1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/avf_showfreqs.c

573 lines
19 KiB
C

/*
* Copyright (c) 2015 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/mem.h"
#include "libavutil/tx.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "audio.h"
#include "filters.h"
#include "formats.h"
#include "video.h"
#include "avfilter.h"
#include "internal.h"
#include "window_func.h"
enum DataMode { MAGNITUDE, PHASE, DELAY, NB_DATA };
enum DisplayMode { LINE, BAR, DOT, NB_MODES };
enum ChannelMode { COMBINED, SEPARATE, NB_CMODES };
enum FrequencyScale { FS_LINEAR, FS_LOG, FS_RLOG, NB_FSCALES };
enum AmplitudeScale { AS_LINEAR, AS_SQRT, AS_CBRT, AS_LOG, NB_ASCALES };
typedef struct ShowFreqsContext {
const AVClass *class;
int w, h;
int mode;
int data_mode;
int cmode;
int fft_size;
int ascale, fscale;
int avg;
int win_func;
char *ch_layout_str;
uint8_t *bypass;
AVChannelLayout ch_layout;
AVTXContext *fft;
av_tx_fn tx_fn;
AVComplexFloat **fft_input;
AVComplexFloat **fft_data;
AVFrame *window;
float **avg_data;
float *window_func_lut;
float overlap;
float minamp;
int hop_size;
int nb_channels;
int nb_draw_channels;
int nb_freq;
int win_size;
float scale;
char *colors;
int64_t pts;
int64_t old_pts;
AVRational frame_rate;
} ShowFreqsContext;
#define OFFSET(x) offsetof(ShowFreqsContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showfreqs_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
{ "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
{ "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
{ "mode", "set display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BAR}, 0, NB_MODES-1, FLAGS, .unit = "mode" },
{ "line", "show lines", 0, AV_OPT_TYPE_CONST, {.i64=LINE}, 0, 0, FLAGS, .unit = "mode" },
{ "bar", "show bars", 0, AV_OPT_TYPE_CONST, {.i64=BAR}, 0, 0, FLAGS, .unit = "mode" },
{ "dot", "show dots", 0, AV_OPT_TYPE_CONST, {.i64=DOT}, 0, 0, FLAGS, .unit = "mode" },
{ "ascale", "set amplitude scale", OFFSET(ascale), AV_OPT_TYPE_INT, {.i64=AS_LOG}, 0, NB_ASCALES-1, FLAGS, .unit = "ascale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=AS_LINEAR}, 0, 0, FLAGS, .unit = "ascale" },
{ "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=AS_SQRT}, 0, 0, FLAGS, .unit = "ascale" },
{ "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=AS_CBRT}, 0, 0, FLAGS, .unit = "ascale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=AS_LOG}, 0, 0, FLAGS, .unit = "ascale" },
{ "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=FS_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=FS_LINEAR}, 0, 0, FLAGS, .unit = "fscale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_LOG}, 0, 0, FLAGS, .unit = "fscale" },
{ "rlog", "reverse logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_RLOG}, 0, 0, FLAGS, .unit = "fscale" },
{ "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=2048}, 16, 65536, FLAGS },
WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING),
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1.}, 0., 1., FLAGS },
{ "averaging", "set time averaging", OFFSET(avg), AV_OPT_TYPE_INT, {.i64=1}, 0, INT32_MAX, FLAGS },
{ "colors", "set channels colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, FLAGS },
{ "cmode", "set channel mode", OFFSET(cmode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_CMODES-1, FLAGS, .unit = "cmode" },
{ "combined", "show all channels in same window", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "cmode" },
{ "separate", "show each channel in own window", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "cmode" },
{ "minamp", "set minimum amplitude", OFFSET(minamp), AV_OPT_TYPE_FLOAT, {.dbl=1e-6}, FLT_MIN, 1e-6, FLAGS },
{ "data", "set data mode", OFFSET(data_mode), AV_OPT_TYPE_INT, {.i64=MAGNITUDE}, 0, NB_DATA-1, FLAGS, .unit = "data" },
{ "magnitude", "show magnitude", 0, AV_OPT_TYPE_CONST, {.i64=MAGNITUDE}, 0, 0, FLAGS, .unit = "data" },
{ "phase", "show phase", 0, AV_OPT_TYPE_CONST, {.i64=PHASE}, 0, 0, FLAGS, .unit = "data" },
{ "delay", "show group delay",0, AV_OPT_TYPE_CONST, {.i64=DELAY}, 0, 0, FLAGS, .unit = "data" },
{ "channels", "set channels to draw", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showfreqs);
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
int ret;
/* set input audio formats */
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
return ret;
layouts = ff_all_channel_counts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
return ret;
/* set output video format */
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
FilterLink *l = ff_filter_link(outlink);
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowFreqsContext *s = ctx->priv;
float overlap, scale = 1.f;
int i, ret;
s->old_pts = AV_NOPTS_VALUE;
s->nb_freq = s->fft_size / 2;
s->win_size = s->fft_size;
av_tx_uninit(&s->fft);
ret = av_tx_init(&s->fft, &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
"The window size might be too high.\n");
return ret;
}
/* FFT buffers: x2 for each (display) channel buffer.
* Note: we use free and malloc instead of a realloc-like function to
* make sure the buffer is aligned in memory for the FFT functions. */
for (i = 0; i < s->nb_channels; i++) {
av_freep(&s->fft_input[i]);
av_freep(&s->fft_data[i]);
av_freep(&s->avg_data[i]);
}
av_freep(&s->bypass);
av_freep(&s->fft_input);
av_freep(&s->fft_data);
av_freep(&s->avg_data);
s->nb_channels = inlink->ch_layout.nb_channels;
s->bypass = av_calloc(s->nb_channels, sizeof(*s->bypass));
if (!s->bypass)
return AVERROR(ENOMEM);
s->fft_input = av_calloc(s->nb_channels, sizeof(*s->fft_input));
if (!s->fft_input)
return AVERROR(ENOMEM);
s->fft_data = av_calloc(s->nb_channels, sizeof(*s->fft_data));
if (!s->fft_data)
return AVERROR(ENOMEM);
s->avg_data = av_calloc(s->nb_channels, sizeof(*s->avg_data));
if (!s->avg_data)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_channels; i++) {
s->fft_input[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_input));
s->fft_data[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_data));
s->avg_data[i] = av_calloc(s->nb_freq, sizeof(**s->avg_data));
if (!s->fft_data[i] || !s->avg_data[i] || !s->fft_input[i])
return AVERROR(ENOMEM);
}
/* pre-calc windowing function */
s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
if (s->overlap == 1.)
s->overlap = overlap;
s->hop_size = (1. - s->overlap) * s->win_size;
if (s->hop_size < 1) {
av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
return AVERROR(EINVAL);
}
for (s->scale = 0, i = 0; i < s->win_size; i++) {
s->scale += s->window_func_lut[i] * s->window_func_lut[i];
}
s->window = ff_get_audio_buffer(inlink, s->win_size * 2);
if (!s->window)
return AVERROR(ENOMEM);
l->frame_rate = s->frame_rate;
outlink->time_base = av_inv_q(l->frame_rate);
outlink->sample_aspect_ratio = (AVRational){1,1};
outlink->w = s->w;
outlink->h = s->h;
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout);
if (ret < 0)
return ret;
s->nb_draw_channels = s->nb_channels;
if (strcmp(s->ch_layout_str, "all")) {
int nb_draw_channels = 0;
av_channel_layout_from_string(&s->ch_layout,
s->ch_layout_str);
for (int ch = 0; ch < s->nb_channels; ch++) {
const enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch);
s->bypass[ch] = av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0;
nb_draw_channels += s->bypass[ch] == 0;
}
s->nb_draw_channels = nb_draw_channels;
}
return 0;
}
static inline void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4])
{
uint32_t color = AV_RL32(out->data[0] + y * out->linesize[0] + x * 4);
if ((color & 0xffffff) != 0)
AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg) | color);
else
AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
}
static int get_sx(ShowFreqsContext *s, int f)
{
switch (s->fscale) {
case FS_LINEAR:
return (s->w/(float)s->nb_freq)*f;
case FS_LOG:
return s->w-pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.));
case FS_RLOG:
return pow(s->w, f/(s->nb_freq-1.));
}
return 0;
}
static float get_bsize(ShowFreqsContext *s, int f)
{
switch (s->fscale) {
case FS_LINEAR:
return s->w/(float)s->nb_freq;
case FS_LOG:
return pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.))-
pow(s->w, (s->nb_freq-f-2)/(s->nb_freq-1.));
case FS_RLOG:
return pow(s->w, (f+1)/(s->nb_freq-1.))-
pow(s->w, f /(s->nb_freq-1.));
}
return 1.;
}
static inline void plot_freq(ShowFreqsContext *s, int ch,
double a, int f, uint8_t fg[4], int *prev_y,
AVFrame *out, AVFilterLink *outlink)
{
FilterLink *outl = ff_filter_link(outlink);
const int w = s->w;
const float min = s->minamp;
const float avg = s->avg_data[ch][f];
const float bsize = get_bsize(s, f);
const int sx = get_sx(s, f);
int end = outlink->h;
int x, y, i;
switch(s->ascale) {
case AS_SQRT:
a = 1.0 - sqrt(a);
break;
case AS_CBRT:
a = 1.0 - cbrt(a);
break;
case AS_LOG:
a = log(av_clipd(a, min, 1)) / log(min);
break;
case AS_LINEAR:
a = 1.0 - a;
break;
}
switch (s->cmode) {
case COMBINED:
y = a * outlink->h - 1;
break;
case SEPARATE:
end = (outlink->h / s->nb_draw_channels) * (ch + 1);
y = (outlink->h / s->nb_draw_channels) * ch + a * (outlink->h / s->nb_draw_channels) - 1;
break;
default:
av_assert0(0);
}
if (y < 0)
return;
switch (s->avg) {
case 0:
y = s->avg_data[ch][f] = !outl->frame_count_in ? y : FFMIN(0, y);
break;
case 1:
break;
default:
s->avg_data[ch][f] = avg + y * (y - avg) / (FFMIN(outl->frame_count_in + 1, s->avg) * (float)y);
y = av_clip(s->avg_data[ch][f], 0, outlink->h - 1);
break;
}
switch(s->mode) {
case LINE:
if (*prev_y == -1) {
*prev_y = y;
}
if (y <= *prev_y) {
for (x = sx + 1; x < sx + bsize && x < w; x++)
draw_dot(out, x, y, fg);
for (i = y; i <= *prev_y; i++)
draw_dot(out, sx, i, fg);
} else {
for (i = *prev_y; i <= y; i++)
draw_dot(out, sx, i, fg);
for (x = sx + 1; x < sx + bsize && x < w; x++)
draw_dot(out, x, i - 1, fg);
}
*prev_y = y;
break;
case BAR:
for (x = sx; x < sx + bsize && x < w; x++)
for (i = y; i < end; i++)
draw_dot(out, x, i, fg);
break;
case DOT:
for (x = sx; x < sx + bsize && x < w; x++)
draw_dot(out, x, y, fg);
break;
}
}
static int plot_freqs(AVFilterLink *inlink, int64_t pts)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
ShowFreqsContext *s = ctx->priv;
AVFrame *in = s->window;
const int win_size = s->win_size;
char *colors, *color, *saveptr = NULL;
AVFrame *out;
int ch, n;
/* fill FFT input with the number of samples available */
for (ch = 0; ch < s->nb_channels; ch++) {
const float *p = (float *)in->extended_data[ch];
if (s->bypass[ch])
continue;
for (n = 0; n < win_size; n++) {
s->fft_input[ch][n].re = p[n] * s->window_func_lut[n];
s->fft_input[ch][n].im = 0;
}
}
/* run FFT on each samples set */
for (ch = 0; ch < s->nb_channels; ch++) {
if (s->bypass[ch])
continue;
s->tx_fn(s->fft, s->fft_data[ch], s->fft_input[ch], sizeof(AVComplexFloat));
}
s->pts = av_rescale_q(pts, inlink->time_base, outlink->time_base);
if (s->old_pts >= s->pts)
return 0;
s->old_pts = s->pts;
#define RE(x, ch) s->fft_data[ch][x].re
#define IM(x, ch) s->fft_data[ch][x].im
#define M(a, b) (sqrt((a) * (a) + (b) * (b)))
#define P(a, b) (atan2((b), (a)))
colors = av_strdup(s->colors);
if (!colors)
return AVERROR(ENOMEM);
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_free(colors);
return AVERROR(ENOMEM);
}
for (n = 0; n < outlink->h; n++)
memset(out->data[0] + out->linesize[0] * n, 0, outlink->w * 4);
for (ch = 0; ch < s->nb_channels; ch++) {
uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
int prev_y = -1, f;
double a;
color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
if (color)
av_parse_color(fg, color, -1, ctx);
if (s->bypass[ch])
continue;
switch (s->data_mode) {
case MAGNITUDE:
for (f = 0; f < s->nb_freq; f++) {
a = av_clipd(M(RE(f, ch), IM(f, ch)) / s->scale, 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
case PHASE:
for (f = 0; f < s->nb_freq; f++) {
a = av_clipd((M_PI + P(RE(f, ch), IM(f, ch))) / (2. * M_PI), 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
case DELAY:
for (f = 0; f < s->nb_freq; f++) {
a = av_clipd((M_PI - P(IM(f, ch) * RE(f-1, ch) - IM(f-1, ch) * RE(f, ch),
RE(f, ch) * RE(f-1, ch) + IM(f, ch) * IM(f-1, ch))) / (2. * M_PI), 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
}
}
av_free(colors);
out->pts = s->pts;
out->duration = 1;
out->sample_aspect_ratio = (AVRational){1,1};
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
ShowFreqsContext *s = ctx->priv;
const int offset = s->win_size - s->hop_size;
int64_t pts = in->pts;
for (int ch = 0; ch < in->ch_layout.nb_channels; ch++) {
float *dst = (float *)s->window->extended_data[ch];
memmove(dst, &dst[s->hop_size], offset * sizeof(float));
memcpy(&dst[offset], in->extended_data[ch], in->nb_samples * sizeof(float));
memset(&dst[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float));
}
av_frame_free(&in);
return plot_freqs(inlink, pts);
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
ShowFreqsContext *s = ctx->priv;
AVFrame *in;
int ret;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in);
if (ret < 0)
return ret;
if (ret > 0)
ret = filter_frame(inlink, in);
if (ret < 0)
return ret;
if (ff_inlink_queued_samples(inlink) >= s->hop_size) {
ff_filter_set_ready(ctx, 10);
return 0;
}
FF_FILTER_FORWARD_STATUS(inlink, outlink);
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static av_cold void uninit(AVFilterContext *ctx)
{
ShowFreqsContext *s = ctx->priv;
int i;
av_channel_layout_uninit(&s->ch_layout);
av_tx_uninit(&s->fft);
for (i = 0; i < s->nb_channels; i++) {
if (s->fft_input)
av_freep(&s->fft_input[i]);
if (s->fft_data)
av_freep(&s->fft_data[i]);
if (s->avg_data)
av_freep(&s->avg_data[i]);
}
av_freep(&s->bypass);
av_freep(&s->fft_input);
av_freep(&s->fft_data);
av_freep(&s->avg_data);
av_freep(&s->window_func_lut);
av_frame_free(&s->window);
}
static const AVFilterPad showfreqs_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_avf_showfreqs = {
.name = "showfreqs",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a frequencies video output."),
.uninit = uninit,
.priv_size = sizeof(ShowFreqsContext),
.activate = activate,
FILTER_INPUTS(ff_audio_default_filterpad),
FILTER_OUTPUTS(showfreqs_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &showfreqs_class,
};