1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/ffv1dec.c
2017-01-31 17:54:11 +01:00

978 lines
32 KiB
C

/*
* FFV1 decoder
*
* Copyright (c) 2003-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* FF Video Codec 1 (a lossless codec) decoder
*/
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/crc.h"
#include "libavutil/opt.h"
#include "libavutil/imgutils.h"
#include "libavutil/timer.h"
#include "avcodec.h"
#include "bitstream.h"
#include "golomb.h"
#include "internal.h"
#include "put_bits.h"
#include "rangecoder.h"
#include "mathops.h"
#include "ffv1.h"
static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state,
int is_signed)
{
if (get_rac(c, state + 0))
return 0;
else {
int i, e, a;
e = 0;
while (get_rac(c, state + 1 + FFMIN(e, 9))) // 1..10
e++;
a = 1;
for (i = e - 1; i >= 0; i--)
a += a + get_rac(c, state + 22 + FFMIN(i, 9)); // 22..31
e = -(is_signed && get_rac(c, state + 11 + FFMIN(e, 10))); // 11..21
return (a ^ e) - e;
}
}
static av_noinline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
{
return get_symbol_inline(c, state, is_signed);
}
static inline int get_vlc_symbol(BitstreamContext *bc, VlcState *const state,
int bits)
{
int k, i, v, ret;
i = state->count;
k = 0;
while (i < state->error_sum) { // FIXME: optimize
k++;
i += i;
}
assert(k <= 8);
v = get_sr_golomb(bc, k, 12, bits);
ff_dlog(NULL, "v:%d bias:%d error:%d drift:%d count:%d k:%d",
v, state->bias, state->error_sum, state->drift, state->count, k);
v ^= ((2 * state->drift + state->count) >> 31);
ret = fold(v + state->bias, bits);
update_vlc_state(state, v);
return ret;
}
static av_always_inline void decode_line(FFV1Context *s, int w,
int16_t *sample[2],
int plane_index, int bits)
{
PlaneContext *const p = &s->plane[plane_index];
RangeCoder *const c = &s->c;
int x;
int run_count = 0;
int run_mode = 0;
int run_index = s->run_index;
for (x = 0; x < w; x++) {
int diff, context, sign;
context = get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
if (context < 0) {
context = -context;
sign = 1;
} else
sign = 0;
av_assert2(context < p->context_count);
if (s->ac != AC_GOLOMB_RICE) {
diff = get_symbol_inline(c, p->state[context], 1);
} else {
if (context == 0 && run_mode == 0)
run_mode = 1;
if (run_mode) {
if (run_count == 0 && run_mode == 1) {
if (bitstream_read_bit(&s->bc)) {
run_count = 1 << ff_log2_run[run_index];
if (x + run_count <= w)
run_index++;
} else {
if (ff_log2_run[run_index])
run_count = bitstream_read(&s->bc, ff_log2_run[run_index]);
else
run_count = 0;
if (run_index)
run_index--;
run_mode = 2;
}
}
run_count--;
if (run_count < 0) {
run_mode = 0;
run_count = 0;
diff = get_vlc_symbol(&s->bc, &p->vlc_state[context],
bits);
if (diff >= 0)
diff++;
} else
diff = 0;
} else
diff = get_vlc_symbol(&s->bc, &p->vlc_state[context], bits);
ff_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n",
run_count, run_index, run_mode, x, bitstream_tell(&s->bc));
}
if (sign)
diff = -diff;
sample[1][x] = (predict(sample[1] + x, sample[0] + x) + diff) &
((1 << bits) - 1);
}
s->run_index = run_index;
}
static void decode_plane(FFV1Context *s, uint8_t *src,
int w, int h, int stride, int plane_index)
{
int x, y;
int16_t *sample[2];
sample[0] = s->sample_buffer + 3;
sample[1] = s->sample_buffer + w + 6 + 3;
s->run_index = 0;
memset(s->sample_buffer, 0, 2 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
int16_t *temp = sample[0]; // FIXME: try a normal buffer
sample[0] = sample[1];
sample[1] = temp;
sample[1][-1] = sample[0][0];
sample[0][w] = sample[0][w - 1];
// { START_TIMER
if (s->avctx->bits_per_raw_sample <= 8) {
decode_line(s, w, sample, plane_index, 8);
for (x = 0; x < w; x++)
src[x + stride * y] = sample[1][x];
} else {
decode_line(s, w, sample, plane_index,
s->avctx->bits_per_raw_sample);
if (s->packed_at_lsb) {
for (x = 0; x < w; x++)
((uint16_t *)(src + stride * y))[x] = sample[1][x];
} else {
for (x = 0; x < w; x++)
((uint16_t *)(src + stride * y))[x] = sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
}
}
// STOP_TIMER("decode-line") }
}
}
static void decode_rgb_frame(FFV1Context *s, uint8_t *src[3], int w, int h,
int stride[3])
{
int x, y, p;
int16_t *sample[4][2];
int lbd = s->avctx->bits_per_raw_sample <= 8;
int bits = s->avctx->bits_per_raw_sample > 0
? s->avctx->bits_per_raw_sample
: 8;
int offset = 1 << bits;
for (x = 0; x < 4; x++) {
sample[x][0] = s->sample_buffer + x * 2 * (w + 6) + 3;
sample[x][1] = s->sample_buffer + (x * 2 + 1) * (w + 6) + 3;
}
s->run_index = 0;
memset(s->sample_buffer, 0, 8 * (w + 6) * sizeof(*s->sample_buffer));
for (y = 0; y < h; y++) {
for (p = 0; p < 3 + s->transparency; p++) {
int16_t *temp = sample[p][0]; //FIXME try a normal buffer
sample[p][0] = sample[p][1];
sample[p][1] = temp;
sample[p][1][-1] = sample[p][0][0];
sample[p][0][w] = sample[p][0][w - 1];
if (lbd)
decode_line(s, w, sample[p], (p + 1) / 2, 9);
else
decode_line(s, w, sample[p], (p + 1) / 2, bits + 1);
}
for (x = 0; x < w; x++) {
int g = sample[0][1][x];
int b = sample[1][1][x];
int r = sample[2][1][x];
int a = sample[3][1][x];
b -= offset;
r -= offset;
g -= (b + r) >> 2;
b += g;
r += g;
if (lbd)
*((uint32_t *)(src[0] + x * 4 + stride[0] * y)) = b +
(g << 8) + (r << 16) + (a << 24);
else {
*((uint16_t *)(src[0] + x * 2 + stride[0] * y)) = b;
*((uint16_t *)(src[1] + x * 2 + stride[1] * y)) = g;
*((uint16_t *)(src[2] + x * 2 + stride[2] * y)) = r;
}
}
}
}
static int decode_slice_header(FFV1Context *f, FFV1Context *fs)
{
RangeCoder *c = &fs->c;
uint8_t state[CONTEXT_SIZE];
unsigned ps, i, context_count;
memset(state, 128, sizeof(state));
if (fs->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++) {
fs->c.one_state[i] = f->state_transition[i];
fs->c.zero_state[256 - i] = 256 - fs->c.one_state[i];
}
}
fs->slice_x = get_symbol(c, state, 0) * f->width;
fs->slice_y = get_symbol(c, state, 0) * f->height;
fs->slice_width = (get_symbol(c, state, 0) + 1) * f->width + fs->slice_x;
fs->slice_height = (get_symbol(c, state, 0) + 1) * f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y;
if ((unsigned)fs->slice_width > f->width ||
(unsigned)fs->slice_height > f->height)
return AVERROR_INVALIDDATA;
if ((unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width ||
(unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
return AVERROR_INVALIDDATA;
for (i = 0; i < f->plane_count; i++) {
PlaneContext *const p = &fs->plane[i];
int idx = get_symbol(c, state, 0);
if (idx > (unsigned)f->quant_table_count) {
av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
return AVERROR_INVALIDDATA;
}
p->quant_table_index = idx;
memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
context_count = f->context_count[idx];
if (p->context_count < context_count) {
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count = context_count;
}
ps = get_symbol(c, state, 0);
if (ps == 1) {
f->cur->interlaced_frame = 1;
f->cur->top_field_first = 1;
} else if (ps == 2) {
f->cur->interlaced_frame = 1;
f->cur->top_field_first = 0;
} else if (ps == 3) {
f->cur->interlaced_frame = 0;
}
f->cur->sample_aspect_ratio.num = get_symbol(c, state, 0);
f->cur->sample_aspect_ratio.den = get_symbol(c, state, 0);
if (av_image_check_sar(f->width, f->height,
f->cur->sample_aspect_ratio) < 0) {
av_log(f->avctx, AV_LOG_WARNING, "ignoring invalid SAR: %u/%u\n",
f->cur->sample_aspect_ratio.num,
f->cur->sample_aspect_ratio.den);
f->cur->sample_aspect_ratio = (AVRational){ 0, 1 };
}
return 0;
}
static int decode_slice(AVCodecContext *c, void *arg)
{
FFV1Context *fs = *(void **)arg;
FFV1Context *f = fs->avctx->priv_data;
int width, height, x, y, ret;
const int ps = (av_pix_fmt_desc_get(c->pix_fmt)->flags & AV_PIX_FMT_FLAG_PLANAR)
? (c->bits_per_raw_sample > 8) + 1
: 4;
AVFrame *const p = f->cur;
if (f->version > 2) {
if (decode_slice_header(f, fs) < 0) {
fs->slice_damaged = 1;
return AVERROR_INVALIDDATA;
}
}
if ((ret = ffv1_init_slice_state(f, fs)) < 0)
return ret;
if (f->cur->key_frame)
ffv1_clear_slice_state(f, fs);
width = fs->slice_width;
height = fs->slice_height;
x = fs->slice_x;
y = fs->slice_y;
if (fs->ac == AC_GOLOMB_RICE) {
if (f->version == 3 && f->minor_version > 1 || f->version > 3)
get_rac(&fs->c, (uint8_t[]) { 129 });
fs->ac_byte_count = f->version > 2 || (!x && !y) ? fs->c.bytestream - fs->c.bytestream_start - 1 : 0;
bitstream_init8(&fs->bc, fs->c.bytestream_start + fs->ac_byte_count,
(fs->c.bytestream_end - fs->c.bytestream_start -
fs->ac_byte_count));
}
av_assert1(width && height);
if (f->colorspace == 0) {
const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
const int cx = x >> f->chroma_h_shift;
const int cy = y >> f->chroma_v_shift;
decode_plane(fs, p->data[0] + ps * x + y * p->linesize[0], width,
height, p->linesize[0],
0);
if (f->chroma_planes) {
decode_plane(fs, p->data[1] + ps * cx + cy * p->linesize[1],
chroma_width, chroma_height, p->linesize[1],
1);
decode_plane(fs, p->data[2] + ps * cx + cy * p->linesize[2],
chroma_width, chroma_height, p->linesize[2],
1);
}
if (fs->transparency)
decode_plane(fs, p->data[3] + ps * x + y * p->linesize[3], width,
height, p->linesize[3],
2);
} else {
uint8_t *planes[3] = { p->data[0] + ps * x + y * p->linesize[0],
p->data[1] + ps * x + y * p->linesize[1],
p->data[2] + ps * x + y * p->linesize[2] };
decode_rgb_frame(fs, planes, width, height, p->linesize);
}
if (fs->ac != AC_GOLOMB_RICE && f->version > 2) {
int v;
get_rac(&fs->c, (uint8_t[]) { 129 });
v = fs->c.bytestream_end - fs->c.bytestream - 2 - 5 * f->ec;
if (v) {
av_log(f->avctx, AV_LOG_ERROR, "bytestream end mismatching by %d\n",
v);
fs->slice_damaged = 1;
}
}
emms_c();
return 0;
}
static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale)
{
int v;
int i = 0;
uint8_t state[CONTEXT_SIZE];
memset(state, 128, sizeof(state));
for (v = 0; i < 128; v++) {
unsigned len = get_symbol(c, state, 0) + 1;
if (len > 128 - i)
return -1;
while (len--) {
quant_table[i] = scale * v;
i++;
}
}
for (i = 1; i < 128; i++)
quant_table[256 - i] = -quant_table[i];
quant_table[128] = -quant_table[127];
return 2 * v - 1;
}
static int read_quant_tables(RangeCoder *c,
int16_t quant_table[MAX_CONTEXT_INPUTS][256])
{
int i;
int context_count = 1;
for (i = 0; i < 5; i++) {
context_count *= read_quant_table(c, quant_table[i], context_count);
if (context_count > 32768U) {
return -1;
}
}
return (context_count + 1) / 2;
}
static int read_extra_header(FFV1Context *f)
{
RangeCoder *const c = &f->c;
uint8_t state[CONTEXT_SIZE];
int i, j, k, ret;
uint8_t state2[32][CONTEXT_SIZE];
memset(state2, 128, sizeof(state2));
memset(state, 128, sizeof(state));
ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
f->version = get_symbol(c, state, 0);
if (f->version > 2) {
c->bytestream_end -= 4;
f->minor_version = get_symbol(c, state, 0);
}
f->ac = get_symbol(c, state, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++)
f->state_transition[i] = get_symbol(c, state, 1) + c->one_state[i];
}
f->colorspace = get_symbol(c, state, 0); //YUV cs type
f->avctx->bits_per_raw_sample = get_symbol(c, state, 0);
f->chroma_planes = get_rac(c, state);
f->chroma_h_shift = get_symbol(c, state, 0);
f->chroma_v_shift = get_symbol(c, state, 0);
f->transparency = get_rac(c, state);
f->plane_count = 2 + f->transparency;
f->num_h_slices = 1 + get_symbol(c, state, 0);
f->num_v_slices = 1 + get_symbol(c, state, 0);
if (f->num_h_slices > (unsigned)f->width ||
f->num_v_slices > (unsigned)f->height) {
av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
return AVERROR_INVALIDDATA;
}
f->quant_table_count = get_symbol(c, state, 0);
if (f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
return AVERROR_INVALIDDATA;
for (i = 0; i < f->quant_table_count; i++) {
f->context_count[i] = read_quant_tables(c, f->quant_tables[i]);
if (f->context_count[i] < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return AVERROR_INVALIDDATA;
}
}
if ((ret = ffv1_allocate_initial_states(f)) < 0)
return ret;
for (i = 0; i < f->quant_table_count; i++)
if (get_rac(c, state)) {
for (j = 0; j < f->context_count[i]; j++)
for (k = 0; k < CONTEXT_SIZE; k++) {
int pred = j ? f->initial_states[i][j - 1][k] : 128;
f->initial_states[i][j][k] =
(pred + get_symbol(c, state2[k], 1)) & 0xFF;
}
}
if (f->version > 2) {
f->ec = get_symbol(c, state, 0);
}
if (f->version > 2) {
unsigned v;
v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0,
f->avctx->extradata, f->avctx->extradata_size);
if (v) {
av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", v);
return AVERROR_INVALIDDATA;
}
}
av_log(f->avctx, AV_LOG_VERBOSE,
"FFV1 version %d.%d colorspace %d - %d bits - %d/%d planes, %s transparent - tile geometry %dx%d - %s\n",
f->version, f->minor_version, f->colorspace, f->avctx->bits_per_raw_sample,
f->plane_count, f->chroma_planes, f->transparency ? "" : "not",
f->num_h_slices, f->num_v_slices,
f->ec ? "per-slice crc" : "no crc");
return 0;
}
static int read_header(FFV1Context *f)
{
uint8_t state[CONTEXT_SIZE];
int i, j, context_count = -1;
RangeCoder *const c = &f->slice_context[0]->c;
memset(state, 128, sizeof(state));
if (f->version < 2) {
int chroma_planes, chroma_h_shift, chroma_v_shift, transparency, colorspace, bits_per_raw_sample;
unsigned v = get_symbol(c, state, 0);
if (v > 1) {
av_log(f->avctx, AV_LOG_ERROR,
"invalid version %d in version 1 header\n", v);
return AVERROR_INVALIDDATA;
}
f->version = v;
f->ac = get_symbol(c, state, 0);
if (f->ac == AC_RANGE_CUSTOM_TAB) {
for (i = 1; i < 256; i++)
f->state_transition[i] =
get_symbol(c, state, 1) + c->one_state[i];
}
colorspace = get_symbol(c, state, 0); //YUV cs type
bits_per_raw_sample = f->version > 0 ? get_symbol(c, state, 0) : f->avctx->bits_per_raw_sample;
chroma_planes = get_rac(c, state);
chroma_h_shift = get_symbol(c, state, 0);
chroma_v_shift = get_symbol(c, state, 0);
transparency = get_rac(c, state);
if (f->plane_count) {
if (colorspace != f->colorspace ||
bits_per_raw_sample != f->avctx->bits_per_raw_sample ||
chroma_planes != f->chroma_planes ||
chroma_h_shift != f->chroma_h_shift ||
chroma_v_shift != f->chroma_v_shift ||
transparency != f->transparency) {
av_log(f->avctx, AV_LOG_ERROR, "Invalid change of global parameters\n");
return AVERROR_INVALIDDATA;
}
}
f->colorspace = colorspace;
f->avctx->bits_per_raw_sample = bits_per_raw_sample;
f->chroma_planes = chroma_planes;
f->chroma_h_shift = chroma_h_shift;
f->chroma_v_shift = chroma_v_shift;
f->transparency = transparency;
f->plane_count = 2 + f->transparency;
}
if (f->colorspace == 0) {
if (f->transparency && f->avctx->bits_per_raw_sample > 8) {
av_log(f->avctx, AV_LOG_ERROR,
"Transparency not supported for bit depth %d\n",
f->avctx->bits_per_raw_sample);
return AVERROR(ENOSYS);
}
if (!f->transparency && !f->chroma_planes) {
if (f->avctx->bits_per_raw_sample <= 8)
f->avctx->pix_fmt = AV_PIX_FMT_GRAY8;
else
f->avctx->pix_fmt = AV_PIX_FMT_GRAY16;
} else if (f->avctx->bits_per_raw_sample <= 8 && !f->transparency) {
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P;
break;
case 0x01:
f->avctx->pix_fmt = AV_PIX_FMT_YUV440P;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P;
break;
case 0x20:
f->avctx->pix_fmt = AV_PIX_FMT_YUV411P;
break;
case 0x22:
f->avctx->pix_fmt = AV_PIX_FMT_YUV410P;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
} else if (f->avctx->bits_per_raw_sample <= 8 && f->transparency) {
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUVA422P;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUVA420P;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
} else if (f->avctx->bits_per_raw_sample == 9) {
f->packed_at_lsb = 1;
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P9;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P9;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P9;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
} else if (f->avctx->bits_per_raw_sample == 10) {
f->packed_at_lsb = 1;
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P10;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
} else {
switch (16 * f->chroma_h_shift + f->chroma_v_shift) {
case 0x00:
f->avctx->pix_fmt = AV_PIX_FMT_YUV444P16;
break;
case 0x10:
f->avctx->pix_fmt = AV_PIX_FMT_YUV422P16;
break;
case 0x11:
f->avctx->pix_fmt = AV_PIX_FMT_YUV420P16;
break;
default:
av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(ENOSYS);
}
}
} else if (f->colorspace == 1) {
if (f->chroma_h_shift || f->chroma_v_shift) {
av_log(f->avctx, AV_LOG_ERROR,
"chroma subsampling not supported in this colorspace\n");
return AVERROR(ENOSYS);
}
if (f->transparency) {
av_log(f->avctx, AV_LOG_ERROR,
"Transparency not supported in this colorspace\n");
return AVERROR(ENOSYS);
}
switch (f->avctx->bits_per_raw_sample) {
case 0:
case 8:
f->avctx->pix_fmt = AV_PIX_FMT_RGB32;
break;
case 9:
f->avctx->pix_fmt = AV_PIX_FMT_GBRP9;
break;
case 10:
f->avctx->pix_fmt = AV_PIX_FMT_GBRP10;
break;
default:
av_log(f->avctx, AV_LOG_ERROR,
"bit depth %d not supported\n",
f->avctx->bits_per_raw_sample);
return AVERROR(ENOSYS);
}
} else {
av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
return AVERROR(ENOSYS);
}
ff_dlog(f->avctx, "%d %d %d\n",
f->chroma_h_shift, f->chroma_v_shift, f->avctx->pix_fmt);
if (f->version < 2) {
context_count = read_quant_tables(c, f->quant_table);
if (context_count < 0) {
av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
return AVERROR_INVALIDDATA;
}
} else if (f->version < 3) {
f->slice_count = get_symbol(c, state, 0);
} else {
const uint8_t *p = c->bytestream_end;
for (f->slice_count = 0;
f->slice_count < MAX_SLICES && 3 < p - c->bytestream_start;
f->slice_count++) {
int trailer = 3 + 5 * !!f->ec;
int size = AV_RB24(p - trailer);
if (size + trailer > p - c->bytestream_start)
break;
p -= size + trailer;
}
}
if (f->slice_count > (unsigned)MAX_SLICES || f->slice_count <= 0) {
av_log(f->avctx, AV_LOG_ERROR, "slice count %d is invalid\n",
f->slice_count);
return AVERROR_INVALIDDATA;
}
for (j = 0; j < f->slice_count; j++) {
FFV1Context *fs = f->slice_context[j];
fs->ac = f->ac;
fs->packed_at_lsb = f->packed_at_lsb;
fs->slice_damaged = 0;
if (f->version == 2) {
fs->slice_x = get_symbol(c, state, 0) * f->width;
fs->slice_y = get_symbol(c, state, 0) * f->height;
fs->slice_width =
(get_symbol(c, state, 0) + 1) * f->width + fs->slice_x;
fs->slice_height =
(get_symbol(c, state, 0) + 1) * f->height + fs->slice_y;
fs->slice_x /= f->num_h_slices;
fs->slice_y /= f->num_v_slices;
fs->slice_width = fs->slice_width / f->num_h_slices - fs->slice_x;
fs->slice_height = fs->slice_height / f->num_v_slices - fs->slice_y;
if ((unsigned)fs->slice_width > f->width ||
(unsigned)fs->slice_height > f->height)
return AVERROR_INVALIDDATA;
if ((unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
|| (unsigned)fs->slice_y + (uint64_t)fs->slice_height >
f->height)
return AVERROR_INVALIDDATA;
}
for (i = 0; i < f->plane_count; i++) {
PlaneContext *const p = &fs->plane[i];
if (f->version == 2) {
int idx = get_symbol(c, state, 0);
if (idx > (unsigned)f->quant_table_count) {
av_log(f->avctx, AV_LOG_ERROR,
"quant_table_index out of range\n");
return AVERROR_INVALIDDATA;
}
p->quant_table_index = idx;
memcpy(p->quant_table, f->quant_tables[idx],
sizeof(p->quant_table));
context_count = f->context_count[idx];
} else {
memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
}
if (f->version <= 2) {
av_assert0(context_count >= 0);
if (p->context_count < context_count) {
av_freep(&p->state);
av_freep(&p->vlc_state);
}
p->context_count = context_count;
}
}
}
return 0;
}
static av_cold int ffv1_decode_init(AVCodecContext *avctx)
{
FFV1Context *f = avctx->priv_data;
int ret;
ffv1_common_init(avctx);
f->last_picture = av_frame_alloc();
if (!f->last_picture)
return AVERROR(ENOMEM);
if (avctx->extradata && (ret = read_extra_header(f)) < 0)
return ret;
if ((ret = ffv1_init_slice_contexts(f)) < 0)
return ret;
return 0;
}
static int ffv1_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
FFV1Context *f = avctx->priv_data;
RangeCoder *const c = &f->slice_context[0]->c;
int i, ret;
uint8_t keystate = 128;
uint8_t *buf_p;
AVFrame *const p = data;
f->cur = p;
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
p->pict_type = AV_PICTURE_TYPE_I; //FIXME I vs. P
if (get_rac(c, &keystate)) {
p->key_frame = 1;
f->key_frame_ok = 0;
if ((ret = read_header(f)) < 0)
return ret;
f->key_frame_ok = 1;
} else {
if (!f->key_frame_ok) {
av_log(avctx, AV_LOG_ERROR,
"Cannot decode non-keyframe without valid keyframe\n");
return AVERROR_INVALIDDATA;
}
p->key_frame = 0;
}
if ((ret = ff_get_buffer(avctx, p, AV_GET_BUFFER_FLAG_REF)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
if (avctx->debug & FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_DEBUG,
"ver:%d keyframe:%d coder:%d ec:%d slices:%d bps:%d\n",
f->version, p->key_frame, f->ac, f->ec, f->slice_count,
f->avctx->bits_per_raw_sample);
buf_p = buf + buf_size;
for (i = f->slice_count - 1; i >= 0; i--) {
FFV1Context *fs = f->slice_context[i];
int trailer = 3 + 5 * !!f->ec;
int v;
if (i || f->version > 2)
v = AV_RB24(buf_p - trailer) + trailer;
else
v = buf_p - c->bytestream_start;
if (buf_p - c->bytestream_start < v) {
av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
return AVERROR_INVALIDDATA;
}
buf_p -= v;
if (f->ec) {
unsigned crc = av_crc(av_crc_get_table(AV_CRC_32_IEEE), 0, buf_p, v);
if (crc) {
av_log(f->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", crc);
fs->slice_damaged = 1;
}
}
if (i) {
ff_init_range_decoder(&fs->c, buf_p, v);
} else
fs->c.bytestream_end = buf_p + v;
fs->cur = p;
}
avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL,
f->slice_count,
sizeof(void *));
for (i = f->slice_count - 1; i >= 0; i--) {
FFV1Context *fs = f->slice_context[i];
int j;
if (fs->slice_damaged && f->last_picture->data[0]) {
const uint8_t *src[4];
uint8_t *dst[4];
for (j = 0; j < 4; j++) {
int sh = (j == 1 || j == 2) ? f->chroma_h_shift : 0;
int sv = (j == 1 || j == 2) ? f->chroma_v_shift : 0;
dst[j] = p->data[j] + p->linesize[j] *
(fs->slice_y >> sv) + (fs->slice_x >> sh);
src[j] = f->last_picture->data[j] +
f->last_picture->linesize[j] *
(fs->slice_y >> sv) + (fs->slice_x >> sh);
}
av_image_copy(dst, p->linesize, src,
f->last_picture->linesize,
avctx->pix_fmt, fs->slice_width,
fs->slice_height);
}
}
f->picture_number++;
av_frame_unref(f->last_picture);
if ((ret = av_frame_ref(f->last_picture, p)) < 0)
return ret;
f->cur = NULL;
*got_frame = 1;
return buf_size;
}
static av_cold int ffv1_decode_close(AVCodecContext *avctx)
{
FFV1Context *s = avctx->priv_data;;
av_frame_free(&s->last_picture);
ffv1_close(avctx);
return 0;
}
AVCodec ff_ffv1_decoder = {
.name = "ffv1",
.long_name = NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_FFV1,
.priv_data_size = sizeof(FFV1Context),
.init = ffv1_decode_init,
.close = ffv1_decode_close,
.decode = ffv1_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 /*| AV_CODEC_CAP_DRAW_HORIZ_BAND*/ |
AV_CODEC_CAP_SLICE_THREADS,
};