block_type == 2) {
|
|
n = g->switch_point ? 17 : 18;
|
|
j = 0;
|
|
if(slen1){
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = get_bits(&s->gb, slen1);
|
|
}else{
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = 0;
|
|
}
|
|
if(slen2){
|
|
for(i=0;i<18;i++)
|
|
g->scale_factors[j++] = get_bits(&s->gb, slen2);
|
|
for(i=0;i<3;i++)
|
|
g->scale_factors[j++] = 0;
|
|
}else{
|
|
for(i=0;i<21;i++)
|
|
g->scale_factors[j++] = 0;
|
|
}
|
|
} else {
|
|
sc = s->granules[ch][0].scale_factors;
|
|
j = 0;
|
|
for(k=0;k<4;k++) {
|
|
n = (k == 0 ? 6 : 5);
|
|
if ((g->scfsi & (0x8 >> k)) == 0) {
|
|
slen = (k < 2) ? slen1 : slen2;
|
|
if(slen){
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = get_bits(&s->gb, slen);
|
|
}else{
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = 0;
|
|
}
|
|
} else {
|
|
/* simply copy from last granule */
|
|
for(i=0;i<n;i++) {
|
|
g->scale_factors[j] = sc[j];
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
g->scale_factors[j++] = 0;
|
|
}
|
|
} else {
|
|
int tindex, tindex2, slen[4], sl, sf;
|
|
|
|
/* LSF scale factors */
|
|
if (g->block_type == 2) {
|
|
tindex = g->switch_point ? 2 : 1;
|
|
} else {
|
|
tindex = 0;
|
|
}
|
|
sf = g->scalefac_compress;
|
|
if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
|
|
/* intensity stereo case */
|
|
sf >>= 1;
|
|
if (sf < 180) {
|
|
lsf_sf_expand(slen, sf, 6, 6, 0);
|
|
tindex2 = 3;
|
|
} else if (sf < 244) {
|
|
lsf_sf_expand(slen, sf - 180, 4, 4, 0);
|
|
tindex2 = 4;
|
|
} else {
|
|
lsf_sf_expand(slen, sf - 244, 3, 0, 0);
|
|
tindex2 = 5;
|
|
}
|
|
} else {
|
|
/* normal case */
|
|
if (sf < 400) {
|
|
lsf_sf_expand(slen, sf, 5, 4, 4);
|
|
tindex2 = 0;
|
|
} else if (sf < 500) {
|
|
lsf_sf_expand(slen, sf - 400, 5, 4, 0);
|
|
tindex2 = 1;
|
|
} else {
|
|
lsf_sf_expand(slen, sf - 500, 3, 0, 0);
|
|
tindex2 = 2;
|
|
g->preflag = 1;
|
|
}
|
|
}
|
|
|
|
j = 0;
|
|
for(k=0;k<4;k++) {
|
|
n = lsf_nsf_table[tindex2][tindex][k];
|
|
sl = slen[k];
|
|
if(sl){
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = get_bits(&s->gb, sl);
|
|
}else{
|
|
for(i=0;i<n;i++)
|
|
g->scale_factors[j++] = 0;
|
|
}
|
|
}
|
|
/* XXX: should compute exact size */
|
|
for(;j<40;j++)
|
|
g->scale_factors[j] = 0;
|
|
}
|
|
|
|
exponents_from_scale_factors(s, g, exponents);
|
|
|
|
/* read Huffman coded residue */
|
|
huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
|
|
} /* ch */
|
|
|
|
if (s->nb_channels == 2)
|
|
compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
|
|
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
g = &s->granules[ch][gr];
|
|
|
|
reorder_block(s, g);
|
|
compute_antialias(s, g);
|
|
compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
|
|
}
|
|
} /* gr */
|
|
if(get_bits_count(&s->gb)<0)
|
|
skip_bits_long(&s->gb, -get_bits_count(&s->gb));
|
|
return nb_granules * 18;
|
|
}
|
|
|
|
static int mp_decode_frame(MPADecodeContext *s,
|
|
OUT_INT *samples, const uint8_t *buf, int buf_size)
|
|
{
|
|
int i, nb_frames, ch;
|
|
OUT_INT *samples_ptr;
|
|
|
|
init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
|
|
|
|
/* skip error protection field */
|
|
if (s->error_protection)
|
|
skip_bits(&s->gb, 16);
|
|
|
|
av_dlog(s->avctx, "frame %d:\n", s->frame_count);
|
|
switch(s->layer) {
|
|
case 1:
|
|
s->avctx->frame_size = 384;
|
|
nb_frames = mp_decode_layer1(s);
|
|
break;
|
|
case 2:
|
|
s->avctx->frame_size = 1152;
|
|
nb_frames = mp_decode_layer2(s);
|
|
break;
|
|
case 3:
|
|
s->avctx->frame_size = s->lsf ? 576 : 1152;
|
|
default:
|
|
nb_frames = mp_decode_layer3(s);
|
|
|
|
s->last_buf_size=0;
|
|
if(s->in_gb.buffer){
|
|
align_get_bits(&s->gb);
|
|
i= get_bits_left(&s->gb)>>3;
|
|
if(i >= 0 && i <= BACKSTEP_SIZE){
|
|
memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
|
|
s->last_buf_size=i;
|
|
}else
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
|
|
s->gb= s->in_gb;
|
|
s->in_gb.buffer= NULL;
|
|
}
|
|
|
|
align_get_bits(&s->gb);
|
|
assert((get_bits_count(&s->gb) & 7) == 0);
|
|
i= get_bits_left(&s->gb)>>3;
|
|
|
|
if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
|
|
if(i<0)
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
|
|
i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
|
|
}
|
|
assert(i <= buf_size - HEADER_SIZE && i>= 0);
|
|
memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
|
|
s->last_buf_size += i;
|
|
|
|
break;
|
|
}
|
|
|
|
/* apply the synthesis filter */
|
|
for(ch=0;ch<s->nb_channels;ch++) {
|
|
samples_ptr = samples + ch;
|
|
for(i=0;i<nb_frames;i++) {
|
|
RENAME(ff_mpa_synth_filter)(
|
|
#if CONFIG_FLOAT
|
|
s,
|
|
#endif
|
|
s->synth_buf[ch], &(s->synth_buf_offset[ch]),
|
|
RENAME(ff_mpa_synth_window), &s->dither_state,
|
|
samples_ptr, s->nb_channels,
|
|
s->sb_samples[ch][i]);
|
|
samples_ptr += 32 * s->nb_channels;
|
|
}
|
|
}
|
|
|
|
return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
|
|
}
|
|
|
|
static int decode_frame(AVCodecContext * avctx,
|
|
void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
MPADecodeContext *s = avctx->priv_data;
|
|
uint32_t header;
|
|
int out_size;
|
|
OUT_INT *out_samples = data;
|
|
|
|
if(buf_size < HEADER_SIZE)
|
|
return -1;
|
|
|
|
header = AV_RB32(buf);
|
|
if(ff_mpa_check_header(header) < 0){
|
|
av_log(avctx, AV_LOG_ERROR, "Header missing\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
|
|
/* free format: prepare to compute frame size */
|
|
s->frame_size = -1;
|
|
return -1;
|
|
}
|
|
/* update codec info */
|
|
avctx->channels = s->nb_channels;
|
|
avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
|
|
if (!avctx->bit_rate)
|
|
avctx->bit_rate = s->bit_rate;
|
|
avctx->sub_id = s->layer;
|
|
|
|
if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
|
|
return -1;
|
|
*data_size = 0;
|
|
|
|
if(s->frame_size<=0 || s->frame_size > buf_size){
|
|
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
|
return -1;
|
|
}else if(s->frame_size < buf_size){
|
|
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
|
|
buf_size= s->frame_size;
|
|
}
|
|
|
|
out_size = mp_decode_frame(s, out_samples, buf, buf_size);
|
|
if(out_size>=0){
|
|
*data_size = out_size;
|
|
avctx->sample_rate = s->sample_rate;
|
|
//FIXME maybe move the other codec info stuff from above here too
|
|
}else
|
|
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
|
|
s->frame_size = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
static void flush(AVCodecContext *avctx){
|
|
MPADecodeContext *s = avctx->priv_data;
|
|
memset(s->synth_buf, 0, sizeof(s->synth_buf));
|
|
s->last_buf_size= 0;
|
|
}
|
|
|
|
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
|
|
static int decode_frame_adu(AVCodecContext * avctx,
|
|
void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
MPADecodeContext *s = avctx->priv_data;
|
|
uint32_t header;
|
|
int len, out_size;
|
|
OUT_INT *out_samples = data;
|
|
|
|
len = buf_size;
|
|
|
|
// Discard too short frames
|
|
if (buf_size < HEADER_SIZE) {
|
|
*data_size = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
|
|
if (len > MPA_MAX_CODED_FRAME_SIZE)
|
|
len = MPA_MAX_CODED_FRAME_SIZE;
|
|
|
|
// Get header and restore sync word
|
|
header = AV_RB32(buf) | 0xffe00000;
|
|
|
|
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
|
|
*data_size = 0;
|
|
return buf_size;
|
|
}
|
|
|
|
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
|
|
/* update codec info */
|
|
avctx->sample_rate = s->sample_rate;
|
|
avctx->channels = s->nb_channels;
|
|
if (!avctx->bit_rate)
|
|
avctx->bit_rate = s->bit_rate;
|
|
avctx->sub_id = s->layer;
|
|
|
|
s->frame_size = len;
|
|
|
|
if (avctx->parse_only) {
|
|
out_size = buf_size;
|
|
} else {
|
|
out_size = mp_decode_frame(s, out_samples, buf, buf_size);
|
|
}
|
|
|
|
*data_size = out_size;
|
|
return buf_size;
|
|
}
|
|
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
|
|
|
|
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
|
|
|
|
/**
|
|
* Context for MP3On4 decoder
|
|
*/
|
|
typedef struct MP3On4DecodeContext {
|
|
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
|
|
int syncword; ///< syncword patch
|
|
const uint8_t *coff; ///< channels offsets in output buffer
|
|
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
|
|
} MP3On4DecodeContext;
|
|
|
|
#include "mpeg4audio.h"
|
|
|
|
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
|
|
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
|
|
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
|
|
static const uint8_t chan_offset[8][5] = {
|
|
{0},
|
|
{0}, // C
|
|
{0}, // FLR
|
|
{2,0}, // C FLR
|
|
{2,0,3}, // C FLR BS
|
|
{4,0,2}, // C FLR BLRS
|
|
{4,0,2,5}, // C FLR BLRS LFE
|
|
{4,0,2,6,5}, // C FLR BLRS BLR LFE
|
|
};
|
|
|
|
|
|
static int decode_init_mp3on4(AVCodecContext * avctx)
|
|
{
|
|
MP3On4DecodeContext *s = avctx->priv_data;
|
|
MPEG4AudioConfig cfg;
|
|
int i;
|
|
|
|
if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
|
|
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
|
|
return -1;
|
|
}
|
|
|
|
ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
|
|
if (!cfg.chan_config || cfg.chan_config > 7) {
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
|
|
return -1;
|
|
}
|
|
s->frames = mp3Frames[cfg.chan_config];
|
|
s->coff = chan_offset[cfg.chan_config];
|
|
avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
|
|
|
|
if (cfg.sample_rate < 16000)
|
|
s->syncword = 0xffe00000;
|
|
else
|
|
s->syncword = 0xfff00000;
|
|
|
|
/* Init the first mp3 decoder in standard way, so that all tables get builded
|
|
* We replace avctx->priv_data with the context of the first decoder so that
|
|
* decode_init() does not have to be changed.
|
|
* Other decoders will be initialized here copying data from the first context
|
|
*/
|
|
// Allocate zeroed memory for the first decoder context
|
|
s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
|
|
// Put decoder context in place to make init_decode() happy
|
|
avctx->priv_data = s->mp3decctx[0];
|
|
decode_init(avctx);
|
|
// Restore mp3on4 context pointer
|
|
avctx->priv_data = s;
|
|
s->mp3decctx[0]->adu_mode = 1; // Set adu mode
|
|
|
|
/* Create a separate codec/context for each frame (first is already ok).
|
|
* Each frame is 1 or 2 channels - up to 5 frames allowed
|
|
*/
|
|
for (i = 1; i < s->frames; i++) {
|
|
s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
|
|
s->mp3decctx[i]->adu_mode = 1;
|
|
s->mp3decctx[i]->avctx = avctx;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
|
|
{
|
|
MP3On4DecodeContext *s = avctx->priv_data;
|
|
int i;
|
|
|
|
for (i = 0; i < s->frames; i++)
|
|
av_free(s->mp3decctx[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int decode_frame_mp3on4(AVCodecContext * avctx,
|
|
void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
MP3On4DecodeContext *s = avctx->priv_data;
|
|
MPADecodeContext *m;
|
|
int fsize, len = buf_size, out_size = 0;
|
|
uint32_t header;
|
|
OUT_INT *out_samples = data;
|
|
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
|
|
OUT_INT *outptr, *bp;
|
|
int fr, j, n;
|
|
|
|
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
|
|
return -1;
|
|
|
|
*data_size = 0;
|
|
// Discard too short frames
|
|
if (buf_size < HEADER_SIZE)
|
|
return -1;
|
|
|
|
// If only one decoder interleave is not needed
|
|
outptr = s->frames == 1 ? out_samples : decoded_buf;
|
|
|
|
avctx->bit_rate = 0;
|
|
|
|
for (fr = 0; fr < s->frames; fr++) {
|
|
fsize = AV_RB16(buf) >> 4;
|
|
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
|
|
m = s->mp3decctx[fr];
|
|
assert (m != NULL);
|
|
|
|
header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
|
|
|
|
if (ff_mpa_check_header(header) < 0) // Bad header, discard block
|
|
break;
|
|
|
|
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
|
|
out_size += mp_decode_frame(m, outptr, buf, fsize);
|
|
buf += fsize;
|
|
len -= fsize;
|
|
|
|
if(s->frames > 1) {
|
|
n = m->avctx->frame_size*m->nb_channels;
|
|
/* interleave output data */
|
|
bp = out_samples + s->coff[fr];
|
|
if(m->nb_channels == 1) {
|
|
for(j = 0; j < n; j++) {
|
|
*bp = decoded_buf[j];
|
|
bp += avctx->channels;
|
|
}
|
|
} else {
|
|
for(j = 0; j < n; j++) {
|
|
bp[0] = decoded_buf[j++];
|
|
bp[1] = decoded_buf[j];
|
|
bp += avctx->channels;
|
|
}
|
|
}
|
|
}
|
|
avctx->bit_rate += m->bit_rate;
|
|
}
|
|
|
|
/* update codec info */
|
|
avctx->sample_rate = s->mp3decctx[0]->sample_rate;
|
|
|
|
*data_size = out_size;
|
|
return buf_size;
|
|
}
|
|
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
|
|
|
|
#if !CONFIG_FLOAT
|
|
#if CONFIG_MP1_DECODER
|
|
AVCodec ff_mp1_decoder =
|
|
{
|
|
"mp1",
|
|
AVMEDIA_TYPE_AUDIO,
|
|
CODEC_ID_MP1,
|
|
sizeof(MPADecodeContext),
|
|
decode_init,
|
|
NULL,
|
|
NULL,
|
|
decode_frame,
|
|
CODEC_CAP_PARSE_ONLY,
|
|
.flush= flush,
|
|
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
|
|
};
|
|
#endif
|
|
#if CONFIG_MP2_DECODER
|
|
AVCodec ff_mp2_decoder =
|
|
{
|
|
"mp2",
|
|
AVMEDIA_TYPE_AUDIO,
|
|
CODEC_ID_MP2,
|
|
sizeof(MPADecodeContext),
|
|
decode_init,
|
|
NULL,
|
|
NULL,
|
|
decode_frame,
|
|
CODEC_CAP_PARSE_ONLY,
|
|
.flush= flush,
|
|
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
|
|
};
|
|
#endif
|
|
#if CONFIG_MP3_DECODER
|
|
AVCodec ff_mp3_decoder =
|
|
{
|
|
"mp3",
|
|
AVMEDIA_TYPE_AUDIO,
|
|
CODEC_ID_MP3,
|
|
sizeof(MPADecodeContext),
|
|
decode_init,
|
|
NULL,
|
|
NULL,
|
|
decode_frame,
|
|
CODEC_CAP_PARSE_ONLY,
|
|
.flush= flush,
|
|
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
|
|
};
|
|
#endif
|
|
#if CONFIG_MP3ADU_DECODER
|
|
AVCodec ff_mp3adu_decoder =
|
|
{
|
|
"mp3adu",
|
|
AVMEDIA_TYPE_AUDIO,
|
|
CODEC_ID_MP3ADU,
|
|
sizeof(MPADecodeContext),
|
|
decode_init,
|
|
NULL,
|
|
NULL,
|
|
decode_frame_adu,
|
|
CODEC_CAP_PARSE_ONLY,
|
|
.flush= flush,
|
|
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
|
|
};
|
|
#endif
|
|
#if CONFIG_MP3ON4_DECODER
|
|
AVCodec ff_mp3on4_decoder =
|
|
{
|
|
"mp3on4",
|
|
AVMEDIA_TYPE_AUDIO,
|
|
CODEC_ID_MP3ON4,
|
|
sizeof(MP3On4DecodeContext),
|
|
decode_init_mp3on4,
|
|
NULL,
|
|
decode_close_mp3on4,
|
|
decode_frame_mp3on4,
|
|
.flush= flush,
|
|
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
|
|
};
|
|
#endif
|
|
#endif
|