1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavcodec/ac3dec.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

1870 lines
68 KiB
C

/*
* AC-3 Audio Decoder
* This code was developed as part of Google Summer of Code 2006.
* E-AC-3 support was added as part of Google Summer of Code 2007.
*
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
* Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
* Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config_components.h"
#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <string.h>
#include "libavutil/channel_layout.h"
#include "libavutil/crc.h"
#include "libavutil/downmix_info.h"
#include "libavutil/intmath.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/thread.h"
#include "bswapdsp.h"
#include "aac_ac3_parser.h"
#include "ac3_parser_internal.h"
#include "ac3dec.h"
#include "ac3dec_data.h"
#include "ac3defs.h"
#include "decode.h"
#include "kbdwin.h"
/**
* table for ungrouping 3 values in 7 bits.
* used for exponents and bap=2 mantissas
*/
static uint8_t ungroup_3_in_7_bits_tab[128][3];
/** tables for ungrouping mantissas */
static int b1_mantissas[32][3];
static int b2_mantissas[128][3];
static int b3_mantissas[8];
static int b4_mantissas[128][2];
static int b5_mantissas[16];
/**
* Quantization table: levels for symmetric. bits for asymmetric.
* reference: Table 7.18 Mapping of bap to Quantizer
*/
static const uint8_t quantization_tab[16] = {
0, 3, 5, 7, 11, 15,
5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};
#if (!USE_FIXED)
/** dynamic range table. converts codes to scale factors. */
static float dynamic_range_tab[256];
float ff_ac3_heavy_dynamic_range_tab[256];
#endif
/** Adjustments in dB gain */
static const float gain_levels[9] = {
LEVEL_PLUS_3DB,
LEVEL_PLUS_1POINT5DB,
LEVEL_ONE,
LEVEL_MINUS_1POINT5DB,
LEVEL_MINUS_3DB,
LEVEL_MINUS_4POINT5DB,
LEVEL_MINUS_6DB,
LEVEL_ZERO,
LEVEL_MINUS_9DB
};
/** Adjustments in dB gain (LFE, +10 to -21 dB) */
static const float gain_levels_lfe[32] = {
3.162275, 2.818382, 2.511886, 2.238719, 1.995261, 1.778278, 1.584893,
1.412536, 1.258924, 1.122018, 1.000000, 0.891251, 0.794328, 0.707946,
0.630957, 0.562341, 0.501187, 0.446683, 0.398107, 0.354813, 0.316227,
0.281838, 0.251188, 0.223872, 0.199526, 0.177828, 0.158489, 0.141253,
0.125892, 0.112201, 0.100000, 0.089125
};
/**
* Table for default stereo downmixing coefficients
* reference: Section 7.8.2 Downmixing Into Two Channels
*/
static const uint8_t ac3_default_coeffs[8][5][2] = {
{ { 2, 7 }, { 7, 2 }, },
{ { 4, 4 }, },
{ { 2, 7 }, { 7, 2 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, },
{ { 2, 7 }, { 7, 2 }, { 6, 6 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
{ { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
};
/**
* Symmetrical Dequantization
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
* Tables 7.19 to 7.23
*/
static inline int
symmetric_dequant(int code, int levels)
{
return ((code - (levels >> 1)) * (1 << 24)) / levels;
}
/*
* Initialize tables at runtime.
*/
static av_cold void ac3_tables_init(void)
{
int i;
/* generate table for ungrouping 3 values in 7 bits
reference: Section 7.1.3 Exponent Decoding */
for (i = 0; i < 128; i++) {
ungroup_3_in_7_bits_tab[i][0] = i / 25;
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
}
/* generate grouped mantissa tables
reference: Section 7.3.5 Ungrouping of Mantissas */
for (i = 0; i < 32; i++) {
/* bap=1 mantissas */
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
}
for (i = 0; i < 128; i++) {
/* bap=2 mantissas */
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
/* bap=4 mantissas */
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
}
/* generate ungrouped mantissa tables
reference: Tables 7.21 and 7.23 */
for (i = 0; i < 7; i++) {
/* bap=3 mantissas */
b3_mantissas[i] = symmetric_dequant(i, 7);
}
for (i = 0; i < 15; i++) {
/* bap=5 mantissas */
b5_mantissas[i] = symmetric_dequant(i, 15);
}
#if (!USE_FIXED)
/* generate dynamic range table
reference: Section 7.7.1 Dynamic Range Control */
for (i = 0; i < 256; i++) {
int v = (i >> 5) - ((i >> 7) << 3) - 5;
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
}
/* generate compr dynamic range table
reference: Section 7.7.2 Heavy Compression */
for (i = 0; i < 256; i++) {
int v = (i >> 4) - ((i >> 7) << 4) - 4;
ff_ac3_heavy_dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0xF) | 0x10);
}
#endif
}
static void ac3_downmix(AVCodecContext *avctx)
{
AC3DecodeContext *s = avctx->priv_data;
const AVChannelLayout mono = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
const AVChannelLayout stereo = (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
/* allow downmixing to stereo or mono */
if (avctx->ch_layout.nb_channels > 1 &&
!av_channel_layout_compare(&s->downmix_layout, &mono)) {
av_channel_layout_uninit(&avctx->ch_layout);
avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
} else if (avctx->ch_layout.nb_channels > 2 &&
!av_channel_layout_compare(&s->downmix_layout, &stereo)) {
av_channel_layout_uninit(&avctx->ch_layout);
avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
}
s->downmixed = 1;
}
/**
* AVCodec initialization
*/
static av_cold int ac3_decode_init(AVCodecContext *avctx)
{
static AVOnce init_static_once = AV_ONCE_INIT;
AC3DecodeContext *s = avctx->priv_data;
const float scale = 1.0f;
int i, ret;
s->avctx = avctx;
if ((ret = av_tx_init(&s->tx_128, &s->tx_fn_128, IMDCT_TYPE, 1, 128, &scale, 0)))
return ret;
if ((ret = av_tx_init(&s->tx_256, &s->tx_fn_256, IMDCT_TYPE, 1, 256, &scale, 0)))
return ret;
AC3_RENAME(ff_kbd_window_init)(s->window, 5.0, 256);
ff_bswapdsp_init(&s->bdsp);
#if (USE_FIXED)
s->fdsp = avpriv_alloc_fixed_dsp(avctx->flags & AV_CODEC_FLAG_BITEXACT);
#else
ff_fmt_convert_init(&s->fmt_conv);
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
#endif
if (!s->fdsp)
return AVERROR(ENOMEM);
ff_ac3dsp_init(&s->ac3dsp);
av_lfg_init(&s->dith_state, 0);
if (USE_FIXED)
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
else
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
ac3_downmix(avctx);
for (i = 0; i < AC3_MAX_CHANNELS; i++) {
s->xcfptr[i] = s->transform_coeffs[i];
s->dlyptr[i] = s->delay[i];
}
ff_thread_once(&init_static_once, ac3_tables_init);
return 0;
}
/**
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
* GetBitContext within AC3DecodeContext must point to
* the start of the synchronized AC-3 bitstream.
*/
static int ac3_parse_header(AC3DecodeContext *s)
{
GetBitContext *gbc = &s->gbc;
int i;
/* read the rest of the bsi. read twice for dual mono mode. */
i = !s->channel_mode;
do {
s->dialog_normalization[(!s->channel_mode)-i] = -get_bits(gbc, 5);
if (s->dialog_normalization[(!s->channel_mode)-i] == 0) {
s->dialog_normalization[(!s->channel_mode)-i] = -31;
}
if (s->target_level != 0) {
s->level_gain[(!s->channel_mode)-i] = powf(2.0f,
(float)(s->target_level -
s->dialog_normalization[(!s->channel_mode)-i])/6.0f);
}
if (s->compression_exists[(!s->channel_mode)-i] = get_bits1(gbc)) {
s->heavy_dynamic_range[(!s->channel_mode)-i] =
AC3_HEAVY_RANGE(get_bits(gbc, 8));
}
if (get_bits1(gbc))
skip_bits(gbc, 8); //skip language code
if (get_bits1(gbc))
skip_bits(gbc, 7); //skip audio production information
} while (i--);
skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
/* skip the timecodes or parse the Alternate Bit Stream Syntax */
if (s->bitstream_id != 6) {
if (get_bits1(gbc))
skip_bits(gbc, 14); //skip timecode1
if (get_bits1(gbc))
skip_bits(gbc, 14); //skip timecode2
} else {
if (get_bits1(gbc)) {
s->preferred_downmix = get_bits(gbc, 2);
s->center_mix_level_ltrt = get_bits(gbc, 3);
s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
s->center_mix_level = get_bits(gbc, 3);
s->surround_mix_level = av_clip(get_bits(gbc, 3), 3, 7);
}
if (get_bits1(gbc)) {
s->dolby_surround_ex_mode = get_bits(gbc, 2);
s->dolby_headphone_mode = get_bits(gbc, 2);
skip_bits(gbc, 10); // skip adconvtyp (1), xbsi2 (8), encinfo (1)
}
}
/* skip additional bitstream info */
if (get_bits1(gbc)) {
i = get_bits(gbc, 6);
do {
skip_bits(gbc, 8);
} while (i--);
}
return 0;
}
/**
* Common function to parse AC-3 or E-AC-3 frame header
*/
static int parse_frame_header(AC3DecodeContext *s)
{
AC3HeaderInfo hdr;
int err;
err = ff_ac3_parse_header(&s->gbc, &hdr);
if (err)
return err;
/* get decoding parameters from header info */
s->bit_alloc_params.sr_code = hdr.sr_code;
s->bitstream_id = hdr.bitstream_id;
s->bitstream_mode = hdr.bitstream_mode;
s->channel_mode = hdr.channel_mode;
s->lfe_on = hdr.lfe_on;
s->bit_alloc_params.sr_shift = hdr.sr_shift;
s->sample_rate = hdr.sample_rate;
s->bit_rate = hdr.bit_rate;
s->channels = hdr.channels;
s->fbw_channels = s->channels - s->lfe_on;
s->lfe_ch = s->fbw_channels + 1;
s->frame_size = hdr.frame_size;
s->superframe_size += hdr.frame_size;
s->preferred_downmix = AC3_DMIXMOD_NOTINDICATED;
s->center_mix_level = hdr.center_mix_level;
s->center_mix_level_ltrt = 4; // -3.0dB
s->surround_mix_level = hdr.surround_mix_level;
s->surround_mix_level_ltrt = 4; // -3.0dB
s->lfe_mix_level_exists = 0;
s->num_blocks = hdr.num_blocks;
s->frame_type = hdr.frame_type;
s->substreamid = hdr.substreamid;
s->dolby_surround_mode = hdr.dolby_surround_mode;
s->dolby_surround_ex_mode = AC3_DSUREXMOD_NOTINDICATED;
s->dolby_headphone_mode = AC3_DHEADPHONMOD_NOTINDICATED;
if (s->lfe_on) {
s->start_freq[s->lfe_ch] = 0;
s->end_freq[s->lfe_ch] = 7;
s->num_exp_groups[s->lfe_ch] = 2;
s->channel_in_cpl[s->lfe_ch] = 0;
}
if (s->bitstream_id <= 10) {
s->eac3 = 0;
s->snr_offset_strategy = 2;
s->block_switch_syntax = 1;
s->dither_flag_syntax = 1;
s->bit_allocation_syntax = 1;
s->fast_gain_syntax = 0;
s->first_cpl_leak = 0;
s->dba_syntax = 1;
s->skip_syntax = 1;
memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
return ac3_parse_header(s);
} else if (CONFIG_EAC3_DECODER) {
s->eac3 = 1;
return ff_eac3_parse_header(s);
} else {
av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
return AVERROR(ENOSYS);
}
}
/**
* Set stereo downmixing coefficients based on frame header info.
* reference: Section 7.8.2 Downmixing Into Two Channels
*/
static int set_downmix_coeffs(AC3DecodeContext *s)
{
int i;
float cmix = gain_levels[s-> center_mix_level];
float smix = gain_levels[s->surround_mix_level];
float norm0, norm1;
float downmix_coeffs[2][AC3_MAX_CHANNELS];
if (!s->downmix_coeffs[0]) {
s->downmix_coeffs[0] = av_malloc_array(2 * AC3_MAX_CHANNELS,
sizeof(**s->downmix_coeffs));
if (!s->downmix_coeffs[0])
return AVERROR(ENOMEM);
s->downmix_coeffs[1] = s->downmix_coeffs[0] + AC3_MAX_CHANNELS;
}
for (i = 0; i < s->fbw_channels; i++) {
downmix_coeffs[0][i] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
downmix_coeffs[1][i] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
}
if (s->channel_mode > 1 && s->channel_mode & 1) {
downmix_coeffs[0][1] = downmix_coeffs[1][1] = cmix;
}
if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
int nf = s->channel_mode - 2;
downmix_coeffs[0][nf] = downmix_coeffs[1][nf] = smix * LEVEL_MINUS_3DB;
}
if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
int nf = s->channel_mode - 4;
downmix_coeffs[0][nf] = downmix_coeffs[1][nf+1] = smix;
}
/* renormalize */
norm0 = norm1 = 0.0;
for (i = 0; i < s->fbw_channels; i++) {
norm0 += downmix_coeffs[0][i];
norm1 += downmix_coeffs[1][i];
}
norm0 = 1.0f / norm0;
norm1 = 1.0f / norm1;
for (i = 0; i < s->fbw_channels; i++) {
downmix_coeffs[0][i] *= norm0;
downmix_coeffs[1][i] *= norm1;
}
if (s->output_mode == AC3_CHMODE_MONO) {
for (i = 0; i < s->fbw_channels; i++)
downmix_coeffs[0][i] = (downmix_coeffs[0][i] +
downmix_coeffs[1][i]) * LEVEL_MINUS_3DB;
}
for (i = 0; i < s->fbw_channels; i++) {
s->downmix_coeffs[0][i] = FIXR12(downmix_coeffs[0][i]);
s->downmix_coeffs[1][i] = FIXR12(downmix_coeffs[1][i]);
}
return 0;
}
/**
* Decode the grouped exponents according to exponent strategy.
* reference: Section 7.1.3 Exponent Decoding
*/
static int decode_exponents(AC3DecodeContext *s,
GetBitContext *gbc, int exp_strategy, int ngrps,
uint8_t absexp, int8_t *dexps)
{
int i, j, grp, group_size;
int dexp[256];
int expacc, prevexp;
/* unpack groups */
group_size = exp_strategy + (exp_strategy == EXP_D45);
for (grp = 0, i = 0; grp < ngrps; grp++) {
expacc = get_bits(gbc, 7);
if (expacc >= 125) {
av_log(s->avctx, AV_LOG_ERROR, "expacc %d is out-of-range\n", expacc);
return AVERROR_INVALIDDATA;
}
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
}
/* convert to absolute exps and expand groups */
prevexp = absexp;
for (i = 0, j = 0; i < ngrps * 3; i++) {
prevexp += dexp[i] - 2;
if (prevexp > 24U) {
av_log(s->avctx, AV_LOG_ERROR, "exponent %d is out-of-range\n", prevexp);
return AVERROR_INVALIDDATA;
}
switch (group_size) {
case 4: dexps[j++] = prevexp;
dexps[j++] = prevexp;
case 2: dexps[j++] = prevexp;
case 1: dexps[j++] = prevexp;
}
}
return 0;
}
/**
* Generate transform coefficients for each coupled channel in the coupling
* range using the coupling coefficients and coupling coordinates.
* reference: Section 7.4.3 Coupling Coordinate Format
*/
static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
{
int bin, band, ch;
bin = s->start_freq[CPL_CH];
for (band = 0; band < s->num_cpl_bands; band++) {
int band_start = bin;
int band_end = bin + s->cpl_band_sizes[band];
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (s->channel_in_cpl[ch]) {
int cpl_coord = s->cpl_coords[ch][band] << 5;
for (bin = band_start; bin < band_end; bin++) {
s->fixed_coeffs[ch][bin] =
MULH(s->fixed_coeffs[CPL_CH][bin] * (1 << 4), cpl_coord);
}
if (ch == 2 && s->phase_flags[band]) {
for (bin = band_start; bin < band_end; bin++)
s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
}
}
}
bin = band_end;
}
}
/**
* Grouped mantissas for 3-level 5-level and 11-level quantization
*/
typedef struct mant_groups {
int b1_mant[2];
int b2_mant[2];
int b4_mant;
int b1;
int b2;
int b4;
} mant_groups;
/**
* Decode the transform coefficients for a particular channel
* reference: Section 7.3 Quantization and Decoding of Mantissas
*/
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
{
int start_freq = s->start_freq[ch_index];
int end_freq = s->end_freq[ch_index];
uint8_t *baps = s->bap[ch_index];
int8_t *exps = s->dexps[ch_index];
int32_t *coeffs = s->fixed_coeffs[ch_index];
int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
GetBitContext *gbc = &s->gbc;
int freq;
for (freq = start_freq; freq < end_freq; freq++) {
int bap = baps[freq];
int mantissa;
switch (bap) {
case 0:
/* random noise with approximate range of -0.707 to 0.707 */
if (dither)
mantissa = (((av_lfg_get(&s->dith_state)>>8)*181)>>8) - 5931008;
else
mantissa = 0;
break;
case 1:
if (m->b1) {
m->b1--;
mantissa = m->b1_mant[m->b1];
} else {
int bits = get_bits(gbc, 5);
mantissa = b1_mantissas[bits][0];
m->b1_mant[1] = b1_mantissas[bits][1];
m->b1_mant[0] = b1_mantissas[bits][2];
m->b1 = 2;
}
break;
case 2:
if (m->b2) {
m->b2--;
mantissa = m->b2_mant[m->b2];
} else {
int bits = get_bits(gbc, 7);
mantissa = b2_mantissas[bits][0];
m->b2_mant[1] = b2_mantissas[bits][1];
m->b2_mant[0] = b2_mantissas[bits][2];
m->b2 = 2;
}
break;
case 3:
mantissa = b3_mantissas[get_bits(gbc, 3)];
break;
case 4:
if (m->b4) {
m->b4 = 0;
mantissa = m->b4_mant;
} else {
int bits = get_bits(gbc, 7);
mantissa = b4_mantissas[bits][0];
m->b4_mant = b4_mantissas[bits][1];
m->b4 = 1;
}
break;
case 5:
mantissa = b5_mantissas[get_bits(gbc, 4)];
break;
default: /* 6 to 15 */
/* Shift mantissa and sign-extend it. */
if (bap > 15) {
av_log(s->avctx, AV_LOG_ERROR, "bap %d is invalid in plain AC-3\n", bap);
bap = 15;
}
mantissa = (unsigned)get_sbits(gbc, quantization_tab[bap]) << (24 - quantization_tab[bap]);
break;
}
coeffs[freq] = mantissa >> exps[freq];
}
}
/**
* Remove random dithering from coupling range coefficients with zero-bit
* mantissas for coupled channels which do not use dithering.
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
*/
static void remove_dithering(AC3DecodeContext *s) {
int ch, i;
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
if (!s->bap[CPL_CH][i])
s->fixed_coeffs[ch][i] = 0;
}
}
}
}
static inline void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk,
int ch, mant_groups *m)
{
if (!s->channel_uses_aht[ch]) {
ac3_decode_transform_coeffs_ch(s, ch, m);
} else {
/* if AHT is used, mantissas for all blocks are encoded in the first
block of the frame. */
int bin;
if (CONFIG_EAC3_DECODER && !blk)
ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
}
}
}
/**
* Decode the transform coefficients.
*/
static inline void decode_transform_coeffs(AC3DecodeContext *s, int blk)
{
int ch, end;
int got_cplchan = 0;
mant_groups m;
m.b1 = m.b2 = m.b4 = 0;
for (ch = 1; ch <= s->channels; ch++) {
/* transform coefficients for full-bandwidth channel */
decode_transform_coeffs_ch(s, blk, ch, &m);
/* transform coefficients for coupling channel come right after the
coefficients for the first coupled channel*/
if (s->channel_in_cpl[ch]) {
if (!got_cplchan) {
decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
calc_transform_coeffs_cpl(s);
got_cplchan = 1;
}
end = s->end_freq[CPL_CH];
} else {
end = s->end_freq[ch];
}
do
s->fixed_coeffs[ch][end] = 0;
while (++end < 256);
}
/* zero the dithered coefficients for appropriate channels */
remove_dithering(s);
}
/**
* Stereo rematrixing.
* reference: Section 7.5.4 Rematrixing : Decoding Technique
*/
static void do_rematrixing(AC3DecodeContext *s)
{
int bnd, i;
int end, bndend;
end = FFMIN(s->end_freq[1], s->end_freq[2]);
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
if (s->rematrixing_flags[bnd]) {
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
int tmp0 = s->fixed_coeffs[1][i];
s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
}
}
}
}
/**
* Inverse MDCT Transform.
* Convert frequency domain coefficients to time-domain audio samples.
* reference: Section 7.9.4 Transformation Equations
*/
static inline void do_imdct(AC3DecodeContext *s, int channels, int offset)
{
int ch;
for (ch = 1; ch <= channels; ch++) {
if (s->block_switch[ch]) {
int i;
INTFLOAT *x = s->tmp_output + 128;
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i];
s->tx_fn_128(s->tx_128, s->tmp_output, x, sizeof(INTFLOAT));
#if USE_FIXED
s->fdsp->vector_fmul_window_scaled(s->outptr[ch - 1], s->delay[ch - 1 + offset],
s->tmp_output, s->window, 128, 8);
#else
s->fdsp->vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1 + offset],
s->tmp_output, s->window, 128);
#endif
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i + 1];
s->tx_fn_128(s->tx_128, s->delay[ch - 1 + offset], x, sizeof(INTFLOAT));
} else {
s->tx_fn_256(s->tx_256, s->tmp_output, s->transform_coeffs[ch], sizeof(INTFLOAT));
#if USE_FIXED
s->fdsp->vector_fmul_window_scaled(s->outptr[ch - 1], s->delay[ch - 1 + offset],
s->tmp_output, s->window, 128, 8);
#else
s->fdsp->vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1 + offset],
s->tmp_output, s->window, 128);
#endif
memcpy(s->delay[ch - 1 + offset], s->tmp_output + 128, 128 * sizeof(INTFLOAT));
}
}
}
/**
* Upmix delay samples from stereo to original channel layout.
*/
static void ac3_upmix_delay(AC3DecodeContext *s)
{
int channel_data_size = sizeof(s->delay[0]);
switch (s->channel_mode) {
case AC3_CHMODE_DUALMONO:
case AC3_CHMODE_STEREO:
/* upmix mono to stereo */
memcpy(s->delay[1], s->delay[0], channel_data_size);
break;
case AC3_CHMODE_2F2R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_2F1R:
memset(s->delay[2], 0, channel_data_size);
break;
case AC3_CHMODE_3F2R:
memset(s->delay[4], 0, channel_data_size);
case AC3_CHMODE_3F1R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_3F:
memcpy(s->delay[2], s->delay[1], channel_data_size);
memset(s->delay[1], 0, channel_data_size);
break;
}
}
/**
* Decode band structure for coupling, spectral extension, or enhanced coupling.
* The band structure defines how many subbands are in each band. For each
* subband in the range, 1 means it is combined with the previous band, and 0
* means that it starts a new band.
*
* @param[in] gbc bit reader context
* @param[in] blk block number
* @param[in] eac3 flag to indicate E-AC-3
* @param[in] ecpl flag to indicate enhanced coupling
* @param[in] start_subband subband number for start of range
* @param[in] end_subband subband number for end of range
* @param[in] default_band_struct default band structure table
* @param[out] num_bands number of bands (optionally NULL)
* @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
* @param[in,out] band_struct current band structure
*/
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
int ecpl, int start_subband, int end_subband,
const uint8_t *default_band_struct,
int *num_bands, uint8_t *band_sizes,
uint8_t *band_struct, int band_struct_size)
{
int subbnd, bnd, n_subbands, n_bands=0;
uint8_t bnd_sz[22];
n_subbands = end_subband - start_subband;
if (!blk)
memcpy(band_struct, default_band_struct, band_struct_size);
av_assert0(band_struct_size >= start_subband + n_subbands);
band_struct += start_subband + 1;
/* decode band structure from bitstream or use default */
if (!eac3 || get_bits1(gbc)) {
for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
band_struct[subbnd] = get_bits1(gbc);
}
}
/* calculate number of bands and band sizes based on band structure.
note that the first 4 subbands in enhanced coupling span only 6 bins
instead of 12. */
if (num_bands || band_sizes ) {
n_bands = n_subbands;
bnd_sz[0] = ecpl ? 6 : 12;
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
if (band_struct[subbnd - 1]) {
n_bands--;
bnd_sz[bnd] += subbnd_size;
} else {
bnd_sz[++bnd] = subbnd_size;
}
}
}
/* set optional output params */
if (num_bands)
*num_bands = n_bands;
if (band_sizes)
memcpy(band_sizes, bnd_sz, n_bands);
}
static inline int spx_strategy(AC3DecodeContext *s, int blk)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int dst_start_freq, dst_end_freq, src_start_freq,
start_subband, end_subband, ch;
/* determine which channels use spx */
if (s->channel_mode == AC3_CHMODE_MONO) {
s->channel_uses_spx[1] = 1;
} else {
for (ch = 1; ch <= fbw_channels; ch++)
s->channel_uses_spx[ch] = get_bits1(bc);
}
/* get the frequency bins of the spx copy region and the spx start
and end subbands */
dst_start_freq = get_bits(bc, 2);
start_subband = get_bits(bc, 3) + 2;
if (start_subband > 7)
start_subband += start_subband - 7;
end_subband = get_bits(bc, 3) + 5;
#if USE_FIXED
s->spx_dst_end_freq = end_freq_inv_tab[end_subband-5];
#endif
if (end_subband > 7)
end_subband += end_subband - 7;
dst_start_freq = dst_start_freq * 12 + 25;
src_start_freq = start_subband * 12 + 25;
dst_end_freq = end_subband * 12 + 25;
/* check validity of spx ranges */
if (start_subband >= end_subband) {
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
"range (%d >= %d)\n", start_subband, end_subband);
return AVERROR_INVALIDDATA;
}
if (dst_start_freq >= src_start_freq) {
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
"copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
return AVERROR_INVALIDDATA;
}
s->spx_dst_start_freq = dst_start_freq;
s->spx_src_start_freq = src_start_freq;
if (!USE_FIXED)
s->spx_dst_end_freq = dst_end_freq;
decode_band_structure(bc, blk, s->eac3, 0,
start_subband, end_subband,
ff_eac3_default_spx_band_struct,
&s->num_spx_bands,
s->spx_band_sizes,
s->spx_band_struct, sizeof(s->spx_band_struct));
return 0;
}
static inline void spx_coordinates(AC3DecodeContext *s)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int ch, bnd;
for (ch = 1; ch <= fbw_channels; ch++) {
if (s->channel_uses_spx[ch]) {
if (s->first_spx_coords[ch] || get_bits1(bc)) {
INTFLOAT spx_blend;
int bin, master_spx_coord;
s->first_spx_coords[ch] = 0;
spx_blend = AC3_SPX_BLEND(get_bits(bc, 5));
master_spx_coord = get_bits(bc, 2) * 3;
bin = s->spx_src_start_freq;
for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
int bandsize = s->spx_band_sizes[bnd];
int spx_coord_exp, spx_coord_mant;
INTFLOAT nratio, sblend, nblend;
#if USE_FIXED
/* calculate blending factors */
int64_t accu = ((bin << 23) + (bandsize << 22))
* (int64_t)s->spx_dst_end_freq;
nratio = (int)(accu >> 32);
nratio -= spx_blend << 18;
if (nratio < 0) {
nblend = 0;
sblend = 0x800000;
} else if (nratio > 0x7fffff) {
nblend = 14529495; // sqrt(3) in FP.23
sblend = 0;
} else {
nblend = fixed_sqrt(nratio, 23);
accu = (int64_t)nblend * 1859775393;
nblend = (int)((accu + (1<<29)) >> 30);
sblend = fixed_sqrt(0x800000 - nratio, 23);
}
#else
float spx_coord;
/* calculate blending factors */
nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
nratio = av_clipf(nratio, 0.0f, 1.0f);
nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
// to give unity variance
sblend = sqrtf(1.0f - nratio);
#endif
bin += bandsize;
/* decode spx coordinates */
spx_coord_exp = get_bits(bc, 4);
spx_coord_mant = get_bits(bc, 2);
if (spx_coord_exp == 15) spx_coord_mant <<= 1;
else spx_coord_mant += 4;
spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
/* multiply noise and signal blending factors by spx coordinate */
#if USE_FIXED
accu = (int64_t)nblend * spx_coord_mant;
s->spx_noise_blend[ch][bnd] = (int)((accu + (1<<22)) >> 23);
accu = (int64_t)sblend * spx_coord_mant;
s->spx_signal_blend[ch][bnd] = (int)((accu + (1<<22)) >> 23);
#else
spx_coord = spx_coord_mant * (1.0f / (1 << 23));
s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
#endif
}
}
} else {
s->first_spx_coords[ch] = 1;
}
}
}
static inline int coupling_strategy(AC3DecodeContext *s, int blk,
uint8_t *bit_alloc_stages)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int channel_mode = s->channel_mode;
int ch;
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
if (!s->eac3)
s->cpl_in_use[blk] = get_bits1(bc);
if (s->cpl_in_use[blk]) {
/* coupling in use */
int cpl_start_subband, cpl_end_subband;
if (channel_mode < AC3_CHMODE_STEREO) {
av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
return AVERROR_INVALIDDATA;
}
/* check for enhanced coupling */
if (s->eac3 && get_bits1(bc)) {
/* TODO: parse enhanced coupling strategy info */
avpriv_request_sample(s->avctx, "Enhanced coupling");
return AVERROR_PATCHWELCOME;
}
/* determine which channels are coupled */
if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
s->channel_in_cpl[1] = 1;
s->channel_in_cpl[2] = 1;
} else {
for (ch = 1; ch <= fbw_channels; ch++)
s->channel_in_cpl[ch] = get_bits1(bc);
}
/* phase flags in use */
if (channel_mode == AC3_CHMODE_STEREO)
s->phase_flags_in_use = get_bits1(bc);
/* coupling frequency range */
cpl_start_subband = get_bits(bc, 4);
cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
get_bits(bc, 4) + 3;
if (cpl_start_subband >= cpl_end_subband) {
av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
cpl_start_subband, cpl_end_subband);
return AVERROR_INVALIDDATA;
}
s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
decode_band_structure(bc, blk, s->eac3, 0, cpl_start_subband,
cpl_end_subband,
ff_eac3_default_cpl_band_struct,
&s->num_cpl_bands, s->cpl_band_sizes,
s->cpl_band_struct, sizeof(s->cpl_band_struct));
} else {
/* coupling not in use */
for (ch = 1; ch <= fbw_channels; ch++) {
s->channel_in_cpl[ch] = 0;
s->first_cpl_coords[ch] = 1;
}
s->first_cpl_leak = s->eac3;
s->phase_flags_in_use = 0;
}
return 0;
}
static inline int coupling_coordinates(AC3DecodeContext *s, int blk)
{
GetBitContext *bc = &s->gbc;
int fbw_channels = s->fbw_channels;
int ch, bnd;
int cpl_coords_exist = 0;
for (ch = 1; ch <= fbw_channels; ch++) {
if (s->channel_in_cpl[ch]) {
if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(bc)) {
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
s->first_cpl_coords[ch] = 0;
cpl_coords_exist = 1;
master_cpl_coord = 3 * get_bits(bc, 2);
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
cpl_coord_exp = get_bits(bc, 4);
cpl_coord_mant = get_bits(bc, 4);
if (cpl_coord_exp == 15)
s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
else
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
}
} else if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
"be present in block 0\n");
return AVERROR_INVALIDDATA;
}
} else {
/* channel not in coupling */
s->first_cpl_coords[ch] = 1;
}
}
/* phase flags */
if (s->channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
s->phase_flags[bnd] = s->phase_flags_in_use ? get_bits1(bc) : 0;
}
}
return 0;
}
/**
* Decode a single audio block from the AC-3 bitstream.
*/
static int decode_audio_block(AC3DecodeContext *s, int blk, int offset)
{
int fbw_channels = s->fbw_channels;
int channel_mode = s->channel_mode;
int i, bnd, seg, ch, ret;
int different_transforms;
int downmix_output;
int cpl_in_use;
GetBitContext *gbc = &s->gbc;
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };
/* block switch flags */
different_transforms = 0;
if (s->block_switch_syntax) {
for (ch = 1; ch <= fbw_channels; ch++) {
s->block_switch[ch] = get_bits1(gbc);
if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
different_transforms = 1;
}
}
/* dithering flags */
if (s->dither_flag_syntax) {
for (ch = 1; ch <= fbw_channels; ch++) {
s->dither_flag[ch] = get_bits1(gbc);
}
}
/* dynamic range */
i = !s->channel_mode;
do {
if (get_bits1(gbc)) {
/* Allow asymmetric application of DRC when drc_scale > 1.
Amplification of quiet sounds is enhanced */
int range_bits = get_bits(gbc, 8);
INTFLOAT range = AC3_RANGE(range_bits);
if (range_bits <= 127 || s->drc_scale <= 1.0)
s->dynamic_range[i] = AC3_DYNAMIC_RANGE(range);
else
s->dynamic_range[i] = range;
} else if (blk == 0) {
s->dynamic_range[i] = AC3_DYNAMIC_RANGE1;
}
} while (i--);
/* spectral extension strategy */
if (s->eac3 && (!blk || get_bits1(gbc))) {
s->spx_in_use = get_bits1(gbc);
if (s->spx_in_use) {
if ((ret = spx_strategy(s, blk)) < 0)
return ret;
}
}
if (!s->eac3 || !s->spx_in_use) {
s->spx_in_use = 0;
for (ch = 1; ch <= fbw_channels; ch++) {
s->channel_uses_spx[ch] = 0;
s->first_spx_coords[ch] = 1;
}
}
/* spectral extension coordinates */
if (s->spx_in_use)
spx_coordinates(s);
/* coupling strategy */
if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
if ((ret = coupling_strategy(s, blk, bit_alloc_stages)) < 0)
return ret;
} else if (!s->eac3) {
if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
"be present in block 0\n");
return AVERROR_INVALIDDATA;
} else {
s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
}
}
cpl_in_use = s->cpl_in_use[blk];
/* coupling coordinates */
if (cpl_in_use) {
if ((ret = coupling_coordinates(s, blk)) < 0)
return ret;
}
/* stereo rematrixing strategy and band structure */
if (channel_mode == AC3_CHMODE_STEREO) {
if ((s->eac3 && !blk) || get_bits1(gbc)) {
s->num_rematrixing_bands = 4;
if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
} else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
s->num_rematrixing_bands--;
}
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
s->rematrixing_flags[bnd] = get_bits1(gbc);
} else if (!blk) {
av_log(s->avctx, AV_LOG_WARNING, "Warning: "
"new rematrixing strategy not present in block 0\n");
s->num_rematrixing_bands = 0;
}
}
/* exponent strategies for each channel */
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
if (!s->eac3)
s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
if (s->exp_strategy[blk][ch] != EXP_REUSE)
bit_alloc_stages[ch] = 3;
}
/* channel bandwidth */
for (ch = 1; ch <= fbw_channels; ch++) {
s->start_freq[ch] = 0;
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
int group_size;
int prev = s->end_freq[ch];
if (s->channel_in_cpl[ch])
s->end_freq[ch] = s->start_freq[CPL_CH];
else if (s->channel_uses_spx[ch])
s->end_freq[ch] = s->spx_src_start_freq;
else {
int bandwidth_code = get_bits(gbc, 6);
if (bandwidth_code > 60) {
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
return AVERROR_INVALIDDATA;
}
s->end_freq[ch] = bandwidth_code * 3 + 73;
}
group_size = 3 << (s->exp_strategy[blk][ch] - 1);
s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
if (blk > 0 && s->end_freq[ch] != prev)
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
}
}
if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
(3 << (s->exp_strategy[blk][CPL_CH] - 1));
}
/* decode exponents for each channel */
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
if (decode_exponents(s, gbc, s->exp_strategy[blk][ch],
s->num_exp_groups[ch], s->dexps[ch][0],
&s->dexps[ch][s->start_freq[ch]+!!ch])) {
return AVERROR_INVALIDDATA;
}
if (ch != CPL_CH && ch != s->lfe_ch)
skip_bits(gbc, 2); /* skip gainrng */
}
}
/* bit allocation information */
if (s->bit_allocation_syntax) {
if (get_bits1(gbc)) {
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
for (ch = !cpl_in_use; ch <= s->channels; ch++)
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
} else if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
"be present in block 0\n");
return AVERROR_INVALIDDATA;
}
}
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
if (!s->eac3 || !blk) {
if (s->snr_offset_strategy && get_bits1(gbc)) {
int snr = 0;
int csnr;
csnr = (get_bits(gbc, 6) - 15) << 4;
for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
/* snr offset */
if (ch == i || s->snr_offset_strategy == 2)
snr = (csnr + get_bits(gbc, 4)) << 2;
/* run at least last bit allocation stage if snr offset changes */
if (blk && s->snr_offset[ch] != snr) {
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
}
s->snr_offset[ch] = snr;
/* fast gain (normal AC-3 only) */
if (!s->eac3) {
int prev = s->fast_gain[ch];
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
/* run last 2 bit allocation stages if fast gain changes */
if (blk && prev != s->fast_gain[ch])
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
}
} else if (!s->eac3 && !blk) {
av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
return AVERROR_INVALIDDATA;
}
}
/* fast gain (E-AC-3 only) */
if (s->fast_gain_syntax && get_bits1(gbc)) {
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
int prev = s->fast_gain[ch];
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
/* run last 2 bit allocation stages if fast gain changes */
if (blk && prev != s->fast_gain[ch])
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
} else if (s->eac3 && !blk) {
for (ch = !cpl_in_use; ch <= s->channels; ch++)
s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
}
/* E-AC-3 to AC-3 converter SNR offset */
if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
skip_bits(gbc, 10); // skip converter snr offset
}
/* coupling leak information */
if (cpl_in_use) {
if (s->first_cpl_leak || get_bits1(gbc)) {
int fl = get_bits(gbc, 3);
int sl = get_bits(gbc, 3);
/* run last 2 bit allocation stages for coupling channel if
coupling leak changes */
if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
sl != s->bit_alloc_params.cpl_slow_leak)) {
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
}
s->bit_alloc_params.cpl_fast_leak = fl;
s->bit_alloc_params.cpl_slow_leak = sl;
} else if (!s->eac3 && !blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
"be present in block 0\n");
return AVERROR_INVALIDDATA;
}
s->first_cpl_leak = 0;
}
/* delta bit allocation information */
if (s->dba_syntax && get_bits1(gbc)) {
/* delta bit allocation exists (strategy) */
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
s->dba_mode[ch] = get_bits(gbc, 2);
if (s->dba_mode[ch] == DBA_RESERVED) {
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
return AVERROR_INVALIDDATA;
}
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
/* channel delta offset, len and bit allocation */
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
if (s->dba_mode[ch] == DBA_NEW) {
s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
s->dba_values[ch][seg] = get_bits(gbc, 3);
}
/* run last 2 bit allocation stages if new dba values */
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
}
} else if (blk == 0) {
for (ch = 0; ch <= s->channels; ch++) {
s->dba_mode[ch] = DBA_NONE;
}
}
/* Bit allocation */
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
if (bit_alloc_stages[ch] > 2) {
/* Exponent mapping into PSD and PSD integration */
ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
s->start_freq[ch], s->end_freq[ch],
s->psd[ch], s->band_psd[ch]);
}
if (bit_alloc_stages[ch] > 1) {
/* Compute excitation function, Compute masking curve, and
Apply delta bit allocation */
if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
s->start_freq[ch], s->end_freq[ch],
s->fast_gain[ch], (ch == s->lfe_ch),
s->dba_mode[ch], s->dba_nsegs[ch],
s->dba_offsets[ch], s->dba_lengths[ch],
s->dba_values[ch], s->mask[ch])) {
av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
return AVERROR_INVALIDDATA;
}
}
if (bit_alloc_stages[ch] > 0) {
/* Compute bit allocation */
const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
ff_eac3_hebap_tab : ff_ac3_bap_tab;
s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
s->start_freq[ch], s->end_freq[ch],
s->snr_offset[ch],
s->bit_alloc_params.floor,
bap_tab, s->bap[ch]);
}
}
/* unused dummy data */
if (s->skip_syntax && get_bits1(gbc)) {
int skipl = get_bits(gbc, 9);
skip_bits_long(gbc, 8 * skipl);
}
/* unpack the transform coefficients
this also uncouples channels if coupling is in use. */
decode_transform_coeffs(s, blk);
/* TODO: generate enhanced coupling coordinates and uncouple */
/* recover coefficients if rematrixing is in use */
if (s->channel_mode == AC3_CHMODE_STEREO)
do_rematrixing(s);
/* apply scaling to coefficients (headroom, dynrng) */
for (ch = 1; ch <= s->channels; ch++) {
int audio_channel = 0;
INTFLOAT gain;
if (s->channel_mode == AC3_CHMODE_DUALMONO && ch <= 2)
audio_channel = 2-ch;
if (s->heavy_compression && s->compression_exists[audio_channel])
gain = s->heavy_dynamic_range[audio_channel];
else
gain = s->dynamic_range[audio_channel];
#if USE_FIXED
scale_coefs(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
#else
if (s->target_level != 0)
gain = gain * s->level_gain[audio_channel];
gain *= 1.0 / 4194304.0f;
s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
s->fixed_coeffs[ch], gain, 256);
#endif
}
/* apply spectral extension to high frequency bins */
if (CONFIG_EAC3_DECODER && s->spx_in_use) {
ff_eac3_apply_spectral_extension(s);
}
/* downmix and MDCT. order depends on whether block switching is used for
any channel in this block. this is because coefficients for the long
and short transforms cannot be mixed. */
downmix_output = s->channels != s->out_channels &&
!((s->output_mode & AC3_OUTPUT_LFEON) &&
s->fbw_channels == s->out_channels);
if (different_transforms) {
/* the delay samples have already been downmixed, so we upmix the delay
samples in order to reconstruct all channels before downmixing. */
if (s->downmixed) {
s->downmixed = 0;
ac3_upmix_delay(s);
}
do_imdct(s, s->channels, offset);
if (downmix_output) {
#if USE_FIXED
ac3_downmix_c_fixed16(s->outptr, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 256);
#else
ff_ac3dsp_downmix(&s->ac3dsp, s->outptr, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 256);
#endif
}
} else {
if (downmix_output) {
AC3_RENAME(ff_ac3dsp_downmix)(&s->ac3dsp, s->xcfptr + 1, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 256);
}
if (downmix_output && !s->downmixed) {
s->downmixed = 1;
AC3_RENAME(ff_ac3dsp_downmix)(&s->ac3dsp, s->dlyptr, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 128);
}
do_imdct(s, s->out_channels, offset);
}
return 0;
}
/**
* Decode a single AC-3 frame.
*/
static int ac3_decode_frame(AVCodecContext *avctx, AVFrame *frame,
int *got_frame_ptr, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size, full_buf_size = avpkt->size;
AC3DecodeContext *s = avctx->priv_data;
int blk, ch, err, offset, ret;
int i;
int skip = 0, got_independent_frame = 0;
const uint8_t *channel_map;
uint8_t extended_channel_map[EAC3_MAX_CHANNELS];
const SHORTFLOAT *output[AC3_MAX_CHANNELS];
enum AVMatrixEncoding matrix_encoding;
AVDownmixInfo *downmix_info;
uint64_t mask;
s->superframe_size = 0;
buf_size = full_buf_size;
i = ff_ac3_find_syncword(buf, buf_size);
if (i < 0 || i > 10)
return i;
buf += i;
buf_size -= i;
/* copy input buffer to decoder context to avoid reading past the end
of the buffer, which can be caused by a damaged input stream. */
if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
// seems to be byte-swapped AC-3
int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
s->bdsp.bswap16_buf((uint16_t *) s->input_buffer,
(const uint16_t *) buf, cnt);
} else
memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
/* if consistent noise generation is enabled, seed the linear feedback generator
* with the contents of the AC-3 frame so that the noise is identical across
* decodes given the same AC-3 frame data, for use with non-linear edititing software. */
if (s->consistent_noise_generation)
av_lfg_init_from_data(&s->dith_state, s->input_buffer, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
buf = s->input_buffer;
dependent_frame:
/* initialize the GetBitContext with the start of valid AC-3 Frame */
if ((ret = init_get_bits8(&s->gbc, buf, buf_size)) < 0)
return ret;
/* parse the syncinfo */
err = parse_frame_header(s);
if (err) {
switch (err) {
case AAC_AC3_PARSE_ERROR_SYNC:
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
return AVERROR_INVALIDDATA;
case AAC_AC3_PARSE_ERROR_BSID:
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
break;
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
/* skip frame if CRC is ok. otherwise use error concealment. */
/* TODO: add support for substreams */
if (s->substreamid) {
av_log(avctx, AV_LOG_DEBUG,
"unsupported substream %d: skipping frame\n",
s->substreamid);
*got_frame_ptr = 0;
return buf_size;
} else {
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
}
break;
case AAC_AC3_PARSE_ERROR_CRC:
case AAC_AC3_PARSE_ERROR_CHANNEL_CFG:
break;
default: // Normal AVERROR do not try to recover.
*got_frame_ptr = 0;
return err;
}
} else {
/* check that reported frame size fits in input buffer */
if (s->frame_size > buf_size) {
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
} else if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
/* check for crc mismatch */
if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
s->frame_size - 2)) {
av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
if (avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
err = AAC_AC3_PARSE_ERROR_CRC;
}
}
}
if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT && !got_independent_frame) {
av_log(avctx, AV_LOG_WARNING, "Ignoring dependent frame without independent frame.\n");
*got_frame_ptr = 0;
return FFMIN(full_buf_size, s->frame_size);
}
/* channel config */
if (!err || (s->channels && s->out_channels != s->channels)) {
s->out_channels = s->channels;
s->output_mode = s->channel_mode;
if (s->lfe_on)
s->output_mode |= AC3_OUTPUT_LFEON;
if (s->channels > 1 &&
!av_channel_layout_compare(&s->downmix_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_MONO)) {
s->out_channels = 1;
s->output_mode = AC3_CHMODE_MONO;
} else if (s->channels > 2 &&
!av_channel_layout_compare(&s->downmix_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO)) {
s->out_channels = 2;
s->output_mode = AC3_CHMODE_STEREO;
}
s->loro_center_mix_level = gain_levels[s-> center_mix_level];
s->loro_surround_mix_level = gain_levels[s->surround_mix_level];
s->ltrt_center_mix_level = LEVEL_MINUS_3DB;
s->ltrt_surround_mix_level = LEVEL_MINUS_3DB;
/* set downmixing coefficients if needed */
if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
s->fbw_channels == s->out_channels)) {
if ((ret = set_downmix_coeffs(s)) < 0) {
av_log(avctx, AV_LOG_ERROR, "error setting downmix coeffs\n");
return ret;
}
}
} else if (!s->channels) {
av_log(avctx, AV_LOG_ERROR, "unable to determine channel mode\n");
return AVERROR_INVALIDDATA;
}
mask = ff_ac3_channel_layout_tab[s->output_mode & ~AC3_OUTPUT_LFEON];
if (s->output_mode & AC3_OUTPUT_LFEON)
mask |= AV_CH_LOW_FREQUENCY;
av_channel_layout_uninit(&avctx->ch_layout);
av_channel_layout_from_mask(&avctx->ch_layout, mask);
/* set audio service type based on bitstream mode for AC-3 */
avctx->audio_service_type = s->bitstream_mode;
if (s->bitstream_mode == 0x7 && s->channels > 1)
avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;
/* decode the audio blocks */
channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
offset = s->frame_type == EAC3_FRAME_TYPE_DEPENDENT ? AC3_MAX_CHANNELS : 0;
for (ch = 0; ch < AC3_MAX_CHANNELS; ch++) {
output[ch] = s->output[ch + offset];
s->outptr[ch] = s->output[ch + offset];
}
for (ch = 0; ch < s->channels; ch++) {
if (ch < s->out_channels)
s->outptr[channel_map[ch]] = s->output_buffer[ch + offset];
}
for (blk = 0; blk < s->num_blocks; blk++) {
if (!err && decode_audio_block(s, blk, offset)) {
av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
err = 1;
}
if (err)
for (ch = 0; ch < s->out_channels; ch++)
memcpy(s->output_buffer[ch + offset] + AC3_BLOCK_SIZE*blk, output[ch], AC3_BLOCK_SIZE*sizeof(SHORTFLOAT));
for (ch = 0; ch < s->out_channels; ch++)
output[ch] = s->outptr[channel_map[ch]];
for (ch = 0; ch < s->out_channels; ch++) {
if (!ch || channel_map[ch])
s->outptr[channel_map[ch]] += AC3_BLOCK_SIZE;
}
}
/* keep last block for error concealment in next frame */
for (ch = 0; ch < s->out_channels; ch++)
memcpy(s->output[ch + offset], output[ch], AC3_BLOCK_SIZE*sizeof(SHORTFLOAT));
/* check if there is dependent frame */
if (buf_size > s->frame_size) {
AC3HeaderInfo hdr;
int err;
if (buf_size - s->frame_size <= 16) {
skip = buf_size - s->frame_size;
goto skip;
}
if ((ret = init_get_bits8(&s->gbc, buf + s->frame_size, buf_size - s->frame_size)) < 0)
return ret;
err = ff_ac3_parse_header(&s->gbc, &hdr);
if (err)
return err;
if (hdr.frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
if (hdr.num_blocks != s->num_blocks || s->sample_rate != hdr.sample_rate) {
av_log(avctx, AV_LOG_WARNING, "Ignoring non-compatible dependent frame.\n");
} else {
buf += s->frame_size;
buf_size -= s->frame_size;
s->prev_output_mode = s->output_mode;
s->prev_bit_rate = s->bit_rate;
got_independent_frame = 1;
goto dependent_frame;
}
}
}
skip:
frame->decode_error_flags = err ? FF_DECODE_ERROR_INVALID_BITSTREAM : 0;
/* if frame is ok, set audio parameters */
if (!err) {
avctx->sample_rate = s->sample_rate;
avctx->bit_rate = s->bit_rate + s->prev_bit_rate;
avctx->profile = s->eac3_extension_type_a == 1 ? AV_PROFILE_EAC3_DDP_ATMOS : AV_PROFILE_UNKNOWN;
}
if (!avctx->sample_rate) {
av_log(avctx, AV_LOG_ERROR, "Could not determine the sample rate\n");
return AVERROR_INVALIDDATA;
}
for (ch = 0; ch < EAC3_MAX_CHANNELS; ch++)
extended_channel_map[ch] = ch;
if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
uint64_t ich_layout = ff_ac3_channel_layout_tab[s->prev_output_mode & ~AC3_OUTPUT_LFEON];
int channel_map_size = ff_ac3_channels_tab[s->output_mode & ~AC3_OUTPUT_LFEON] + s->lfe_on;
uint64_t channel_layout;
int extend = 0;
if (s->prev_output_mode & AC3_OUTPUT_LFEON)
ich_layout |= AV_CH_LOW_FREQUENCY;
channel_layout = ich_layout;
for (ch = 0; ch < 16; ch++) {
if (s->channel_map & (1 << (EAC3_MAX_CHANNELS - ch - 1))) {
channel_layout |= ff_eac3_custom_channel_map_locations[ch][1];
}
}
if (av_popcount64(channel_layout) > EAC3_MAX_CHANNELS) {
av_log(avctx, AV_LOG_ERROR, "Too many channels (%d) coded\n",
av_popcount64(channel_layout));
return AVERROR_INVALIDDATA;
}
av_channel_layout_uninit(&avctx->ch_layout);
av_channel_layout_from_mask(&avctx->ch_layout, channel_layout);
for (ch = 0; ch < EAC3_MAX_CHANNELS; ch++) {
if (s->channel_map & (1 << (EAC3_MAX_CHANNELS - ch - 1))) {
if (ff_eac3_custom_channel_map_locations[ch][0]) {
int index = av_channel_layout_index_from_channel(&avctx->ch_layout,
ff_ctzll(ff_eac3_custom_channel_map_locations[ch][1]));
if (index < 0)
return AVERROR_INVALIDDATA;
if (extend >= channel_map_size)
break;
extended_channel_map[index] = offset + channel_map[extend++];
} else {
int i;
for (i = 0; i < 64; i++) {
if ((1ULL << i) & ff_eac3_custom_channel_map_locations[ch][1]) {
int index = av_channel_layout_index_from_channel(&avctx->ch_layout, i);
if (index < 0)
return AVERROR_INVALIDDATA;
if (extend >= channel_map_size)
break;
extended_channel_map[index] = offset + channel_map[extend++];
}
}
}
}
}
ac3_downmix(avctx);
}
/* get output buffer */
frame->nb_samples = s->num_blocks * AC3_BLOCK_SIZE;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
for (ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
int map = extended_channel_map[ch];
av_assert0(ch>=AV_NUM_DATA_POINTERS || frame->extended_data[ch] == frame->data[ch]);
memcpy((SHORTFLOAT *)frame->extended_data[ch],
s->output_buffer[map],
s->num_blocks * AC3_BLOCK_SIZE * sizeof(SHORTFLOAT));
}
/*
* AVMatrixEncoding
*
* Check whether the input layout is compatible, and make sure we're not
* downmixing (else the matrix encoding is no longer applicable).
*/
matrix_encoding = AV_MATRIX_ENCODING_NONE;
if (s->channel_mode == AC3_CHMODE_STEREO &&
s->channel_mode == (s->output_mode & ~AC3_OUTPUT_LFEON)) {
if (s->dolby_surround_mode == AC3_DSURMOD_ON)
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
else if (s->dolby_headphone_mode == AC3_DHEADPHONMOD_ON)
matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
} else if (s->channel_mode >= AC3_CHMODE_2F2R &&
s->channel_mode == (s->output_mode & ~AC3_OUTPUT_LFEON)) {
switch (s->dolby_surround_ex_mode) {
case AC3_DSUREXMOD_ON: // EX or PLIIx
matrix_encoding = AV_MATRIX_ENCODING_DOLBYEX;
break;
case AC3_DSUREXMOD_PLIIZ:
matrix_encoding = AV_MATRIX_ENCODING_DPLIIZ;
break;
default: // not indicated or off
break;
}
}
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
return ret;
/* AVDownmixInfo */
if ((downmix_info = av_downmix_info_update_side_data(frame))) {
switch (s->preferred_downmix) {
case AC3_DMIXMOD_LTRT:
downmix_info->preferred_downmix_type = AV_DOWNMIX_TYPE_LTRT;
break;
case AC3_DMIXMOD_LORO:
downmix_info->preferred_downmix_type = AV_DOWNMIX_TYPE_LORO;
break;
case AC3_DMIXMOD_DPLII:
downmix_info->preferred_downmix_type = AV_DOWNMIX_TYPE_DPLII;
break;
default:
downmix_info->preferred_downmix_type = AV_DOWNMIX_TYPE_UNKNOWN;
break;
}
downmix_info->center_mix_level = gain_levels[s-> center_mix_level];
downmix_info->center_mix_level_ltrt = gain_levels[s-> center_mix_level_ltrt];
downmix_info->surround_mix_level = gain_levels[s-> surround_mix_level];
downmix_info->surround_mix_level_ltrt = gain_levels[s->surround_mix_level_ltrt];
if (s->lfe_mix_level_exists)
downmix_info->lfe_mix_level = gain_levels_lfe[s->lfe_mix_level];
else
downmix_info->lfe_mix_level = 0.0; // -inf dB
} else
return AVERROR(ENOMEM);
*got_frame_ptr = 1;
if (!s->superframe_size)
return FFMIN(full_buf_size, s->frame_size + skip);
return FFMIN(full_buf_size, s->superframe_size + skip);
}
/**
* Uninitialize the AC-3 decoder.
*/
static av_cold int ac3_decode_end(AVCodecContext *avctx)
{
AC3DecodeContext *s = avctx->priv_data;
av_tx_uninit(&s->tx_256);
av_tx_uninit(&s->tx_128);
av_freep(&s->fdsp);
av_freep(&s->downmix_coeffs[0]);
return 0;
}
#define OFFSET(x) offsetof(AC3DecodeContext, x)
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)