1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/vvc/filter.c

1254 lines
54 KiB
C

/*
* VVC filters
*
* Copyright (C) 2021 Nuo Mi
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/frame.h"
#include "libavutil/imgutils.h"
#include "ctu.h"
#include "data.h"
#include "filter.h"
#include "refs.h"
#define LEFT 0
#define TOP 1
#define RIGHT 2
#define BOTTOM 3
#define MAX_EDGES 4
#define DEFAULT_INTRA_TC_OFFSET 2
#define POS(c_idx, x, y) \
&fc->frame->data[c_idx][((y) >> fc->ps.sps->vshift[c_idx]) * fc->frame->linesize[c_idx] + \
(((x) >> fc->ps.sps->hshift[c_idx]) << fc->ps.sps->pixel_shift)]
//Table 43 Derivation of threshold variables beta' and tc' from input Q
static const uint16_t tctable[66] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 3, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 8, 9, 10,
10, 11, 13, 14, 15, 17, 19, 21, 24, 25, 29, 33, 36, 41, 45, 51,
57, 64, 71, 80, 89, 100, 112, 125, 141, 157, 177, 198, 222, 250, 280, 314,
352, 395,
};
//Table 43 Derivation of threshold variables beta' and tc' from input Q
static const uint8_t betatable[64] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24,
26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88,
};
// One vertical and one horizontal virtual boundary in a CTU at most. The CTU will be divided into 4 subblocks.
#define MAX_VBBS 4
static int get_virtual_boundary(const VVCFrameContext *fc, const int ctu_pos, const int vertical)
{
const VVCSPS *sps = fc->ps.sps;
const VVCPH *ph = &fc->ps.ph;
const uint16_t *vbs = vertical ? ph->vb_pos_x : ph->vb_pos_y;
const uint8_t nb_vbs = vertical ? ph->num_ver_vbs : ph->num_hor_vbs;
const int pos = ctu_pos << sps->ctb_log2_size_y;
if (sps->r->sps_virtual_boundaries_enabled_flag) {
for (int i = 0; i < nb_vbs; i++) {
const int o = vbs[i] - pos;
if (o >= 0 && o < sps->ctb_size_y)
return vbs[i];
}
}
return 0;
}
static int is_virtual_boundary(const VVCFrameContext *fc, const int pos, const int vertical)
{
return get_virtual_boundary(fc, pos >> fc->ps.sps->ctb_log2_size_y, vertical) == pos;
}
static int get_qPc(const VVCFrameContext *fc, const int x0, const int y0, const int chroma)
{
const int x = x0 >> MIN_TU_LOG2;
const int y = y0 >> MIN_TU_LOG2;
const int min_tu_width = fc->ps.pps->min_tu_width;
return fc->tab.qp[chroma][x + y * min_tu_width];
}
static void copy_ctb(uint8_t *dst, const uint8_t *src, const int width, const int height,
const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
{
for (int y = 0; y < height; y++) {
memcpy(dst, src, width);
dst += dst_stride;
src += src_stride;
}
}
static void copy_pixel(uint8_t *dst, const uint8_t *src, const int pixel_shift)
{
if (pixel_shift)
*(uint16_t *)dst = *(uint16_t *)src;
else
*dst = *src;
}
static void copy_vert(uint8_t *dst, const uint8_t *src, const int pixel_shift, const int height,
const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
{
int i;
if (pixel_shift == 0) {
for (i = 0; i < height; i++) {
*dst = *src;
dst += dst_stride;
src += src_stride;
}
} else {
for (i = 0; i < height; i++) {
*(uint16_t *)dst = *(uint16_t *)src;
dst += dst_stride;
src += src_stride;
}
}
}
static void copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src,
const ptrdiff_t src_stride, const int x, const int y, const int width, const int height,
const int c_idx, const int rx, const int ry, const int top)
{
const int ps = fc->ps.sps->pixel_shift;
const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
if (top) {
/* top */
memcpy(fc->tab.sao_pixel_buffer_h[c_idx] + (((2 * ry) * w + x) << ps),
src, width << ps);
} else {
/* bottom */
memcpy(fc->tab.sao_pixel_buffer_h[c_idx] + (((2 * ry + 1) * w + x) << ps),
src + src_stride * (height - 1), width << ps);
/* copy vertical edges */
copy_vert(fc->tab.sao_pixel_buffer_v[c_idx] + (((2 * rx) * h + y) << ps), src, ps, height, 1 << ps, src_stride);
copy_vert(fc->tab.sao_pixel_buffer_v[c_idx] + (((2 * rx + 1) * h + y) << ps), src + ((width - 1) << ps), ps, height, 1 << ps, src_stride);
}
}
static void sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int top)
{
VVCFrameContext *fc = lc->fc;
const int ctb_size_y = fc->ps.sps->ctb_size_y;
const int x0 = rx << fc->ps.sps->ctb_log2_size_y;
const int y0 = ry << fc->ps.sps->ctb_log2_size_y;
for (int c_idx = 0; c_idx < (fc->ps.sps->r->sps_chroma_format_idc ? 3 : 1); c_idx++) {
const int x = x0 >> fc->ps.sps->hshift[c_idx];
const int y = y0 >> fc->ps.sps->vshift[c_idx];
const ptrdiff_t src_stride = fc->frame->linesize[c_idx];
const int ctb_size_h = ctb_size_y >> fc->ps.sps->hshift[c_idx];
const int ctb_size_v = ctb_size_y >> fc->ps.sps->vshift[c_idx];
const int width = FFMIN(ctb_size_h, (fc->ps.pps->width >> fc->ps.sps->hshift[c_idx]) - x);
const int height = FFMIN(ctb_size_v, (fc->ps.pps->height >> fc->ps.sps->vshift[c_idx]) - y);
const uint8_t *src = POS(c_idx, x0, y0);
copy_ctb_to_hv(fc, src, src_stride, x, y, width, height, c_idx, rx, ry, top);
}
}
void ff_vvc_sao_copy_ctb_to_hv(VVCLocalContext *lc, const int rx, const int ry, const int last_row)
{
if (ry)
sao_copy_ctb_to_hv(lc, rx, ry - 1, 0);
sao_copy_ctb_to_hv(lc, rx, ry, 1);
if (last_row)
sao_copy_ctb_to_hv(lc, rx, ry, 0);
}
static int sao_can_cross_slices(const VVCFrameContext *fc, const int rx, const int ry, const int dx, const int dy)
{
const uint8_t lfase = fc->ps.pps->r->pps_loop_filter_across_slices_enabled_flag;
return lfase || CTB(fc->tab.slice_idx, rx, ry) == CTB(fc->tab.slice_idx, rx + dx, ry + dy);
}
static void sao_get_edges(uint8_t vert_edge[2], uint8_t horiz_edge[2], uint8_t diag_edge[4], int *restore,
const VVCLocalContext *lc, const int edges[4], const int rx, const int ry)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const H266RawSPS *rsps = sps->r;
const VVCPPS *pps = fc->ps.pps;
const int subpic_idx = lc->sc->sh.r->curr_subpic_idx;
const uint8_t lfase = fc->ps.pps->r->pps_loop_filter_across_slices_enabled_flag;
const uint8_t no_tile_filter = pps->r->num_tiles_in_pic > 1 && !pps->r->pps_loop_filter_across_tiles_enabled_flag;
const uint8_t no_subpic_filter = rsps->sps_num_subpics_minus1 && !rsps->sps_loop_filter_across_subpic_enabled_flag[subpic_idx];
uint8_t lf_edge[] = { 0, 0, 0, 0 };
*restore = no_subpic_filter || no_tile_filter || !lfase || rsps->sps_virtual_boundaries_enabled_flag;
if (!*restore)
return;
if (!edges[LEFT]) {
lf_edge[LEFT] = no_tile_filter && pps->ctb_to_col_bd[rx] == rx;
lf_edge[LEFT] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_x[subpic_idx] == rx;
lf_edge[LEFT] |= is_virtual_boundary(fc, rx << sps->ctb_log2_size_y, 1);
vert_edge[0] = !sao_can_cross_slices(fc, rx, ry, -1, 0) || lf_edge[LEFT];
}
if (!edges[RIGHT]) {
lf_edge[RIGHT] = no_tile_filter && pps->ctb_to_col_bd[rx] != pps->ctb_to_col_bd[rx + 1];
lf_edge[RIGHT] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_x[subpic_idx] + rsps->sps_subpic_width_minus1[subpic_idx] == rx;
lf_edge[RIGHT] |= is_virtual_boundary(fc, (rx + 1) << sps->ctb_log2_size_y, 1);
vert_edge[1] = !sao_can_cross_slices(fc, rx, ry, 1, 0) || lf_edge[RIGHT];
}
if (!edges[TOP]) {
lf_edge[TOP] = no_tile_filter && pps->ctb_to_row_bd[ry] == ry;
lf_edge[TOP] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_y[subpic_idx] == ry;
lf_edge[TOP] |= is_virtual_boundary(fc, ry << sps->ctb_log2_size_y, 0);
horiz_edge[0] = !sao_can_cross_slices(fc, rx, ry, 0, -1) || lf_edge[TOP];
}
if (!edges[BOTTOM]) {
lf_edge[BOTTOM] = no_tile_filter && pps->ctb_to_row_bd[ry] != pps->ctb_to_row_bd[ry + 1];
lf_edge[BOTTOM] |= no_subpic_filter && rsps->sps_subpic_ctu_top_left_y[subpic_idx] + rsps->sps_subpic_height_minus1[subpic_idx] == ry;
lf_edge[BOTTOM] |= is_virtual_boundary(fc, (ry + 1) << sps->ctb_log2_size_y, 0);
horiz_edge[1] = !sao_can_cross_slices(fc, rx, ry, 0, 1) || lf_edge[BOTTOM];
}
if (!edges[LEFT] && !edges[TOP])
diag_edge[0] = !sao_can_cross_slices(fc, rx, ry, -1, -1) || lf_edge[LEFT] || lf_edge[TOP];
if (!edges[TOP] && !edges[RIGHT])
diag_edge[1] = !sao_can_cross_slices(fc, rx, ry, 1, -1) || lf_edge[RIGHT] || lf_edge[TOP];
if (!edges[RIGHT] && !edges[BOTTOM])
diag_edge[2] = !sao_can_cross_slices(fc, rx, ry, 1, 1) || lf_edge[RIGHT] || lf_edge[BOTTOM];
if (!edges[LEFT] && !edges[BOTTOM])
diag_edge[3] = !sao_can_cross_slices(fc, rx, ry, -1, 1) || lf_edge[LEFT] || lf_edge[BOTTOM];
}
static void sao_copy_hor(uint8_t *dst, const ptrdiff_t dst_stride,
const uint8_t *src, const ptrdiff_t src_stride, const int width, const int edges[4], const int ps)
{
const int left = 1 - edges[LEFT];
const int right = 1 - edges[RIGHT];
int pos = 0;
src -= left << ps;
dst -= left << ps;
if (left) {
copy_pixel(dst, src, ps);
pos += (1 << ps);
}
memcpy(dst + pos, src + pos, width << ps);
if (right) {
pos += width << ps;
copy_pixel(dst + pos, src + pos, ps);
}
}
static void sao_extends_edges(uint8_t *dst, const ptrdiff_t dst_stride,
const uint8_t *src, const ptrdiff_t src_stride, const int width, const int height,
const VVCFrameContext *fc, const int x0, const int y0, const int rx, const int ry, const int edges[4], const int c_idx)
{
const uint8_t *sao_h = fc->tab.sao_pixel_buffer_h[c_idx];
const uint8_t *sao_v = fc->tab.sao_pixel_buffer_v[c_idx];
const int x = x0 >> fc->ps.sps->hshift[c_idx];
const int y = y0 >> fc->ps.sps->vshift[c_idx];
const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
const int ps = fc->ps.sps->pixel_shift;
if (!edges[TOP])
sao_copy_hor(dst - dst_stride, dst_stride, sao_h + (((2 * ry - 1) * w + x) << ps), src_stride, width, edges, ps);
if (!edges[BOTTOM])
sao_copy_hor(dst + height * dst_stride, dst_stride, sao_h + (((2 * ry + 2) * w + x) << ps), src_stride, width, edges, ps);
if (!edges[LEFT])
copy_vert(dst - (1 << ps), sao_v + (((2 * rx - 1) * h + y) << ps), ps, height, dst_stride, 1 << ps);
if (!edges[RIGHT])
copy_vert(dst + (width << ps), sao_v + (((2 * rx + 2) * h + y) << ps), ps, height, dst_stride, 1 << ps);
copy_ctb(dst, src, width << ps, height, dst_stride, src_stride);
}
static void sao_restore_vb(uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *src, ptrdiff_t src_stride,
const int width, const int height, const int vb_pos, const int ps, const int vertical)
{
int w = 2;
int h = (vertical ? height : width);
int dx = vb_pos - 1;
int dy = 0;
if (!vertical) {
FFSWAP(int, w, h);
FFSWAP(int, dx, dy);
}
dst += dy * dst_stride +(dx << ps);
src += dy * src_stride +(dx << ps);
av_image_copy_plane(dst, dst_stride, src, src_stride, w << ps, h);
}
void ff_vvc_sao_filter(VVCLocalContext *lc, int x0, int y0)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int rx = x0 >> sps->ctb_log2_size_y;
const int ry = y0 >> sps->ctb_log2_size_y;
const int edges[4] = { !rx, !ry, rx == fc->ps.pps->ctb_width - 1, ry == fc->ps.pps->ctb_height - 1 };
const SAOParams *sao = &CTB(fc->tab.sao, rx, ry);
// flags indicating unfilterable edges
uint8_t vert_edge[] = { 0, 0 };
uint8_t horiz_edge[] = { 0, 0 };
uint8_t diag_edge[] = { 0, 0, 0, 0 };
int restore, vb_x = 0, vb_y = 0;;
if (sps->r->sps_virtual_boundaries_enabled_flag) {
vb_x = get_virtual_boundary(fc, rx, 1);
vb_y = get_virtual_boundary(fc, ry, 0);
}
sao_get_edges(vert_edge, horiz_edge, diag_edge, &restore, lc, edges, rx, ry);
for (int c_idx = 0; c_idx < (sps->r->sps_chroma_format_idc ? 3 : 1); c_idx++) {
static const uint8_t sao_tab[16] = { 0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8 };
const ptrdiff_t src_stride = fc->frame->linesize[c_idx];
uint8_t *src = POS(c_idx, x0, y0);
const int hs = sps->hshift[c_idx];
const int vs = sps->vshift[c_idx];
const int ps = sps->pixel_shift;
const int width = FFMIN(sps->ctb_size_y, fc->ps.pps->width - x0) >> hs;
const int height = FFMIN(sps->ctb_size_y, fc->ps.pps->height - y0) >> vs;
const int tab = sao_tab[(FFALIGN(width, 8) >> 3) - 1];
const int sao_eo_class = sao->eo_class[c_idx];
switch (sao->type_idx[c_idx]) {
case SAO_BAND:
fc->vvcdsp.sao.band_filter[tab](src, src, src_stride, src_stride,
sao->offset_val[c_idx], sao->band_position[c_idx], width, height);
break;
case SAO_EDGE:
{
const ptrdiff_t dst_stride = 2 * MAX_PB_SIZE + AV_INPUT_BUFFER_PADDING_SIZE;
uint8_t *dst = lc->sao_buffer + dst_stride + AV_INPUT_BUFFER_PADDING_SIZE;
sao_extends_edges(dst, dst_stride, src, src_stride, width, height, fc, x0, y0, rx, ry, edges, c_idx);
fc->vvcdsp.sao.edge_filter[tab](src, dst, src_stride, sao->offset_val[c_idx],
sao->eo_class[c_idx], width, height);
fc->vvcdsp.sao.edge_restore[restore](src, dst, src_stride, dst_stride,
sao, edges, width, height, c_idx, vert_edge, horiz_edge, diag_edge);
if (vb_x > x0 && sao_eo_class != SAO_EO_VERT)
sao_restore_vb(src, src_stride, dst, dst_stride, width, height, (vb_x - x0) >> hs, ps, 1);
if (vb_y > y0 && sao_eo_class != SAO_EO_HORIZ)
sao_restore_vb(src, src_stride, dst, dst_stride, width, height, (vb_y - y0) >> vs, ps, 0);
break;
}
}
}
}
#define TAB_BS(t, x, y) (t)[((y) >> MIN_TU_LOG2) * (fc->ps.pps->min_tu_width) + ((x) >> MIN_TU_LOG2)]
#define TAB_MAX_LEN(t, x, y) (t)[((y) >> MIN_TU_LOG2) * (fc->ps.pps->min_tu_width) + ((x) >> MIN_TU_LOG2)]
//8 samples a time
#define DEBLOCK_STEP 8
#define LUMA_GRID 4
#define CHROMA_GRID 8
static int boundary_strength(const VVCLocalContext *lc, const MvField *curr, const MvField *neigh,
const RefPicList *neigh_rpl)
{
RefPicList *rpl = lc->sc->rpl;
if (curr->pred_flag == PF_IBC)
return FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8;
if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) {
// same L0 and L1
if (rpl[L0].refs[curr->ref_idx[L0]].poc == neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc &&
rpl[L0].refs[curr->ref_idx[L0]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc &&
neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc) {
if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8 ||
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 8) &&
(FFABS(neigh->mv[1].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 8 ||
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 8))
return 1;
else
return 0;
} else if (neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == rpl[L0].refs[curr->ref_idx[L0]].poc &&
neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc) {
if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 8 ||
FFABS(neigh->mv[1].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 8)
return 1;
else
return 0;
} else if (neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc == rpl[L0].refs[curr->ref_idx[L0]].poc &&
neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc == rpl[L1].refs[curr->ref_idx[L1]].poc) {
if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 8 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 8 ||
FFABS(neigh->mv[0].x - curr->mv[1].x) >= 8 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 8)
return 1;
else
return 0;
} else {
return 1;
}
} else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV
Mv A, B;
int ref_A, ref_B;
if (curr->pred_flag & 1) {
A = curr->mv[0];
ref_A = rpl[L0].refs[curr->ref_idx[L0]].poc;
} else {
A = curr->mv[1];
ref_A = rpl[L1].refs[curr->ref_idx[L1]].poc;
}
if (neigh->pred_flag & 1) {
B = neigh->mv[0];
ref_B = neigh_rpl[L0].refs[neigh->ref_idx[L0]].poc;
} else {
B = neigh->mv[1];
ref_B = neigh_rpl[L1].refs[neigh->ref_idx[L1]].poc;
}
if (ref_A == ref_B) {
if (FFABS(A.x - B.x) >= 8 || FFABS(A.y - B.y) >= 8)
return 1;
else
return 0;
} else
return 1;
}
return 1;
}
//part of 8.8.3.3 Derivation process of transform block boundary
static void derive_max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy,
const int is_intra, const int has_subblock, const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
{
const int px = vertical ? qx - 1 : qx;
const int py = !vertical ? qy - 1 : qy;
const uint8_t *tb_size = vertical ? fc->tab.tb_width[LUMA] : fc->tab.tb_height[LUMA];
const int size_p = tb_size[(py >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (px >> MIN_TU_LOG2)];
const int size_q = tb_size[(qy >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (qx >> MIN_TU_LOG2)];
const int min_cb_log2 = fc->ps.sps->min_cb_log2_size_y;
const int off_p = (py >> min_cb_log2) * fc->ps.pps->min_cb_width + (px >> min_cb_log2);
if (size_p <= 4 || size_q <= 4) {
*max_len_p = *max_len_q = 1;
} else {
*max_len_p = *max_len_q = 3;
if (size_p >= 32)
*max_len_p = 7;
if (size_q >= 32)
*max_len_q = 7;
}
if (has_subblock)
*max_len_q = FFMIN(5, *max_len_q);
if (fc->tab.msf[off_p] || fc->tab.iaf[off_p])
*max_len_p = FFMIN(5, *max_len_p);
}
static void vvc_deblock_subblock_bs(const VVCLocalContext *lc,
const int cb, int x0, int y0, int width, int height, const int vertical)
{
const VVCFrameContext *fc = lc->fc;
const MvField *tab_mvf = fc->tab.mvf;
const RefPicList *rpl = lc->sc->rpl;
int stridea = fc->ps.pps->min_pu_width;
int strideb = 1;
const int log2_min_pu_size = MIN_PU_LOG2;
if (!vertical) {
FFSWAP(int, x0, y0);
FFSWAP(int, width, height);
FFSWAP(int, stridea, strideb);
}
// bs for TU internal vertical PU boundaries
for (int i = 8 - ((x0 - cb) % 8); i < width; i += 8) {
const int is_vb = is_virtual_boundary(fc, x0 + i, vertical);
const int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
const int xq_pu = (x0 + i) >> log2_min_pu_size;
for (int j = 0; j < height; j += 4) {
const int y_pu = (y0 + j) >> log2_min_pu_size;
const MvField *mvf_p = &tab_mvf[y_pu * stridea + xp_pu * strideb];
const MvField *mvf_q = &tab_mvf[y_pu * stridea + xq_pu * strideb];
const int bs = is_vb ? 0 : boundary_strength(lc, mvf_q, mvf_p, rpl);
int x = x0 + i;
int y = y0 + j;
uint8_t max_len_p = 0, max_len_q = 0;
if (!vertical)
FFSWAP(int, x, y);
TAB_BS(fc->tab.bs[vertical][LUMA], x, y) = bs;
if (i == 4 || i == width - 4)
max_len_p = max_len_q = 1;
else if (i == 8 || i == width - 8)
max_len_p = max_len_q = 2;
else
max_len_p = max_len_q = 3;
TAB_MAX_LEN(fc->tab.max_len_p[vertical], x, y) = max_len_p;
TAB_MAX_LEN(fc->tab.max_len_q[vertical], x, y) = max_len_q;
}
}
}
static av_always_inline int deblock_bs(const VVCLocalContext *lc,
const int x_p, const int y_p, const int x_q, const int y_q,
const RefPicList *rpl_p, const int c_idx, const int off_to_cb, const uint8_t has_sub_block)
{
const VVCFrameContext *fc = lc->fc;
const MvField *tab_mvf = fc->tab.mvf;
const int log2_min_pu_size = MIN_PU_LOG2;
const int log2_min_tu_size = MIN_TU_LOG2;
const int log2_min_cb_size = fc->ps.sps->min_cb_log2_size_y;
const int min_pu_width = fc->ps.pps->min_pu_width;
const int min_tu_width = fc->ps.pps->min_tu_width;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int pu_p = (y_p >> log2_min_pu_size) * min_pu_width + (x_p >> log2_min_pu_size);
const int pu_q = (y_q >> log2_min_pu_size) * min_pu_width + (x_q >> log2_min_pu_size);
const MvField *mvf_p = &tab_mvf[pu_p];
const MvField *mvf_q = &tab_mvf[pu_q];
const uint8_t chroma = !!c_idx;
const int tu_p = (y_p >> log2_min_tu_size) * min_tu_width + (x_p >> log2_min_tu_size);
const int tu_q = (y_q >> log2_min_tu_size) * min_tu_width + (x_q >> log2_min_tu_size);
const uint8_t pcmf = fc->tab.pcmf[chroma][tu_p] && fc->tab.pcmf[chroma][tu_q];
const int cb_p = (y_p >> log2_min_cb_size) * min_cb_width + (x_p >> log2_min_cb_size);
const int cb_q = (y_q >> log2_min_cb_size) * min_cb_width + (x_q >> log2_min_cb_size);
const uint8_t intra = fc->tab.cpm[chroma][cb_p] == MODE_INTRA || fc->tab.cpm[chroma][cb_q] == MODE_INTRA;
const uint8_t same_mode = fc->tab.cpm[chroma][cb_p] == fc->tab.cpm[chroma][cb_q];
if (pcmf)
return 0;
if (intra || mvf_p->ciip_flag || mvf_q->ciip_flag)
return 2;
if (chroma) {
return fc->tab.tu_coded_flag[c_idx][tu_p] ||
fc->tab.tu_coded_flag[c_idx][tu_q] ||
fc->tab.tu_joint_cbcr_residual_flag[tu_p] ||
fc->tab.tu_joint_cbcr_residual_flag[tu_q];
}
if (fc->tab.tu_coded_flag[LUMA][tu_p] || fc->tab.tu_coded_flag[LUMA][tu_q])
return 1;
if ((off_to_cb && ((off_to_cb % 8) || !has_sub_block)))
return 0; // inside a cu, not aligned to 8 or with no subblocks
if (!same_mode)
return 1;
return boundary_strength(lc, mvf_q, mvf_p, rpl_p);
}
static int deblock_is_boundary(const VVCLocalContext *lc, const int boundary,
const int pos, const int rs, const int vertical)
{
const VVCFrameContext *fc = lc->fc;
const H266RawSPS *rsps = fc->ps.sps->r;
const H266RawPPS *rpps = fc->ps.pps->r;
int flag;
if (boundary && (pos % fc->ps.sps->ctb_size_y) == 0) {
flag = vertical ? BOUNDARY_LEFT_SLICE : BOUNDARY_UPPER_SLICE;
if (lc->boundary_flags & flag &&
!rpps->pps_loop_filter_across_slices_enabled_flag)
return 0;
flag = vertical ? BOUNDARY_LEFT_TILE : BOUNDARY_UPPER_TILE;
if (lc->boundary_flags & flag &&
!rpps->pps_loop_filter_across_tiles_enabled_flag)
return 0;
flag = vertical ? BOUNDARY_LEFT_SUBPIC : BOUNDARY_UPPER_SUBPIC;
if (lc->boundary_flags & flag) {
const int q_rs = rs - (vertical ? 1 : fc->ps.pps->ctb_width);
const SliceContext *q_slice = lc->fc->slices[lc->fc->tab.slice_idx[q_rs]];
if (!rsps->sps_loop_filter_across_subpic_enabled_flag[q_slice->sh.r->curr_subpic_idx] ||
!rsps->sps_loop_filter_across_subpic_enabled_flag[lc->sc->sh.r->curr_subpic_idx])
return 0;
}
}
return boundary;
}
static void vvc_deblock_bs_luma(const VVCLocalContext *lc,
const int x0, const int y0, const int width, const int height, const int rs, const int vertical)
{
const VVCFrameContext *fc = lc->fc;
const MvField *tab_mvf = fc->tab.mvf;
const int mask = LUMA_GRID - 1;
const int log2_min_pu_size = MIN_PU_LOG2;
const int min_pu_width = fc->ps.pps->min_pu_width;
const int min_cb_log2 = fc->ps.sps->min_cb_log2_size_y;
const int min_cb_width = fc->ps.pps->min_cb_width;
const int pos = vertical ? x0 : y0;
const int off_q = (y0 >> min_cb_log2) * min_cb_width + (x0 >> min_cb_log2);
const int cb = (vertical ? fc->tab.cb_pos_x : fc->tab.cb_pos_y )[LUMA][off_q];
const int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
(x0 >> log2_min_pu_size)].pred_flag == PF_INTRA;
if (deblock_is_boundary(lc, pos > 0 && !(pos & mask), pos, rs, vertical)) {
const int is_vb = is_virtual_boundary(fc, pos, vertical);
const int size = vertical ? height : width;
const int off = cb - pos;
const int cb_size = (vertical ? fc->tab.cb_width : fc->tab.cb_height)[LUMA][off_q];
const int has_sb = !is_intra && (fc->tab.msf[off_q] || fc->tab.iaf[off_q]) && cb_size > 8;
const int flag = vertical ? BOUNDARY_LEFT_SLICE : BOUNDARY_UPPER_SLICE;
const RefPicList *rpl_p =
(lc->boundary_flags & flag) ? ff_vvc_get_ref_list(fc, fc->ref, x0 - vertical, y0 - !vertical) : lc->sc->rpl;
for (int i = 0; i < size; i += 4) {
const int x = x0 + i * !vertical;
const int y = y0 + i * vertical;
uint8_t max_len_p, max_len_q;
const int bs = is_vb ? 0 : deblock_bs(lc, x - vertical, y - !vertical, x, y, rpl_p, LUMA, off, has_sb);
TAB_BS(fc->tab.bs[vertical][LUMA], x, y) = bs;
derive_max_filter_length_luma(fc, x, y, is_intra, has_sb, vertical, &max_len_p, &max_len_q);
TAB_MAX_LEN(fc->tab.max_len_p[vertical], x, y) = max_len_p;
TAB_MAX_LEN(fc->tab.max_len_q[vertical], x, y) = max_len_q;
}
}
if (!is_intra) {
if (fc->tab.msf[off_q] || fc->tab.iaf[off_q])
vvc_deblock_subblock_bs(lc, cb, x0, y0, width, height, vertical);
}
}
static void vvc_deblock_bs_chroma(const VVCLocalContext *lc,
const int x0, const int y0, const int width, const int height, const int rs, const int vertical)
{
const VVCFrameContext *fc = lc->fc;
const int shift = (vertical ? fc->ps.sps->hshift : fc->ps.sps->vshift)[CHROMA];
const int mask = (CHROMA_GRID << shift) - 1;
const int pos = vertical ? x0 : y0;
if (deblock_is_boundary(lc, pos > 0 && !(pos & mask), pos, rs, vertical)) {
const int is_vb = is_virtual_boundary(fc, pos, vertical);
const int size = vertical ? height : width;
for (int c_idx = CB; c_idx <= CR; c_idx++) {
for (int i = 0; i < size; i += 2) {
const int x = x0 + i * !vertical;
const int y = y0 + i * vertical;
const int bs = is_vb ? 0 : deblock_bs(lc, x - vertical, y - !vertical, x, y, NULL, c_idx, 0, 0);
TAB_BS(fc->tab.bs[vertical][c_idx], x, y) = bs;
}
}
}
}
typedef void (*deblock_bs_fn)(const VVCLocalContext *lc, const int x0, const int y0,
const int width, const int height, const int rs, const int vertical);
static void vvc_deblock_bs(const VVCLocalContext *lc, const int x0, const int y0, const int rs, const int vertical)
{
const VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int ctb_size = sps->ctb_size_y;
const int x_end = FFMIN(x0 + ctb_size, pps->width) >> MIN_TU_LOG2;
const int y_end = FFMIN(y0 + ctb_size, pps->height) >> MIN_TU_LOG2;
const int has_chroma = !!sps->r->sps_chroma_format_idc;
deblock_bs_fn deblock_bs[] = {
vvc_deblock_bs_luma, vvc_deblock_bs_chroma
};
for (int is_chroma = 0; is_chroma <= has_chroma; is_chroma++) {
const int hs = sps->hshift[is_chroma];
const int vs = sps->vshift[is_chroma];
for (int y = y0 >> MIN_TU_LOG2; y < y_end; y++) {
for (int x = x0 >> MIN_TU_LOG2; x < x_end; x++) {
const int off = y * fc->ps.pps->min_tu_width + x;
if ((fc->tab.tb_pos_x0[is_chroma][off] >> MIN_TU_LOG2) == x && (fc->tab.tb_pos_y0[is_chroma][off] >> MIN_TU_LOG2) == y) {
deblock_bs[is_chroma](lc, x << MIN_TU_LOG2, y << MIN_TU_LOG2,
fc->tab.tb_width[is_chroma][off] << hs, fc->tab.tb_height[is_chroma][off] << vs, rs, vertical);
}
}
}
}
}
//part of 8.8.3.3 Derivation process of transform block boundary
static void max_filter_length_luma(const VVCFrameContext *fc, const int qx, const int qy,
const int vertical, uint8_t *max_len_p, uint8_t *max_len_q)
{
*max_len_p = TAB_MAX_LEN(fc->tab.max_len_p[vertical], qx, qy);
*max_len_q = TAB_MAX_LEN(fc->tab.max_len_q[vertical], qx, qy);
}
//part of 8.8.3.3 Derivation process of transform block boundary
static void max_filter_length_chroma(const VVCFrameContext *fc, const int qx, const int qy,
const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
{
const int px = vertical ? qx - 1 : qx;
const int py = !vertical ? qy - 1 : qy;
const uint8_t *tb_size = vertical ? fc->tab.tb_width[CHROMA] : fc->tab.tb_height[CHROMA];
const int size_p = tb_size[(py >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (px >> MIN_TU_LOG2)];
const int size_q = tb_size[(qy >> MIN_TU_LOG2) * fc->ps.pps->min_tu_width + (qx >> MIN_TU_LOG2)];
if (size_p >= 8 && size_q >= 8) {
*max_len_p = *max_len_q = 3;
if (horizontal_ctu_edge)
*max_len_p = 1;
} else {
//part of 8.8.3.6.4 Decision process for chroma block edges
*max_len_p = *max_len_q = (bs == 2);
}
}
static void max_filter_length(const VVCFrameContext *fc, const int qx, const int qy,
const int c_idx, const int vertical, const int horizontal_ctu_edge, const int bs, uint8_t *max_len_p, uint8_t *max_len_q)
{
if (!c_idx)
max_filter_length_luma(fc, qx, qy, vertical, max_len_p, max_len_q);
else
max_filter_length_chroma(fc, qx, qy, vertical, horizontal_ctu_edge, bs, max_len_p, max_len_q);
}
#define TC_CALC(qp, bs) \
tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
(tc_offset & -2), \
0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
// part of 8.8.3.6.2 Decision process for luma block edges
static int get_qp_y(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int vertical)
{
const VVCSPS *sps = fc->ps.sps;
const int qp = (ff_vvc_get_qPy(fc, x - vertical, y - !vertical) + ff_vvc_get_qPy(fc, x, y) + 1) >> 1;
int qp_offset = 0;
int level;
if (!sps->r->sps_ladf_enabled_flag)
return qp;
level = fc->vvcdsp.lf.ladf_level[vertical](src, fc->frame->linesize[LUMA]);
qp_offset = sps->r->sps_ladf_lowest_interval_qp_offset;
for (int i = 0; i < sps->num_ladf_intervals - 1 && level > sps->ladf_interval_lower_bound[i + 1]; i++)
qp_offset = sps->r->sps_ladf_qp_offset[i];
return qp + qp_offset;
}
// part of 8.8.3.6.2 Decision process for luma block edges
static int get_qp_c(const VVCFrameContext *fc, const int x, const int y, const int c_idx, const int vertical)
{
const VVCSPS *sps = fc->ps.sps;
return (get_qPc(fc, x - vertical, y - !vertical, c_idx) + get_qPc(fc, x, y, c_idx) - 2 * sps->qp_bd_offset + 1) >> 1;
}
static int get_qp(const VVCFrameContext *fc, const uint8_t *src, const int x, const int y, const int c_idx, const int vertical)
{
if (!c_idx)
return get_qp_y(fc, src, x, y, vertical);
return get_qp_c(fc, x, y, c_idx, vertical);
}
static void vvc_deblock(const VVCLocalContext *lc, int x0, int y0, const int rs, const int vertical)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int c_end = sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
const int ctb_size = fc->ps.sps->ctb_size_y;
const DBParams *params = fc->tab.deblock + rs;
int x_end = FFMIN(x0 + ctb_size, fc->ps.pps->width);
int y_end = FFMIN(y0 + ctb_size, fc->ps.pps->height);
//not use this yet, may needed by plt.
const uint8_t no_p[4] = { 0 };
const uint8_t no_q[4] = { 0 } ;
vvc_deblock_bs(lc, x0, y0, rs, vertical);
if (!vertical) {
FFSWAP(int, x_end, y_end);
FFSWAP(int, x0, y0);
}
for (int c_idx = 0; c_idx < c_end; c_idx++) {
const int hs = (vertical ? sps->hshift : sps->vshift)[c_idx];
const int vs = (vertical ? sps->vshift : sps->hshift)[c_idx];
const int grid = c_idx ? (CHROMA_GRID << hs) : LUMA_GRID;
const int tc_offset = params->tc_offset[c_idx];
const int beta_offset = params->beta_offset[c_idx];
const int src_stride = fc->frame->linesize[c_idx];
for (int y = y0; y < y_end; y += (DEBLOCK_STEP << vs)) {
for (int x = x0 ? x0 : grid; x < x_end; x += grid) {
const uint8_t horizontal_ctu_edge = !vertical && !(x % ctb_size);
int32_t bs[4], beta[4], tc[4] = { 0 }, all_zero_bs = 1;
uint8_t max_len_p[4], max_len_q[4];
for (int i = 0; i < DEBLOCK_STEP >> (2 - vs); i++) {
int tx = x;
int ty = y + (i << 2);
const int end = ty >= y_end;
if (!vertical)
FFSWAP(int, tx, ty);
bs[i] = end ? 0 : TAB_BS(fc->tab.bs[vertical][c_idx], tx, ty);
if (bs[i]) {
const int qp = get_qp(fc, POS(c_idx, tx, ty), tx, ty, c_idx, vertical);
beta[i] = betatable[av_clip(qp + beta_offset, 0, MAX_QP)];
tc[i] = TC_CALC(qp, bs[i]) ;
max_filter_length(fc, tx, ty, c_idx, vertical, horizontal_ctu_edge, bs[i], &max_len_p[i], &max_len_q[i]);
all_zero_bs = 0;
}
}
if (!all_zero_bs) {
uint8_t *src = vertical ? POS(c_idx, x, y) : POS(c_idx, y, x);
if (!c_idx)
fc->vvcdsp.lf.filter_luma[vertical](src, src_stride, beta, tc, no_p, no_q, max_len_p, max_len_q, horizontal_ctu_edge);
else
fc->vvcdsp.lf.filter_chroma[vertical](src, src_stride, beta, tc, no_p, no_q, max_len_p, max_len_q, vs);
}
}
}
}
}
void ff_vvc_deblock_vertical(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
{
vvc_deblock(lc, x0, y0, rs, 1);
}
void ff_vvc_deblock_horizontal(const VVCLocalContext *lc, const int x0, const int y0, const int rs)
{
vvc_deblock(lc, x0, y0, rs, 0);
}
static void alf_copy_border(uint8_t *dst, const uint8_t *src,
const int pixel_shift, int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride)
{
width <<= pixel_shift;
for (int i = 0; i < height; i++) {
memcpy(dst, src, width);
dst += dst_stride;
src += src_stride;
}
}
static void alf_extend_vert(uint8_t *_dst, const uint8_t *_src,
const int pixel_shift, const int width, const int height, ptrdiff_t stride)
{
if (pixel_shift == 0) {
for (int i = 0; i < height; i++) {
memset(_dst, *_src, width);
_src += stride;
_dst += stride;
}
} else {
const uint16_t *src = (const uint16_t *)_src;
uint16_t *dst = (uint16_t *)_dst;
stride >>= pixel_shift;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++)
dst[j] = *src;
src += stride;
dst += stride;
}
}
}
static void alf_extend_horz(uint8_t *dst, const uint8_t *src,
const int pixel_shift, int width, const int height, const ptrdiff_t stride)
{
width <<= pixel_shift;
for (int i = 0; i < height; i++) {
memcpy(dst, src, width);
dst += stride;
}
}
static void alf_copy_ctb_to_hv(VVCFrameContext *fc, const uint8_t *src, const ptrdiff_t src_stride,
const int x, const int y, const int width, const int height, const int rx, const int ry, const int c_idx)
{
const int ps = fc->ps.sps->pixel_shift;
const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
const int border_pixels = (c_idx == 0) ? ALF_BORDER_LUMA : ALF_BORDER_CHROMA;
const int offset_h[] = { 0, height - border_pixels };
const int offset_v[] = { 0, width - border_pixels };
/* copy horizontal edges */
for (int i = 0; i < FF_ARRAY_ELEMS(offset_h); i++) {
alf_copy_border(fc->tab.alf_pixel_buffer_h[c_idx][i] + ((border_pixels * ry * w + x)<< ps),
src + offset_h[i] * src_stride, ps, width, border_pixels, w << ps, src_stride);
}
/* copy vertical edges */
for (int i = 0; i < FF_ARRAY_ELEMS(offset_v); i++) {
alf_copy_border(fc->tab.alf_pixel_buffer_v[c_idx][i] + ((h * rx + y) * (border_pixels << ps)),
src + (offset_v[i] << ps), ps, border_pixels, height, border_pixels << ps, src_stride);
}
}
static void alf_fill_border_h(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src, const ptrdiff_t src_stride,
const uint8_t *border, const int width, const int border_pixels, const int ps, const int edge)
{
if (edge)
alf_extend_horz(dst, border, ps, width, border_pixels, dst_stride);
else
alf_copy_border(dst, src, ps, width, border_pixels, dst_stride, src_stride);
}
static void alf_fill_border_v(uint8_t *dst, const ptrdiff_t dst_stride, const uint8_t *src,
const uint8_t *border, const int border_pixels, const int height, const int pixel_shift, const int *edges, const int edge)
{
const ptrdiff_t src_stride = (border_pixels << pixel_shift);
if (edge) {
alf_extend_vert(dst, border, pixel_shift, border_pixels, height + 2 * border_pixels, dst_stride);
return;
}
//left/right
alf_copy_border(dst + dst_stride * border_pixels * edges[TOP], src + src_stride * border_pixels * edges[TOP],
pixel_shift, border_pixels, height + (!edges[TOP] + !edges[BOTTOM]) * border_pixels, dst_stride, src_stride);
//top left/right
if (edges[TOP])
alf_extend_horz(dst, dst + dst_stride * border_pixels, pixel_shift, border_pixels, border_pixels, dst_stride);
//bottom left/right
if (edges[BOTTOM]) {
dst += dst_stride * (border_pixels + height);
alf_extend_horz(dst, dst - dst_stride, pixel_shift, border_pixels, border_pixels, dst_stride);
}
}
static void alf_prepare_buffer(VVCFrameContext *fc, uint8_t *_dst, const uint8_t *_src, const int x, const int y,
const int rx, const int ry, const int width, const int height, const ptrdiff_t dst_stride, const ptrdiff_t src_stride,
const int c_idx, const int *edges)
{
const int ps = fc->ps.sps->pixel_shift;
const int w = fc->ps.pps->width >> fc->ps.sps->hshift[c_idx];
const int h = fc->ps.pps->height >> fc->ps.sps->vshift[c_idx];
const int border_pixels = c_idx == 0 ? ALF_BORDER_LUMA : ALF_BORDER_CHROMA;
uint8_t *dst, *src;
copy_ctb(_dst, _src, width << ps, height, dst_stride, src_stride);
//top
src = fc->tab.alf_pixel_buffer_h[c_idx][1] + (((border_pixels * w) << ps) * (ry - 1) + (x << ps));
dst = _dst - border_pixels * dst_stride;
alf_fill_border_h(dst, dst_stride, src, w << ps, _dst, width, border_pixels, ps, edges[TOP]);
//bottom
src = fc->tab.alf_pixel_buffer_h[c_idx][0] + (((border_pixels * w) << ps) * (ry + 1) + (x << ps));
dst = _dst + height * dst_stride;
alf_fill_border_h(dst, dst_stride, src, w << ps, _dst + (height - 1) * dst_stride, width, border_pixels, ps, edges[BOTTOM]);
//left
src = fc->tab.alf_pixel_buffer_v[c_idx][1] + (h * (rx - 1) + y - border_pixels) * (border_pixels << ps);
dst = _dst - (border_pixels << ps) - border_pixels * dst_stride;
alf_fill_border_v(dst, dst_stride, src, dst + (border_pixels << ps), border_pixels, height, ps, edges, edges[LEFT]);
//right
src = fc->tab.alf_pixel_buffer_v[c_idx][0] + (h * (rx + 1) + y - border_pixels) * (border_pixels << ps);
dst = _dst + (width << ps) - border_pixels * dst_stride;
alf_fill_border_v(dst, dst_stride, src, dst - (1 << ps), border_pixels, height, ps, edges, edges[RIGHT]);
}
#define ALF_MAX_BLOCKS_IN_CTU (MAX_CTU_SIZE * MAX_CTU_SIZE / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE)
#define ALF_MAX_FILTER_SIZE (ALF_MAX_BLOCKS_IN_CTU * ALF_NUM_COEFF_LUMA)
static void alf_get_coeff_and_clip(VVCLocalContext *lc, int16_t *coeff, int16_t *clip,
const uint8_t *src, ptrdiff_t src_stride, int width, int height, int vb_pos, const ALFParams *alf)
{
const VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
uint8_t fixed_clip_set[ALF_NUM_FILTERS_LUMA][ALF_NUM_COEFF_LUMA] = { 0 };
const int16_t *coeff_set;
const uint8_t *clip_idx_set;
const uint8_t *class_to_filt;
const int size = width * height / ALF_BLOCK_SIZE / ALF_BLOCK_SIZE;
int class_idx[ALF_MAX_BLOCKS_IN_CTU];
int transpose_idx[ALF_MAX_BLOCKS_IN_CTU];
if (alf->ctb_filt_set_idx_y < 16) {
coeff_set = &ff_vvc_alf_fix_filt_coeff[0][0];
clip_idx_set = &fixed_clip_set[0][0];
class_to_filt = ff_vvc_alf_class_to_filt_map[alf->ctb_filt_set_idx_y];
} else {
const int id = rsh->sh_alf_aps_id_luma[alf->ctb_filt_set_idx_y - 16];
const VVCALF *aps = fc->ps.alf_list[id];
coeff_set = &aps->luma_coeff[0][0];
clip_idx_set = &aps->luma_clip_idx[0][0];
class_to_filt = ff_vvc_alf_aps_class_to_filt_map;
}
fc->vvcdsp.alf.classify(class_idx, transpose_idx, src, src_stride, width, height,
vb_pos, lc->alf_gradient_tmp);
fc->vvcdsp.alf.recon_coeff_and_clip(coeff, clip, class_idx, transpose_idx, size,
coeff_set, clip_idx_set, class_to_filt);
}
static void alf_filter_luma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src,
const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int x0, const int y0,
const int width, const int height, const int _vb_pos, const ALFParams *alf)
{
const VVCFrameContext *fc = lc->fc;
int vb_pos = _vb_pos - y0;
int16_t *coeff = (int16_t*)lc->tmp;
int16_t *clip = (int16_t *)lc->tmp1;
av_assert0(ALF_MAX_FILTER_SIZE <= sizeof(lc->tmp));
av_assert0(ALF_MAX_FILTER_SIZE * sizeof(int16_t) <= sizeof(lc->tmp1));
alf_get_coeff_and_clip(lc, coeff, clip, src, src_stride, width, height, vb_pos, alf);
fc->vvcdsp.alf.filter[LUMA](dst, dst_stride, src, src_stride, width, height, coeff, clip, vb_pos);
}
static int alf_clip_from_idx(const VVCFrameContext *fc, const int idx)
{
const VVCSPS *sps = fc->ps.sps;
const int offset[] = {0, 3, 5, 7};
return 1 << (sps->bit_depth - offset[idx]);
}
static void alf_filter_chroma(VVCLocalContext *lc, uint8_t *dst, const uint8_t *src,
const ptrdiff_t dst_stride, const ptrdiff_t src_stride, const int c_idx,
const int width, const int height, const int vb_pos, const ALFParams *alf)
{
VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const VVCALF *aps = fc->ps.alf_list[rsh->sh_alf_aps_id_chroma];
const int idx = alf->alf_ctb_filter_alt_idx[c_idx - 1];
const int16_t *coeff = aps->chroma_coeff[idx];
int16_t clip[ALF_NUM_COEFF_CHROMA];
for (int i = 0; i < ALF_NUM_COEFF_CHROMA; i++)
clip[i] = alf_clip_from_idx(fc, aps->chroma_clip_idx[idx][i]);
fc->vvcdsp.alf.filter[CHROMA](dst, dst_stride, src, src_stride, width, height, coeff, clip, vb_pos);
}
static void alf_filter_cc(VVCLocalContext *lc, uint8_t *dst, const uint8_t *luma,
const ptrdiff_t dst_stride, const ptrdiff_t luma_stride, const int c_idx,
const int width, const int height, const int hs, const int vs, const int vb_pos, const ALFParams *alf)
{
const VVCFrameContext *fc = lc->fc;
const H266RawSliceHeader *rsh = lc->sc->sh.r;
const int idx = c_idx - 1;
const int cc_aps_id = c_idx == CB ? rsh->sh_alf_cc_cb_aps_id : rsh->sh_alf_cc_cr_aps_id;
const VVCALF *aps = fc->ps.alf_list[cc_aps_id];
if (aps) {
const int16_t *coeff = aps->cc_coeff[idx][alf->ctb_cc_idc[idx] - 1];
fc->vvcdsp.alf.filter_cc(dst, dst_stride, luma, luma_stride, width, height, hs, vs, coeff, vb_pos);
}
}
void ff_vvc_alf_copy_ctu_to_hv(VVCLocalContext* lc, const int x0, const int y0)
{
VVCFrameContext *fc = lc->fc;
const int rx = x0 >> fc->ps.sps->ctb_log2_size_y;
const int ry = y0 >> fc->ps.sps->ctb_log2_size_y;
const int ctb_size_y = fc->ps.sps->ctb_size_y;
const int c_end = fc->ps.sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
for (int c_idx = 0; c_idx < c_end; c_idx++) {
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int x = x0 >> hs;
const int y = y0 >> vs;
const int width = FFMIN(fc->ps.pps->width - x0, ctb_size_y) >> hs;
const int height = FFMIN(fc->ps.pps->height - y0, ctb_size_y) >> vs;
const int src_stride = fc->frame->linesize[c_idx];
uint8_t *src = POS(c_idx, x0, y0);
alf_copy_ctb_to_hv(fc, src, src_stride, x, y, width, height, rx, ry, c_idx);
}
}
static void alf_get_edges(const VVCLocalContext *lc, int edges[MAX_EDGES], const int rx, const int ry)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int subpic_idx = lc->sc->sh.r->curr_subpic_idx;
// we can't use |= instead of || in this function; |= is not a shortcut operator
if (!pps->r->pps_loop_filter_across_tiles_enabled_flag) {
edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_TILE);
edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_TILE);
edges[RIGHT] = edges[RIGHT] || pps->ctb_to_col_bd[rx] != pps->ctb_to_col_bd[rx + 1];
edges[BOTTOM] = edges[BOTTOM] || pps->ctb_to_row_bd[ry] != pps->ctb_to_row_bd[ry + 1];
}
if (!pps->r->pps_loop_filter_across_slices_enabled_flag) {
edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_SLICE);
edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_SLICE);
edges[RIGHT] = edges[RIGHT] || CTB(fc->tab.slice_idx, rx, ry) != CTB(fc->tab.slice_idx, rx + 1, ry);
edges[BOTTOM] = edges[BOTTOM] || CTB(fc->tab.slice_idx, rx, ry) != CTB(fc->tab.slice_idx, rx, ry + 1);
}
if (!sps->r->sps_loop_filter_across_subpic_enabled_flag[subpic_idx]) {
edges[LEFT] = edges[LEFT] || (lc->boundary_flags & BOUNDARY_LEFT_SUBPIC);
edges[TOP] = edges[TOP] || (lc->boundary_flags & BOUNDARY_UPPER_SUBPIC);
edges[RIGHT] = edges[RIGHT] || fc->ps.sps->r->sps_subpic_ctu_top_left_x[subpic_idx] + fc->ps.sps->r->sps_subpic_width_minus1[subpic_idx] == rx;
edges[BOTTOM] = edges[BOTTOM] || fc->ps.sps->r->sps_subpic_ctu_top_left_y[subpic_idx] + fc->ps.sps->r->sps_subpic_height_minus1[subpic_idx] == ry;
}
if (sps->r->sps_virtual_boundaries_enabled_flag) {
edges[LEFT] = edges[LEFT] || is_virtual_boundary(fc, rx << sps->ctb_log2_size_y, 1);
edges[TOP] = edges[TOP] || is_virtual_boundary(fc, ry << sps->ctb_log2_size_y, 0);
edges[RIGHT] = edges[RIGHT] || is_virtual_boundary(fc, (rx + 1) << sps->ctb_log2_size_y, 1);
edges[BOTTOM] = edges[BOTTOM] || is_virtual_boundary(fc, (ry + 1) << sps->ctb_log2_size_y, 0);
}
}
static void alf_init_subblock(VVCRect *sb, int sb_edges[MAX_EDGES], const VVCRect *b, const int edges[MAX_EDGES])
{
*sb = *b;
memcpy(sb_edges, edges, sizeof(int) * MAX_EDGES);
}
static void alf_get_subblock(VVCRect *sb, int edges[MAX_EDGES], const int bx, const int by, const int vb_pos[2], const int has_vb[2])
{
int *pos[] = { &sb->l, &sb->t, &sb->r, &sb->b };
for (int vertical = 0; vertical <= 1; vertical++) {
if (has_vb[vertical]) {
const int c = vertical ? (bx ? LEFT : RIGHT) : (by ? TOP : BOTTOM);
*pos[c] = vb_pos[vertical];
edges[c] = 1;
}
}
}
static void alf_get_subblocks(const VVCLocalContext *lc, VVCRect sbs[MAX_VBBS], int sb_edges[MAX_VBBS][MAX_EDGES], int *nb_sbs,
const int x0, const int y0, const int rx, const int ry)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const VVCPPS *pps = fc->ps.pps;
const int ctu_size_y = sps->ctb_size_y;
const int vb_pos[] = { get_virtual_boundary(fc, ry, 0), get_virtual_boundary(fc, rx, 1) };
const int has_vb[] = { vb_pos[0] > y0, vb_pos[1] > x0 };
const VVCRect b = { x0, y0, FFMIN(x0 + ctu_size_y, pps->width), FFMIN(y0 + ctu_size_y, pps->height) };
int edges[MAX_EDGES] = { !rx, !ry, rx == pps->ctb_width - 1, ry == pps->ctb_height - 1 };
int i = 0;
alf_get_edges(lc, edges, rx, ry);
for (int by = 0; by <= has_vb[0]; by++) {
for (int bx = 0; bx <= has_vb[1]; bx++, i++) {
alf_init_subblock(sbs + i, sb_edges[i], &b, edges);
alf_get_subblock(sbs + i, sb_edges[i], bx, by, vb_pos, has_vb);
}
}
*nb_sbs = i;
}
void ff_vvc_alf_filter(VVCLocalContext *lc, const int x0, const int y0)
{
VVCFrameContext *fc = lc->fc;
const VVCSPS *sps = fc->ps.sps;
const int rx = x0 >> sps->ctb_log2_size_y;
const int ry = y0 >> sps->ctb_log2_size_y;
const int ps = sps->pixel_shift;
const int padded_stride = EDGE_EMU_BUFFER_STRIDE << ps;
const int padded_offset = padded_stride * ALF_PADDING_SIZE + (ALF_PADDING_SIZE << ps);
const int c_end = sps->r->sps_chroma_format_idc ? VVC_MAX_SAMPLE_ARRAYS : 1;
const int has_chroma = !!sps->r->sps_chroma_format_idc;
const int ctu_end = y0 + sps->ctb_size_y;
const ALFParams *alf = &CTB(fc->tab.alf, rx, ry);
int sb_edges[MAX_VBBS][MAX_EDGES], nb_sbs;
VVCRect sbs[MAX_VBBS];
alf_get_subblocks(lc, sbs, sb_edges, &nb_sbs, x0, y0, rx, ry);
for (int i = 0; i < nb_sbs; i++) {
const VVCRect *sb = sbs + i;
for (int c_idx = 0; c_idx < c_end; c_idx++) {
const int hs = fc->ps.sps->hshift[c_idx];
const int vs = fc->ps.sps->vshift[c_idx];
const int x = sb->l >> hs;
const int y = sb->t >> vs;
const int width = (sb->r - sb->l) >> hs;
const int height = (sb->b - sb->t) >> vs;
const int src_stride = fc->frame->linesize[c_idx];
uint8_t *src = POS(c_idx, sb->l, sb->t);
uint8_t *padded;
if (alf->ctb_flag[c_idx] || (!c_idx && has_chroma && (alf->ctb_cc_idc[0] || alf->ctb_cc_idc[1]))) {
padded = (c_idx ? lc->alf_buffer_chroma : lc->alf_buffer_luma) + padded_offset;
alf_prepare_buffer(fc, padded, src, x, y, rx, ry, width, height,
padded_stride, src_stride, c_idx, sb_edges[i]);
}
if (alf->ctb_flag[c_idx]) {
if (!c_idx) {
alf_filter_luma(lc, src, padded, src_stride, padded_stride, x, y,
width, height, ctu_end - ALF_VB_POS_ABOVE_LUMA, alf);
} else {
alf_filter_chroma(lc, src, padded, src_stride, padded_stride, c_idx,
width, height, ((ctu_end - sb->t) >> vs) - ALF_VB_POS_ABOVE_CHROMA, alf);
}
}
if (c_idx && alf->ctb_cc_idc[c_idx - 1]) {
padded = lc->alf_buffer_luma + padded_offset;
alf_filter_cc(lc, src, padded, src_stride, padded_stride, c_idx,
width, height, hs, vs, ctu_end - sb->t - ALF_VB_POS_ABOVE_LUMA, alf);
}
}
}
}
void ff_vvc_lmcs_filter(const VVCLocalContext *lc, const int x, const int y)
{
const SliceContext *sc = lc->sc;
const VVCFrameContext *fc = lc->fc;
const int ctb_size = fc->ps.sps->ctb_size_y;
const int width = FFMIN(fc->ps.pps->width - x, ctb_size);
const int height = FFMIN(fc->ps.pps->height - y, ctb_size);
uint8_t *data = POS(LUMA, x, y);
if (sc->sh.r->sh_lmcs_used_flag)
fc->vvcdsp.lmcs.filter(data, fc->frame->linesize[LUMA], width, height, &fc->ps.lmcs.inv_lut);
}