mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-24 13:56:33 +02:00
401 lines
12 KiB
C
401 lines
12 KiB
C
/*
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
*
|
|
* This file is part of Libav.
|
|
*
|
|
* Libav is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* Libav is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with Libav; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "libavutil/mem.h"
|
|
#include "dct32.h"
|
|
#include "mathops.h"
|
|
#include "mpegaudiodsp.h"
|
|
#include "mpegaudio.h"
|
|
#include "mpegaudiodata.h"
|
|
|
|
#if CONFIG_FLOAT
|
|
#define RENAME(n) n##_float
|
|
|
|
static inline float round_sample(float *sum)
|
|
{
|
|
float sum1=*sum;
|
|
*sum = 0;
|
|
return sum1;
|
|
}
|
|
|
|
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
|
|
#define MULS(ra, rb) ((ra)*(rb))
|
|
#define MULH3(x, y, s) ((s)*(y)*(x))
|
|
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
|
|
#define MULLx(x, y, s) ((y)*(x))
|
|
#define FIXHR(x) ((float)(x))
|
|
#define FIXR(x) ((float)(x))
|
|
#define SHR(a,b) ((a)*(1.0f/(1<<(b))))
|
|
|
|
#else
|
|
|
|
#define RENAME(n) n##_fixed
|
|
#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
|
|
|
|
static inline int round_sample(int64_t *sum)
|
|
{
|
|
int sum1;
|
|
sum1 = (int)((*sum) >> OUT_SHIFT);
|
|
*sum &= (1<<OUT_SHIFT)-1;
|
|
return av_clip_int16(sum1);
|
|
}
|
|
|
|
# define MULS(ra, rb) MUL64(ra, rb)
|
|
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
|
|
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
|
|
# define MULH3(x, y, s) MULH((s)*(x), y)
|
|
# define MULLx(x, y, s) MULL(x,y,s)
|
|
# define SHR(a,b) ((a)>>(b))
|
|
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
|
|
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
|
|
#endif
|
|
|
|
/** Window for MDCT. Actually only the elements in [0,17] and
|
|
[MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
|
|
is just to preserve alignment for SIMD implementations.
|
|
*/
|
|
DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
|
|
|
|
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
|
|
|
|
#define SUM8(op, sum, w, p) \
|
|
{ \
|
|
op(sum, (w)[0 * 64], (p)[0 * 64]); \
|
|
op(sum, (w)[1 * 64], (p)[1 * 64]); \
|
|
op(sum, (w)[2 * 64], (p)[2 * 64]); \
|
|
op(sum, (w)[3 * 64], (p)[3 * 64]); \
|
|
op(sum, (w)[4 * 64], (p)[4 * 64]); \
|
|
op(sum, (w)[5 * 64], (p)[5 * 64]); \
|
|
op(sum, (w)[6 * 64], (p)[6 * 64]); \
|
|
op(sum, (w)[7 * 64], (p)[7 * 64]); \
|
|
}
|
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
|
|
{ \
|
|
INTFLOAT tmp;\
|
|
tmp = p[0 * 64];\
|
|
op1(sum1, (w1)[0 * 64], tmp);\
|
|
op2(sum2, (w2)[0 * 64], tmp);\
|
|
tmp = p[1 * 64];\
|
|
op1(sum1, (w1)[1 * 64], tmp);\
|
|
op2(sum2, (w2)[1 * 64], tmp);\
|
|
tmp = p[2 * 64];\
|
|
op1(sum1, (w1)[2 * 64], tmp);\
|
|
op2(sum2, (w2)[2 * 64], tmp);\
|
|
tmp = p[3 * 64];\
|
|
op1(sum1, (w1)[3 * 64], tmp);\
|
|
op2(sum2, (w2)[3 * 64], tmp);\
|
|
tmp = p[4 * 64];\
|
|
op1(sum1, (w1)[4 * 64], tmp);\
|
|
op2(sum2, (w2)[4 * 64], tmp);\
|
|
tmp = p[5 * 64];\
|
|
op1(sum1, (w1)[5 * 64], tmp);\
|
|
op2(sum2, (w2)[5 * 64], tmp);\
|
|
tmp = p[6 * 64];\
|
|
op1(sum1, (w1)[6 * 64], tmp);\
|
|
op2(sum2, (w2)[6 * 64], tmp);\
|
|
tmp = p[7 * 64];\
|
|
op1(sum1, (w1)[7 * 64], tmp);\
|
|
op2(sum2, (w2)[7 * 64], tmp);\
|
|
}
|
|
|
|
void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
|
|
int *dither_state, OUT_INT *samples,
|
|
int incr)
|
|
{
|
|
register const MPA_INT *w, *w2, *p;
|
|
int j;
|
|
OUT_INT *samples2;
|
|
#if CONFIG_FLOAT
|
|
float sum, sum2;
|
|
#else
|
|
int64_t sum, sum2;
|
|
#endif
|
|
|
|
/* copy to avoid wrap */
|
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
|
|
|
|
samples2 = samples + 31 * incr;
|
|
w = window;
|
|
w2 = window + 31;
|
|
|
|
sum = *dither_state;
|
|
p = synth_buf + 16;
|
|
SUM8(MACS, sum, w, p);
|
|
p = synth_buf + 48;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
w++;
|
|
|
|
/* we calculate two samples at the same time to avoid one memory
|
|
access per two sample */
|
|
for(j=1;j<16;j++) {
|
|
sum2 = 0;
|
|
p = synth_buf + 16 + j;
|
|
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
|
|
p = synth_buf + 48 - j;
|
|
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
|
|
|
|
*samples = round_sample(&sum);
|
|
samples += incr;
|
|
sum += sum2;
|
|
*samples2 = round_sample(&sum);
|
|
samples2 -= incr;
|
|
w++;
|
|
w2--;
|
|
}
|
|
|
|
p = synth_buf + 32;
|
|
SUM8(MLSS, sum, w + 32, p);
|
|
*samples = round_sample(&sum);
|
|
*dither_state= sum;
|
|
}
|
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
|
|
32 samples. */
|
|
void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
|
|
int *synth_buf_offset,
|
|
MPA_INT *window, int *dither_state,
|
|
OUT_INT *samples, int incr,
|
|
MPA_INT *sb_samples)
|
|
{
|
|
MPA_INT *synth_buf;
|
|
int offset;
|
|
|
|
offset = *synth_buf_offset;
|
|
synth_buf = synth_buf_ptr + offset;
|
|
|
|
s->RENAME(dct32)(synth_buf, sb_samples);
|
|
s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
|
|
|
|
offset = (offset - 32) & 511;
|
|
*synth_buf_offset = offset;
|
|
}
|
|
|
|
av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
|
|
{
|
|
int i, j;
|
|
|
|
/* max = 18760, max sum over all 16 coefs : 44736 */
|
|
for(i=0;i<257;i++) {
|
|
INTFLOAT v;
|
|
v = ff_mpa_enwindow[i];
|
|
#if CONFIG_FLOAT
|
|
v *= 1.0 / (1LL<<(16 + FRAC_BITS));
|
|
#endif
|
|
window[i] = v;
|
|
if ((i & 63) != 0)
|
|
v = -v;
|
|
if (i != 0)
|
|
window[512 - i] = v;
|
|
}
|
|
|
|
|
|
// Needed for avoiding shuffles in ASM implementations
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+16*i+j] = window[64*i+32-j];
|
|
|
|
for(i=0; i < 8; i++)
|
|
for(j=0; j < 16; j++)
|
|
window[512+128+16*i+j] = window[64*i+48-j];
|
|
}
|
|
|
|
void RENAME(ff_init_mpadsp_tabs)(void)
|
|
{
|
|
int i, j;
|
|
/* compute mdct windows */
|
|
for (i = 0; i < 36; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
double d;
|
|
|
|
if (j == 2 && i % 3 != 1)
|
|
continue;
|
|
|
|
d = sin(M_PI * (i + 0.5) / 36.0);
|
|
if (j == 1) {
|
|
if (i >= 30) d = 0;
|
|
else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
|
|
else if (i >= 18) d = 1;
|
|
} else if (j == 3) {
|
|
if (i < 6) d = 0;
|
|
else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
|
|
else if (i < 18) d = 1;
|
|
}
|
|
//merge last stage of imdct into the window coefficients
|
|
d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
|
|
|
|
if (j == 2)
|
|
RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
|
|
else {
|
|
int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
|
|
RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing
|
|
the sign of the right window coefs */
|
|
for (j = 0; j < 4; j++) {
|
|
for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
|
|
RENAME(ff_mdct_win)[j + 4][i ] = RENAME(ff_mdct_win)[j][i ];
|
|
RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
|
|
}
|
|
}
|
|
}
|
|
/* cos(pi*i/18) */
|
|
#define C1 FIXHR(0.98480775301220805936/2)
|
|
#define C2 FIXHR(0.93969262078590838405/2)
|
|
#define C3 FIXHR(0.86602540378443864676/2)
|
|
#define C4 FIXHR(0.76604444311897803520/2)
|
|
#define C5 FIXHR(0.64278760968653932632/2)
|
|
#define C6 FIXHR(0.5/2)
|
|
#define C7 FIXHR(0.34202014332566873304/2)
|
|
#define C8 FIXHR(0.17364817766693034885/2)
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36[9] = {
|
|
FIXR(0.50190991877167369479),
|
|
FIXR(0.51763809020504152469), //0
|
|
FIXR(0.55168895948124587824),
|
|
FIXR(0.61038729438072803416),
|
|
FIXR(0.70710678118654752439), //1
|
|
FIXR(0.87172339781054900991),
|
|
FIXR(1.18310079157624925896),
|
|
FIXR(1.93185165257813657349), //2
|
|
FIXR(5.73685662283492756461),
|
|
};
|
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */
|
|
static const INTFLOAT icos36h[9] = {
|
|
FIXHR(0.50190991877167369479/2),
|
|
FIXHR(0.51763809020504152469/2), //0
|
|
FIXHR(0.55168895948124587824/2),
|
|
FIXHR(0.61038729438072803416/2),
|
|
FIXHR(0.70710678118654752439/2), //1
|
|
FIXHR(0.87172339781054900991/2),
|
|
FIXHR(1.18310079157624925896/4),
|
|
FIXHR(1.93185165257813657349/4), //2
|
|
// FIXHR(5.73685662283492756461),
|
|
};
|
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */
|
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
|
|
{
|
|
int i, j;
|
|
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
|
|
INTFLOAT tmp[18], *tmp1, *in1;
|
|
|
|
for (i = 17; i >= 1; i--)
|
|
in[i] += in[i-1];
|
|
for (i = 17; i >= 3; i -= 2)
|
|
in[i] += in[i-2];
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
tmp1 = tmp + j;
|
|
in1 = in + j;
|
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2];
|
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1);
|
|
t1 = in1[2*0] - in1[2*6];
|
|
tmp1[ 6] = t1 - SHR(t2,1);
|
|
tmp1[16] = t1 + t2;
|
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
|
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
|
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
|
|
|
|
tmp1[10] = t3 - t0 - t2;
|
|
tmp1[ 2] = t3 + t0 + t1;
|
|
tmp1[14] = t3 + t2 - t1;
|
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
|
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
|
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
|
|
t0 = MULH3(in1[2*3], C3, 2);
|
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
|
|
|
|
tmp1[ 0] = t2 + t3 + t0;
|
|
tmp1[12] = t2 + t1 - t0;
|
|
tmp1[ 8] = t3 - t1 - t0;
|
|
}
|
|
|
|
i = 0;
|
|
for (j = 0; j < 4; j++) {
|
|
t0 = tmp[i];
|
|
t1 = tmp[i + 2];
|
|
s0 = t1 + t0;
|
|
s2 = t1 - t0;
|
|
|
|
t2 = tmp[i + 1];
|
|
t3 = tmp[i + 3];
|
|
s1 = MULH3(t3 + t2, icos36h[ j], 2);
|
|
s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
|
|
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + j) * SBLIMIT] = MULH3(t1, win[ 9 + j], 1) + buf[4*(9 + j)];
|
|
out[(8 - j) * SBLIMIT] = MULH3(t1, win[ 8 - j], 1) + buf[4*(8 - j)];
|
|
buf[4 * ( 9 + j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
|
|
buf[4 * ( 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
|
|
|
|
t0 = s2 + s3;
|
|
t1 = s2 - s3;
|
|
out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[ 9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
|
|
out[ j * SBLIMIT] = MULH3(t1, win[ j], 1) + buf[4*( j)];
|
|
buf[4 * ( 9 + 8 - j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
|
|
buf[4 * ( j )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + j], 1);
|
|
i += 4;
|
|
}
|
|
|
|
s0 = tmp[16];
|
|
s1 = MULH3(tmp[17], icos36h[4], 2);
|
|
t0 = s0 + s1;
|
|
t1 = s0 - s1;
|
|
out[(9 + 4) * SBLIMIT] = MULH3(t1, win[ 9 + 4], 1) + buf[4*(9 + 4)];
|
|
out[(8 - 4) * SBLIMIT] = MULH3(t1, win[ 8 - 4], 1) + buf[4*(8 - 4)];
|
|
buf[4 * ( 9 + 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
|
|
buf[4 * ( 8 - 4 )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
|
|
}
|
|
|
|
void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
|
|
int count, int switch_point, int block_type)
|
|
{
|
|
int j;
|
|
for (j=0 ; j < count; j++) {
|
|
/* apply window & overlap with previous buffer */
|
|
|
|
/* select window */
|
|
int win_idx = (switch_point && j < 2) ? 0 : block_type;
|
|
INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
|
|
|
|
imdct36(out, buf, in, win);
|
|
|
|
in += 18;
|
|
buf += ((j&3) != 3 ? 1 : (72-3));
|
|
out++;
|
|
}
|
|
}
|