1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/wavarc.c
Michael Niedermayer a2ec2bd493
avcodec/wavarc: fix integer overflow in decode_5elp() block type 2
Fixes: signed integer overflow: 2097152000 + 107142979 cannot be represented in type 'int'
Fixes: 67919/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_WAVARC_fuzzer-5955101769400320

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2024-05-06 03:00:41 +02:00

892 lines
26 KiB
C

/*
* WavArc audio decoder
* Copyright (c) 2023 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "decode.h"
#include "get_bits.h"
#include "mathops.h"
#include "unary.h"
typedef struct WavArcContext {
AVClass *av_class;
GetBitContext gb;
int shift;
int nb_samples;
int offset;
int align;
int eof;
int skip;
uint8_t *bitstream;
int64_t max_framesize;
int bitstream_size;
int bitstream_index;
int pred[2][70];
int filter[2][70];
int samples[2][640];
uint8_t model[256];
uint16_t freqs[257];
uint16_t ac_value;
uint16_t ac_low;
uint16_t ac_high;
uint16_t range_high;
uint16_t range_low;
uint16_t freq_range;
int ac_pred[70];
int ac_out[570];
} WavArcContext;
static av_cold int wavarc_init(AVCodecContext *avctx)
{
WavArcContext *s = avctx->priv_data;
if (avctx->extradata_size < 52)
return AVERROR_INVALIDDATA;
if (AV_RL32(avctx->extradata + 16) != MKTAG('R','I','F','F'))
return AVERROR_INVALIDDATA;
if (AV_RL32(avctx->extradata + 24) != MKTAG('W','A','V','E'))
return AVERROR_INVALIDDATA;
if (AV_RL32(avctx->extradata + 28) != MKTAG('f','m','t',' '))
return AVERROR_INVALIDDATA;
if (AV_RL16(avctx->extradata + 38) != 1 &&
AV_RL16(avctx->extradata + 38) != 2)
return AVERROR_INVALIDDATA;
av_channel_layout_uninit(&avctx->ch_layout);
av_channel_layout_default(&avctx->ch_layout, AV_RL16(avctx->extradata + 38));
avctx->sample_rate = AV_RL32(avctx->extradata + 40);
s->align = avctx->ch_layout.nb_channels;
switch (AV_RL16(avctx->extradata + 50)) {
case 8: avctx->sample_fmt = AV_SAMPLE_FMT_U8P; break;
case 16: s->align *= 2;
avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break;
}
s->shift = 0;
switch (avctx->codec_tag) {
case MKTAG('0','C','P','Y'):
s->nb_samples = 640;
s->offset = 0;
break;
case MKTAG('1','D','I','F'):
s->nb_samples = 256;
s->offset = 4;
break;
case MKTAG('2','S','L','P'):
case MKTAG('3','N','L','P'):
case MKTAG('4','A','L','P'):
case MKTAG('5','E','L','P'):
s->nb_samples = 570;
s->offset = 70;
break;
default:
return AVERROR_INVALIDDATA;
}
s->max_framesize = s->nb_samples * 16;
s->bitstream = av_calloc(s->max_framesize + AV_INPUT_BUFFER_PADDING_SIZE, sizeof(*s->bitstream));
if (!s->bitstream)
return AVERROR(ENOMEM);
return 0;
}
static unsigned get_urice(GetBitContext *gb, int k)
{
unsigned x = get_unary(gb, 1, get_bits_left(gb));
unsigned y = get_bits_long(gb, k);
unsigned z = (x << k) | y;
return z;
}
static int get_srice(GetBitContext *gb, int k)
{
unsigned z = get_urice(gb, k);
return (z & 1) ? ~((int)(z >> 1)) : z >> 1;
}
static void do_stereo(WavArcContext *s, int ch, int correlated, int len)
{
const int nb_samples = s->nb_samples;
const int shift = s->shift;
if (ch == 0) {
if (correlated) {
for (int n = 0; n < len; n++) {
s->samples[0][n] = s->samples[0][nb_samples + n] >> shift;
s->samples[1][n] = s->pred[1][n] >> shift;
}
} else {
for (int n = 0; n < len; n++) {
s->samples[0][n] = s->samples[0][nb_samples + n] >> shift;
s->samples[1][n] = s->pred[0][n] >> shift;
}
}
} else {
if (correlated) {
for (int n = 0; n < nb_samples; n++)
s->samples[1][n + len] += (unsigned)s->samples[0][n + len];
}
for (int n = 0; n < len; n++) {
s->pred[0][n] = s->samples[1][nb_samples + n];
s->pred[1][n] = s->pred[0][n] - (unsigned)s->samples[0][nb_samples + n];
}
}
}
static int decode_0cpy(AVCodecContext *avctx,
WavArcContext *s, GetBitContext *gb)
{
const int bits = s->align * 8;
s->nb_samples = FFMIN(640, get_bits_left(gb) / bits);
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_U8P:
for (int n = 0; n < s->nb_samples; n++) {
for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++)
s->samples[ch][n] = get_bits(gb, 8) - 0x80;
}
break;
case AV_SAMPLE_FMT_S16P:
for (int n = 0; n < s->nb_samples; n++) {
for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++)
s->samples[ch][n] = sign_extend(av_bswap16(get_bits(gb, 16)), 16);
}
break;
}
return 0;
}
static int decode_1dif(AVCodecContext *avctx,
WavArcContext *s, GetBitContext *gb)
{
int ch, finished, fill, correlated;
ch = 0;
finished = 0;
while (!finished) {
int *samples = s->samples[ch];
int k, block_type;
if (get_bits_left(gb) <= 0)
return AVERROR_INVALIDDATA;
block_type = get_urice(gb, 1);
if (block_type < 4 && block_type >= 0) {
k = 1 + (avctx->sample_fmt == AV_SAMPLE_FMT_S16P);
k = get_urice(gb, k) + 1;
if (k >= 32)
return AVERROR_INVALIDDATA;
}
switch (block_type) {
case 8:
s->eof = 1;
return AVERROR_EOF;
case 7:
s->nb_samples = get_bits(gb, 8);
continue;
case 6:
s->shift = get_urice(gb, 2);
if ((unsigned)s->shift > 31) {
s->shift = 0;
return AVERROR_INVALIDDATA;
}
continue;
case 5:
if (avctx->sample_fmt == AV_SAMPLE_FMT_U8P) {
fill = (int8_t)get_bits(gb, 8);
fill -= 0x80;
} else {
fill = (int16_t)get_bits(gb, 16);
fill -= 0x8000;
}
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = fill;
finished = 1;
break;
case 4:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = 0;
finished = 1;
break;
case 3:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = get_srice(gb, k) + (samples[n + 3] - (unsigned)samples[n + 2]) * 3 +
samples[n + 1];
finished = 1;
break;
case 2:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = get_srice(gb, k) + (samples[n + 3] * 2U - samples[n + 2]);
finished = 1;
break;
case 1:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = get_srice(gb, k) + (unsigned)samples[n + 3];
finished = 1;
break;
case 0:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 4] = get_srice(gb, k);
finished = 1;
break;
default:
return AVERROR_INVALIDDATA;
}
if (finished == 1 && avctx->ch_layout.nb_channels == 2) {
if (ch == 0)
correlated = get_bits1(gb);
finished = ch != 0;
do_stereo(s, ch, correlated, 4);
ch = 1;
}
}
if (avctx->ch_layout.nb_channels == 1) {
for (int n = 0; n < 4; n++)
s->samples[0][n] = s->samples[0][s->nb_samples + n];
}
return 0;
}
static int decode_2slp(AVCodecContext *avctx,
WavArcContext *s, GetBitContext *gb)
{
int ch, finished, fill, correlated, order;
ch = 0;
finished = 0;
while (!finished) {
int *samples = s->samples[ch];
int k, block_type;
if (get_bits_left(gb) <= 0)
return AVERROR_INVALIDDATA;
block_type = get_urice(gb, 1);
if (block_type < 5 && block_type >= 0) {
k = 1 + (avctx->sample_fmt == AV_SAMPLE_FMT_S16P);
k = get_urice(gb, k) + 1;
if (k >= 32)
return AVERROR_INVALIDDATA;
}
switch (block_type) {
case 9:
s->eof = 1;
return AVERROR_EOF;
case 8:
s->nb_samples = get_urice(gb, 8);
if (s->nb_samples > 570U) {
s->nb_samples = 570;
return AVERROR_INVALIDDATA;
}
continue;
case 7:
s->shift = get_urice(gb, 2);
if ((unsigned)s->shift > 31) {
s->shift = 0;
return AVERROR_INVALIDDATA;
}
continue;
case 6:
if (avctx->sample_fmt == AV_SAMPLE_FMT_U8P) {
fill = (int8_t)get_bits(gb, 8);
fill -= 0x80;
} else {
fill = (int16_t)get_bits(gb, 16);
fill -= 0x8000;
}
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = fill;
finished = 1;
break;
case 5:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = 0;
finished = 1;
break;
case 4:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = get_srice(gb, k) + (samples[n + 69] - (unsigned)samples[n + 68]) * 3 +
samples[n + 67];
finished = 1;
break;
case 3:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = get_srice(gb, k) + (samples[n + 69] * 2U - samples[n + 68]);
finished = 1;
break;
case 2:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = get_srice(gb, k);
finished = 1;
break;
case 1:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = get_srice(gb, k) + (unsigned)samples[n + 69];
finished = 1;
break;
case 0:
order = get_urice(gb, 2);
if ((unsigned)order > FF_ARRAY_ELEMS(s->filter[ch]))
return AVERROR_INVALIDDATA;
for (int o = 0; o < order; o++)
s->filter[ch][o] = get_srice(gb, 2);
for (int n = 0; n < s->nb_samples; n++) {
int sum = 15;
for (int o = 0; o < order; o++)
sum += s->filter[ch][o] * (unsigned)samples[n + 70 - o - 1];
samples[n + 70] = get_srice(gb, k) + (unsigned)(sum >> 4);
}
finished = 1;
break;
default:
return AVERROR_INVALIDDATA;
}
if (finished == 1 && avctx->ch_layout.nb_channels == 2) {
if (ch == 0)
correlated = get_bits1(gb);
finished = ch != 0;
do_stereo(s, ch, correlated, 70);
ch = 1;
}
}
if (avctx->ch_layout.nb_channels == 1) {
for (int n = 0; n < 70; n++)
s->samples[0][n] = s->samples[0][s->nb_samples + n];
}
return 0;
}
static int ac_init(AVCodecContext *avctx,
WavArcContext *s, GetBitContext *gb)
{
s->ac_low = 0;
s->ac_high = 0xffffu;
s->ac_value = get_bits(gb, 16);
s->freq_range = s->freqs[256];
if (!s->freq_range)
return AVERROR_INVALIDDATA;
return 0;
}
static uint16_t ac_get_prob(WavArcContext *s)
{
return ((s->freq_range - 1) + (s->ac_value - s->ac_low) * (unsigned)s->freq_range) /
((s->ac_high - s->ac_low) + 1U);
}
static uint8_t ac_map_symbol(WavArcContext *s, uint16_t prob)
{
int idx = 255;
while (prob < s->freqs[idx])
idx--;
s->range_high = s->freqs[idx + 1];
s->range_low = s->freqs[idx];
return idx;
}
static int ac_normalize(AVCodecContext *avctx, WavArcContext *s, GetBitContext *gb)
{
int range;
if (s->ac_high < s->ac_low)
goto fail;
range = (s->ac_high - s->ac_low) + 1;
s->ac_high = (range * (unsigned)s->range_high) / s->freq_range + s->ac_low - 1;
s->ac_low += (range * (unsigned)s->range_low) / s->freq_range;
if (s->ac_high < s->ac_low)
goto fail;
for (;;) {
if ((s->ac_high & 0x8000) != (s->ac_low & 0x8000)) {
if (((s->ac_low & 0x4000) == 0) || ((s->ac_high & 0x4000) != 0))
return 0;
s->ac_value ^= 0x4000;
s->ac_low &= 0x3fff;
s->ac_high |= 0x4000;
}
s->ac_low = s->ac_low * 2;
s->ac_high = s->ac_high * 2 | 1;
if (s->ac_high < s->ac_low)
goto fail;
if (get_bits_left(gb) <= 0) {
av_log(avctx, AV_LOG_ERROR, "overread in arithmetic coder\n");
goto fail;
}
s->ac_value = s->ac_value * 2 + get_bits1(gb);
if (s->ac_low > s->ac_value || s->ac_high < s->ac_value)
goto fail;
}
fail:
av_log(avctx, AV_LOG_ERROR, "invalid state\n");
return AVERROR_INVALIDDATA;
}
static void ac_init_model(WavArcContext *s)
{
memset(s->freqs, 0, sizeof(s->freqs));
for (int n = 0; n < 256; n++)
s->freqs[n+1] = s->model[n] + s->freqs[n];
}
static int ac_read_model(AVCodecContext *avctx,
WavArcContext *s,
GetBitContext *gb)
{
unsigned start, end;
memset(s->model, 0, sizeof(s->model));
start = get_bits(gb, 8);
end = get_bits(gb, 8);
for (;;) {
while (start <= end) {
if (get_bits_left(gb) < 8)
return AVERROR_INVALIDDATA;
s->model[start++] = get_bits(gb, 8);
}
if (get_bits_left(gb) < 8)
return AVERROR_INVALIDDATA;
start = get_bits(gb, 8);
if (!start)
break;
end = get_bits(gb, 8);
}
ac_init_model(s);
return 0;
}
static int decode_5elp(AVCodecContext *avctx,
WavArcContext *s, GetBitContext *gb)
{
int ch, finished, fill, correlated, order = 0;
ch = 0;
finished = 0;
while (!finished) {
int *samples = s->samples[ch];
int *ac_pred = s->ac_pred;
int *ac_out = s->ac_out;
int k, block_type;
if (get_bits_left(gb) <= 0)
return AVERROR_INVALIDDATA;
memset(s->ac_out, 0, sizeof(s->ac_out));
block_type = get_urice(gb, 1);
av_log(avctx, AV_LOG_DEBUG, "block_type : %d\n", block_type);
if (block_type >= 0 && block_type <= 7) {
k = 1 + (avctx->sample_fmt == AV_SAMPLE_FMT_S16P);
k = get_urice(gb, k) + 1;
if (k >= 32)
return AVERROR_INVALIDDATA;
}
if (block_type <= 2 || block_type == 6 || block_type == 13 ||
block_type == 14 || block_type == 15 || block_type == 19) {
order = get_urice(gb, 2);
if ((unsigned)order > FF_ARRAY_ELEMS(s->filter[ch]))
return AVERROR_INVALIDDATA;
for (int o = 0; o < order; o++)
s->filter[ch][o] = get_srice(gb, 2);
}
if (block_type >= 0 && block_type <= 7) {
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = get_srice(gb, k);
} else {
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = 0;
}
if (block_type >= 13 && block_type <= 20) {
const int ac_size = get_bits(gb, 12);
const int ac_pos = get_bits_count(gb);
GetBitContext ac_gb = *gb;
int ret;
skip_bits_long(gb, ac_size);
ret = ac_read_model(avctx, s, &ac_gb);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "bad arithmetic model\n");
return ret;
}
ret = ac_init(avctx, s, &ac_gb);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "cannot init arithmetic decoder\n");
return ret;
}
for (int n = 0; n < s->nb_samples; n++) {
uint16_t prob = ac_get_prob(s);
int ac = ac_map_symbol(s, prob);
ac_out[n] = ac - 0x80;
if ((ret = ac_normalize(avctx, s, &ac_gb)) < 0)
return ret;
}
if (get_bits_count(&ac_gb) != ac_pos + ac_size) {
av_log(avctx, AV_LOG_DEBUG, "over/under-read in arithmetic coder: %d\n",
ac_pos + ac_size - get_bits_count(&ac_gb));
}
}
switch (block_type) {
case 12:
s->eof = 1;
return AVERROR_EOF;
case 11:
s->nb_samples = get_urice(gb, 8);
if (s->nb_samples > 570U) {
s->nb_samples = 570;
return AVERROR_INVALIDDATA;
}
continue;
case 10:
s->shift = get_urice(gb, 2);
if ((unsigned)s->shift > 31) {
s->shift = 0;
return AVERROR_INVALIDDATA;
}
continue;
case 9:
if (avctx->sample_fmt == AV_SAMPLE_FMT_U8P) {
fill = (int8_t)get_bits(gb, 8);
fill -= 0x80;
} else {
fill = (int16_t)get_bits(gb, 16);
fill -= 0x8000;
}
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = fill;
finished = 1;
break;
case 8:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] = 0;
finished = 1;
break;
case 20:
case 7:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += ac_out[n] + samples[n + 69] * 3U - samples[n + 68] * 3U + samples[n + 67];
finished = 1;
break;
case 19:
case 6:
for (int n = 0; n < 70; n++) {
ac_pred[n] = samples[n];
samples[n] = 0;
}
for (int n = 0; n < s->nb_samples; n++) {
int sum = 15;
for (int o = 0; o < order; o++)
sum += s->filter[ch][o] * (unsigned)samples[n + 70 - o - 1];
samples[n + 70] += ac_out[n] + (unsigned)(sum >> 4);
}
for (int n = 0; n < 70; n++)
samples[n] = ac_pred[n];
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += ac_out[n] + samples[n + 69] * 3U - samples[n + 68] * 3U + samples[n + 67];
finished = 1;
break;
case 18:
case 5:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += ac_out[n] + samples[n + 69] * 2U - samples[n + 68];
finished = 1;
break;
case 17:
case 4:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += ac_out[n];
finished = 1;
break;
case 16:
case 3:
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += ac_out[n] + (unsigned)samples[n + 69];
finished = 1;
break;
case 15:
case 2:
for (int n = 0; n < 70; n++) {
ac_pred[n] = samples[n];
samples[n] = 0;
}
for (int n = 0; n < s->nb_samples; n++) {
int sum = 15;
for (int o = 0; o < order; o++)
sum += s->filter[ch][o] * (unsigned)samples[n + 70 - o - 1];
samples[n + 70] += ac_out[n] + (unsigned)(sum >> 4);
}
for (int n = 0; n < 70; n++)
samples[n] = ac_pred[n];
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += samples[n + 69] * 2U - samples[n + 68];
finished = 1;
break;
case 14:
case 1:
for (int n = 0; n < 70; n++) {
ac_pred[n] = samples[n];
samples[n] = 0;
}
for (int n = 0; n < s->nb_samples; n++) {
int sum = 15;
for (int o = 0; o < order; o++)
sum += s->filter[ch][o] * (unsigned)samples[n + 70 - o - 1];
samples[n + 70] += (unsigned)ac_out[n] + (sum >> 4);
}
for (int n = 0; n < 70; n++)
samples[n] = ac_pred[n];
for (int n = 0; n < s->nb_samples; n++)
samples[n + 70] += (unsigned)samples[n + 69];
finished = 1;
break;
case 13:
case 0:
for (int n = 0; n < s->nb_samples; n++) {
int sum = 15;
for (int o = 0; o < order; o++)
sum += s->filter[ch][o] * (unsigned)samples[n + 70 - o - 1];
samples[n + 70] += (unsigned)ac_out[n] + (sum >> 4);
}
finished = 1;
break;
default:
return AVERROR_INVALIDDATA;
}
if (finished == 1 && avctx->ch_layout.nb_channels == 2) {
if (ch == 0)
correlated = get_bits1(gb);
finished = ch != 0;
do_stereo(s, ch, correlated, 70);
ch = 1;
}
}
if (avctx->ch_layout.nb_channels == 1) {
for (int n = 0; n < 70; n++)
s->samples[0][n] = s->samples[0][s->nb_samples + n];
}
return 0;
}
static int wavarc_decode(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *pkt)
{
WavArcContext *s = avctx->priv_data;
GetBitContext *gb = &s->gb;
int buf_size, input_buf_size;
const uint8_t *buf;
int ret, n;
if ((!pkt->size && !s->bitstream_size) || s->nb_samples == 0 || s->eof) {
*got_frame_ptr = 0;
return pkt->size;
}
buf_size = FFMIN(pkt->size, s->max_framesize - s->bitstream_size);
input_buf_size = buf_size;
if (s->bitstream_index + s->bitstream_size + buf_size + AV_INPUT_BUFFER_PADDING_SIZE > s->max_framesize) {
memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
s->bitstream_index = 0;
}
if (pkt->data)
memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], pkt->data, buf_size);
buf = &s->bitstream[s->bitstream_index];
buf_size += s->bitstream_size;
s->bitstream_size = buf_size;
if (buf_size < s->max_framesize && pkt->data) {
*got_frame_ptr = 0;
return input_buf_size;
}
if ((ret = init_get_bits8(gb, buf, buf_size)) < 0)
goto fail;
skip_bits(gb, s->skip);
switch (avctx->codec_tag) {
case MKTAG('0','C','P','Y'):
ret = decode_0cpy(avctx, s, gb);
break;
case MKTAG('1','D','I','F'):
ret = decode_1dif(avctx, s, gb);
break;
case MKTAG('2','S','L','P'):
case MKTAG('3','N','L','P'):
case MKTAG('4','A','L','P'):
ret = decode_2slp(avctx, s, gb);
break;
case MKTAG('5','E','L','P'):
ret = decode_5elp(avctx, s, gb);
break;
default:
ret = AVERROR_INVALIDDATA;
}
if (ret < 0)
goto fail;
s->skip = get_bits_count(gb) - 8 * (get_bits_count(gb) / 8);
n = get_bits_count(gb) / 8;
if (n > buf_size) {
fail:
s->bitstream_size = 0;
s->bitstream_index = 0;
if (ret == AVERROR_EOF)
return 0;
return AVERROR_INVALIDDATA;
}
frame->nb_samples = s->nb_samples;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
goto fail;
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_U8P:
for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
uint8_t *dst = (uint8_t *)frame->extended_data[ch];
const int *src = s->samples[ch] + s->offset;
for (int n = 0; n < frame->nb_samples; n++)
dst[n] = src[n] * (1U << s->shift) + 0x80U;
}
break;
case AV_SAMPLE_FMT_S16P:
for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
int16_t *dst = (int16_t *)frame->extended_data[ch];
const int *src = s->samples[ch] + s->offset;
for (int n = 0; n < frame->nb_samples; n++)
dst[n] = src[n] * (1U << s->shift);
}
break;
}
*got_frame_ptr = 1;
if (s->bitstream_size) {
s->bitstream_index += n;
s->bitstream_size -= n;
return input_buf_size;
}
return n;
}
static av_cold int wavarc_close(AVCodecContext *avctx)
{
WavArcContext *s = avctx->priv_data;
av_freep(&s->bitstream);
s->bitstream_size = 0;
return 0;
}
const FFCodec ff_wavarc_decoder = {
.p.name = "wavarc",
CODEC_LONG_NAME("Waveform Archiver"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_WAVARC,
.priv_data_size = sizeof(WavArcContext),
.init = wavarc_init,
FF_CODEC_DECODE_CB(wavarc_decode),
.close = wavarc_close,
.p.capabilities = AV_CODEC_CAP_DR1 |
#if FF_API_SUBFRAMES
AV_CODEC_CAP_SUBFRAMES |
#endif
AV_CODEC_CAP_DELAY,
.p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE },
};