1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/rv40.c
Anton Khirnov 1f4cf92cfb pthread_frame: merge the functionality for normal decoder init and init_thread_copy
The current design, where
- proper init is called for the first per-thread context
- first thread's private data is copied into private data for all the
  other threads
- a "fixup" function is called for all the other threads to e.g.
  allocate dynamically allocated data
is very fragile and hard to follow, so it is abandoned. Instead, the
same init function is used to init each per-thread context. Where
necessary, AVCodecInternal.is_copy can be used to differentiate between
the first thread and the other ones (e.g. for decoding the extradata
just once).
2020-04-10 15:24:54 +02:00

589 lines
23 KiB
C

/*
* RV40 decoder
* Copyright (c) 2007 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* RV40 decoder
*/
#include "libavutil/imgutils.h"
#include "avcodec.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "golomb.h"
#include "rv34.h"
#include "rv40vlc2.h"
#include "rv40data.h"
static VLC aic_top_vlc;
static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
static const int16_t mode2_offs[] = {
0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
};
/**
* Initialize all tables.
*/
static av_cold void rv40_init_tables(void)
{
int i;
static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
static VLC_TYPE aic_mode2_table[11814][2];
static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
aic_top_vlc.table = aic_table;
aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
rv40_aic_top_vlc_bits, 1, 1,
rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
for(i = 0; i < AIC_MODE1_NUM; i++){
// Every tenth VLC table is empty
if((i % 10) == 9) continue;
aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
aic_mode1_vlc_bits[i], 1, 1,
aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
}
for(i = 0; i < AIC_MODE2_NUM; i++){
aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
aic_mode2_vlc_bits[i], 1, 1,
aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
for(i = 0; i < NUM_PTYPE_VLCS; i++){
ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
ptype_vlc_bits[i], 1, 1,
ptype_vlc_codes[i], 1, 1,
ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
}
for(i = 0; i < NUM_BTYPE_VLCS; i++){
btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
btype_vlc_bits[i], 1, 1,
btype_vlc_codes[i], 1, 1,
btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
}
}
/**
* Get stored dimension from bitstream.
*
* If the width/height is the standard one then it's coded as a 3-bit index.
* Otherwise it is coded as escaped 8-bit portions.
*/
static int get_dimension(GetBitContext *gb, const int *dim)
{
int t = get_bits(gb, 3);
int val = dim[t];
if(val < 0)
val = dim[get_bits1(gb) - val];
if(!val){
do{
if (get_bits_left(gb) < 8)
return AVERROR_INVALIDDATA;
t = get_bits(gb, 8);
val += t << 2;
}while(t == 0xFF);
}
return val;
}
/**
* Get encoded picture size - usually this is called from rv40_parse_slice_header.
*/
static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
{
*w = get_dimension(gb, rv40_standard_widths);
*h = get_dimension(gb, rv40_standard_heights);
}
static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
{
int mb_bits;
int w = r->s.width, h = r->s.height;
int mb_size;
int ret;
memset(si, 0, sizeof(SliceInfo));
if(get_bits1(gb))
return AVERROR_INVALIDDATA;
si->type = get_bits(gb, 2);
if(si->type == 1) si->type = 0;
si->quant = get_bits(gb, 5);
if(get_bits(gb, 2))
return AVERROR_INVALIDDATA;
si->vlc_set = get_bits(gb, 2);
skip_bits1(gb);
si->pts = get_bits(gb, 13);
if(!si->type || !get_bits1(gb))
rv40_parse_picture_size(gb, &w, &h);
if ((ret = av_image_check_size(w, h, 0, r->s.avctx)) < 0)
return ret;
si->width = w;
si->height = h;
mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
mb_bits = ff_rv34_get_start_offset(gb, mb_size);
si->start = get_bits(gb, mb_bits);
return 0;
}
/**
* Decode 4x4 intra types array.
*/
static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
{
MpegEncContext *s = &r->s;
int i, j, k, v;
int A, B, C;
int pattern;
int8_t *ptr;
for(i = 0; i < 4; i++, dst += r->intra_types_stride){
if(!i && s->first_slice_line){
pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
dst[0] = (pattern >> 2) & 2;
dst[1] = (pattern >> 1) & 2;
dst[2] = pattern & 2;
dst[3] = (pattern << 1) & 2;
continue;
}
ptr = dst;
for(j = 0; j < 4; j++){
/* Coefficients are read using VLC chosen by the prediction pattern
* The first one (used for retrieving a pair of coefficients) is
* constructed from the top, top right and left coefficients
* The second one (used for retrieving only one coefficient) is
* top + 10 * left.
*/
A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
B = ptr[-r->intra_types_stride];
C = ptr[-1];
pattern = A + B * (1 << 4) + C * (1 << 8);
for(k = 0; k < MODE2_PATTERNS_NUM; k++)
if(pattern == rv40_aic_table_index[k])
break;
if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
*ptr++ = v/9;
*ptr++ = v%9;
j++;
}else{
if(B != -1 && C != -1)
v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
else{ // tricky decoding
v = 0;
switch(C){
case -1: // code 0 -> 1, 1 -> 0
if(B < 2)
v = get_bits1(gb) ^ 1;
break;
case 0:
case 2: // code 0 -> 2, 1 -> 0
v = (get_bits1(gb) ^ 1) << 1;
break;
}
}
*ptr++ = v;
}
}
}
return 0;
}
/**
* Decode macroblock information.
*/
static int rv40_decode_mb_info(RV34DecContext *r)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int q, i;
int prev_type = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
if(!r->s.mb_skip_run) {
r->s.mb_skip_run = get_interleaved_ue_golomb(gb) + 1;
if(r->s.mb_skip_run > (unsigned)s->mb_num)
return -1;
}
if(--r->s.mb_skip_run)
return RV34_MB_SKIP;
if(r->avail_cache[6-4]){
int blocks[RV34_MB_TYPES] = {0};
int count = 0;
if(r->avail_cache[6-1])
blocks[r->mb_type[mb_pos - 1]]++;
blocks[r->mb_type[mb_pos - s->mb_stride]]++;
if(r->avail_cache[6-2])
blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
if(r->avail_cache[6-5])
blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
for(i = 0; i < RV34_MB_TYPES; i++){
if(blocks[i] > count){
count = blocks[i];
prev_type = i;
if(count>1)
break;
}
}
} else if (r->avail_cache[6-1])
prev_type = r->mb_type[mb_pos - 1];
if(s->pict_type == AV_PICTURE_TYPE_P){
prev_type = block_num_to_ptype_vlc_num[prev_type];
q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
if(q < PBTYPE_ESCAPE)
return q;
q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
}else{
prev_type = block_num_to_btype_vlc_num[prev_type];
q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
if(q < PBTYPE_ESCAPE)
return q;
q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
}
return 0;
}
enum RV40BlockPos{
POS_CUR,
POS_TOP,
POS_LEFT,
POS_BOTTOM,
};
#define MASK_CUR 0x0001
#define MASK_RIGHT 0x0008
#define MASK_BOTTOM 0x0010
#define MASK_TOP 0x1000
#define MASK_Y_TOP_ROW 0x000F
#define MASK_Y_LAST_ROW 0xF000
#define MASK_Y_LEFT_COL 0x1111
#define MASK_Y_RIGHT_COL 0x8888
#define MASK_C_TOP_ROW 0x0003
#define MASK_C_LAST_ROW 0x000C
#define MASK_C_LEFT_COL 0x0005
#define MASK_C_RIGHT_COL 0x000A
static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
uint8_t *src, int stride, int dmode,
int lim_q1, int lim_p1,
int alpha, int beta, int beta2,
int chroma, int edge, int dir)
{
int filter_p1, filter_q1;
int strong;
int lims;
strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
edge, &filter_p1, &filter_q1);
lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
if (strong) {
rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
lims, dmode, chroma);
} else if (filter_p1 & filter_q1) {
rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
lims, lim_q1, lim_p1);
} else if (filter_p1 | filter_q1) {
rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
alpha, beta, lims >> 1, lim_q1 >> 1,
lim_p1 >> 1);
}
}
/**
* RV40 loop filtering function
*/
static void rv40_loop_filter(RV34DecContext *r, int row)
{
MpegEncContext *s = &r->s;
int mb_pos, mb_x;
int i, j, k;
uint8_t *Y, *C;
int alpha, beta, betaY, betaC;
int q;
int mbtype[4]; ///< current macroblock and its neighbours types
/**
* flags indicating that macroblock can be filtered with strong filter
* it is set only for intra coded MB and MB with DCs coded separately
*/
int mb_strong[4];
int clip[4]; ///< MB filter clipping value calculated from filtering strength
/**
* coded block patterns for luma part of current macroblock and its neighbours
* Format:
* LSB corresponds to the top left block,
* each nibble represents one row of subblocks.
*/
int cbp[4];
/**
* coded block patterns for chroma part of current macroblock and its neighbours
* Format is the same as for luma with two subblocks in a row.
*/
int uvcbp[4][2];
/**
* This mask represents the pattern of luma subblocks that should be filtered
* in addition to the coded ones because they lie at the edge of
* 8x8 block with different enough motion vectors
*/
unsigned mvmasks[4];
mb_pos = row * s->mb_stride;
for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
int mbtype = s->current_picture_ptr->mb_type[mb_pos];
if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
if(IS_INTRA(mbtype))
r->cbp_chroma[mb_pos] = 0xFF;
}
mb_pos = row * s->mb_stride;
for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
int y_h_deblock, y_v_deblock;
int c_v_deblock[2], c_h_deblock[2];
int clip_left;
int avail[4];
unsigned y_to_deblock;
int c_to_deblock[2];
q = s->current_picture_ptr->qscale_table[mb_pos];
alpha = rv40_alpha_tab[q];
beta = rv40_beta_tab [q];
betaY = betaC = beta * 3;
if(s->width * s->height <= 176*144)
betaY += beta;
avail[0] = 1;
avail[1] = row;
avail[2] = mb_x;
avail[3] = row < s->mb_height - 1;
for(i = 0; i < 4; i++){
if(avail[i]){
int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
mvmasks[i] = r->deblock_coefs[pos];
mbtype [i] = s->current_picture_ptr->mb_type[pos];
cbp [i] = r->cbp_luma[pos];
uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
}else{
mvmasks[i] = 0;
mbtype [i] = mbtype[0];
cbp [i] = 0;
uvcbp[i][0] = uvcbp[i][1] = 0;
}
mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
}
y_to_deblock = mvmasks[POS_CUR]
| (mvmasks[POS_BOTTOM] << 16);
/* This pattern contains bits signalling that horizontal edges of
* the current block can be filtered.
* That happens when either of adjacent subblocks is coded or lies on
* the edge of 8x8 blocks with motion vectors differing by more than
* 3/4 pel in any component (any edge orientation for some reason).
*/
y_h_deblock = y_to_deblock
| ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
| ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
/* This pattern contains bits signalling that vertical edges of
* the current block can be filtered.
* That happens when either of adjacent subblocks is coded or lies on
* the edge of 8x8 blocks with motion vectors differing by more than
* 3/4 pel in any component (any edge orientation for some reason).
*/
y_v_deblock = y_to_deblock
| ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
| ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
if(!mb_x)
y_v_deblock &= ~MASK_Y_LEFT_COL;
if(!row)
y_h_deblock &= ~MASK_Y_TOP_ROW;
if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
/* Calculating chroma patterns is similar and easier since there is
* no motion vector pattern for them.
*/
for(i = 0; i < 2; i++){
c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
c_v_deblock[i] = c_to_deblock[i]
| ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
| ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
c_h_deblock[i] = c_to_deblock[i]
| ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
| (uvcbp[POS_CUR][i] << 2);
if(!mb_x)
c_v_deblock[i] &= ~MASK_C_LEFT_COL;
if(!row)
c_h_deblock[i] &= ~MASK_C_TOP_ROW;
if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
}
for(j = 0; j < 16; j += 4){
Y = s->current_picture_ptr->f->data[0] + mb_x*16 + (row*16 + j) * s->linesize;
for(i = 0; i < 4; i++, Y += 4){
int ij = i + j;
int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
int dither = j ? ij : i*4;
// if bottom block is coded then we can filter its top edge
// (or bottom edge of this block, which is the same)
if(y_h_deblock & (MASK_BOTTOM << ij)){
rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
s->linesize, dither,
y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
clip_cur, alpha, beta, betaY,
0, 0, 0);
}
// filter left block edge in ordinary mode (with low filtering strength)
if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
if(!i)
clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
else
clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
clip_cur,
clip_left,
alpha, beta, betaY, 0, 0, 1);
}
// filter top edge of the current macroblock when filtering strength is high
if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
clip_cur,
mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
alpha, beta, betaY, 0, 1, 0);
}
// filter left block edge in edge mode (with high filtering strength)
if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
clip_cur,
clip_left,
alpha, beta, betaY, 0, 1, 1);
}
}
}
for(k = 0; k < 2; k++){
for(j = 0; j < 2; j++){
C = s->current_picture_ptr->f->data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
for(i = 0; i < 2; i++, C += 4){
int ij = i + j*2;
int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
clip_bot,
clip_cur,
alpha, beta, betaC, 1, 0, 0);
}
if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
if(!i)
clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
else
clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
clip_cur,
clip_left,
alpha, beta, betaC, 1, 0, 1);
}
if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
clip_cur,
clip_top,
alpha, beta, betaC, 1, 1, 0);
}
if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
clip_cur,
clip_left,
alpha, beta, betaC, 1, 1, 1);
}
}
}
}
}
}
/**
* Initialize decoder.
*/
static av_cold int rv40_decode_init(AVCodecContext *avctx)
{
RV34DecContext *r = avctx->priv_data;
int ret;
r->rv30 = 0;
if ((ret = ff_rv34_decode_init(avctx)) < 0)
return ret;
if(!aic_top_vlc.bits)
rv40_init_tables();
r->parse_slice_header = rv40_parse_slice_header;
r->decode_intra_types = rv40_decode_intra_types;
r->decode_mb_info = rv40_decode_mb_info;
r->loop_filter = rv40_loop_filter;
r->luma_dc_quant_i = rv40_luma_dc_quant[0];
r->luma_dc_quant_p = rv40_luma_dc_quant[1];
return 0;
}
AVCodec ff_rv40_decoder = {
.name = "rv40",
.long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_RV40,
.priv_data_size = sizeof(RV34DecContext),
.init = rv40_decode_init,
.close = ff_rv34_decode_end,
.decode = ff_rv34_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
AV_CODEC_CAP_FRAME_THREADS,
.flush = ff_mpeg_flush,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NONE
},
.update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
.caps_internal = FF_CODEC_CAP_ALLOCATE_PROGRESS,
};