1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavformat/hevc.c
Mark Thompson b88da98b34 hevc: Improve stream constraint values in common header
Add comments to describe the sources of the constraint values expressed here,
and add some more related values which will be used in following patches.

Fix the incorrect values for SPS and PPS count (they are not the same as those
used for H.264), and remove HEVC_MAX_CU_SIZE because it is not used anywhere.
2017-08-05 23:54:35 +01:00

1142 lines
38 KiB
C

/*
* Copyright (c) 2014 Tim Walker <tdskywalker@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavcodec/avcodec.h"
#include "libavcodec/get_bits.h"
#include "libavcodec/golomb_legacy.h"
#include "libavcodec/hevc.h"
#include "libavutil/intreadwrite.h"
#include "avc.h"
#include "avio.h"
#include "hevc.h"
#define MAX_SPATIAL_SEGMENTATION 4096 // max. value of u(12) field
typedef struct HVCCNALUnitArray {
uint8_t array_completeness;
uint8_t NAL_unit_type;
uint16_t numNalus;
uint16_t *nalUnitLength;
uint8_t **nalUnit;
} HVCCNALUnitArray;
typedef struct HEVCDecoderConfigurationRecord {
uint8_t configurationVersion;
uint8_t general_profile_space;
uint8_t general_tier_flag;
uint8_t general_profile_idc;
uint32_t general_profile_compatibility_flags;
uint64_t general_constraint_indicator_flags;
uint8_t general_level_idc;
uint16_t min_spatial_segmentation_idc;
uint8_t parallelismType;
uint8_t chromaFormat;
uint8_t bitDepthLumaMinus8;
uint8_t bitDepthChromaMinus8;
uint16_t avgFrameRate;
uint8_t constantFrameRate;
uint8_t numTemporalLayers;
uint8_t temporalIdNested;
uint8_t lengthSizeMinusOne;
uint8_t numOfArrays;
HVCCNALUnitArray *array;
} HEVCDecoderConfigurationRecord;
typedef struct HVCCProfileTierLevel {
uint8_t profile_space;
uint8_t tier_flag;
uint8_t profile_idc;
uint32_t profile_compatibility_flags;
uint64_t constraint_indicator_flags;
uint8_t level_idc;
} HVCCProfileTierLevel;
static void hvcc_update_ptl(HEVCDecoderConfigurationRecord *hvcc,
HVCCProfileTierLevel *ptl)
{
/*
* The value of general_profile_space in all the parameter sets must be
* identical.
*/
hvcc->general_profile_space = ptl->profile_space;
/*
* The level indication general_level_idc must indicate a level of
* capability equal to or greater than the highest level indicated for the
* highest tier in all the parameter sets.
*/
if (hvcc->general_tier_flag < ptl->tier_flag)
hvcc->general_level_idc = ptl->level_idc;
else
hvcc->general_level_idc = FFMAX(hvcc->general_level_idc, ptl->level_idc);
/*
* The tier indication general_tier_flag must indicate a tier equal to or
* greater than the highest tier indicated in all the parameter sets.
*/
hvcc->general_tier_flag = FFMAX(hvcc->general_tier_flag, ptl->tier_flag);
/*
* The profile indication general_profile_idc must indicate a profile to
* which the stream associated with this configuration record conforms.
*
* If the sequence parameter sets are marked with different profiles, then
* the stream may need examination to determine which profile, if any, the
* entire stream conforms to. If the entire stream is not examined, or the
* examination reveals that there is no profile to which the entire stream
* conforms, then the entire stream must be split into two or more
* sub-streams with separate configuration records in which these rules can
* be met.
*
* Note: set the profile to the highest value for the sake of simplicity.
*/
hvcc->general_profile_idc = FFMAX(hvcc->general_profile_idc, ptl->profile_idc);
/*
* Each bit in general_profile_compatibility_flags may only be set if all
* the parameter sets set that bit.
*/
hvcc->general_profile_compatibility_flags &= ptl->profile_compatibility_flags;
/*
* Each bit in general_constraint_indicator_flags may only be set if all
* the parameter sets set that bit.
*/
hvcc->general_constraint_indicator_flags &= ptl->constraint_indicator_flags;
}
static void hvcc_parse_ptl(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc,
unsigned int max_sub_layers_minus1)
{
unsigned int i;
HVCCProfileTierLevel general_ptl;
uint8_t sub_layer_profile_present_flag[HEVC_MAX_SUB_LAYERS];
uint8_t sub_layer_level_present_flag[HEVC_MAX_SUB_LAYERS];
general_ptl.profile_space = get_bits(gb, 2);
general_ptl.tier_flag = get_bits1(gb);
general_ptl.profile_idc = get_bits(gb, 5);
general_ptl.profile_compatibility_flags = get_bits_long(gb, 32);
general_ptl.constraint_indicator_flags = get_bits64(gb, 48);
general_ptl.level_idc = get_bits(gb, 8);
hvcc_update_ptl(hvcc, &general_ptl);
for (i = 0; i < max_sub_layers_minus1; i++) {
sub_layer_profile_present_flag[i] = get_bits1(gb);
sub_layer_level_present_flag[i] = get_bits1(gb);
}
if (max_sub_layers_minus1 > 0)
for (i = max_sub_layers_minus1; i < 8; i++)
skip_bits(gb, 2); // reserved_zero_2bits[i]
for (i = 0; i < max_sub_layers_minus1; i++) {
if (sub_layer_profile_present_flag[i]) {
/*
* sub_layer_profile_space[i] u(2)
* sub_layer_tier_flag[i] u(1)
* sub_layer_profile_idc[i] u(5)
* sub_layer_profile_compatibility_flag[i][0..31] u(32)
* sub_layer_progressive_source_flag[i] u(1)
* sub_layer_interlaced_source_flag[i] u(1)
* sub_layer_non_packed_constraint_flag[i] u(1)
* sub_layer_frame_only_constraint_flag[i] u(1)
* sub_layer_reserved_zero_44bits[i] u(44)
*/
skip_bits_long(gb, 32);
skip_bits_long(gb, 32);
skip_bits (gb, 24);
}
if (sub_layer_level_present_flag[i])
skip_bits(gb, 8);
}
}
static void skip_sub_layer_hrd_parameters(GetBitContext *gb,
unsigned int cpb_cnt_minus1,
uint8_t sub_pic_hrd_params_present_flag)
{
unsigned int i;
for (i = 0; i <= cpb_cnt_minus1; i++) {
get_ue_golomb_long(gb); // bit_rate_value_minus1
get_ue_golomb_long(gb); // cpb_size_value_minus1
if (sub_pic_hrd_params_present_flag) {
get_ue_golomb_long(gb); // cpb_size_du_value_minus1
get_ue_golomb_long(gb); // bit_rate_du_value_minus1
}
skip_bits1(gb); // cbr_flag
}
}
static void skip_hrd_parameters(GetBitContext *gb, uint8_t cprms_present_flag,
unsigned int max_sub_layers_minus1)
{
unsigned int i;
uint8_t sub_pic_hrd_params_present_flag = 0;
uint8_t nal_hrd_parameters_present_flag = 0;
uint8_t vcl_hrd_parameters_present_flag = 0;
if (cprms_present_flag) {
nal_hrd_parameters_present_flag = get_bits1(gb);
vcl_hrd_parameters_present_flag = get_bits1(gb);
if (nal_hrd_parameters_present_flag ||
vcl_hrd_parameters_present_flag) {
sub_pic_hrd_params_present_flag = get_bits1(gb);
if (sub_pic_hrd_params_present_flag)
/*
* tick_divisor_minus2 u(8)
* du_cpb_removal_delay_increment_length_minus1 u(5)
* sub_pic_cpb_params_in_pic_timing_sei_flag u(1)
* dpb_output_delay_du_length_minus1 u(5)
*/
skip_bits(gb, 19);
/*
* bit_rate_scale u(4)
* cpb_size_scale u(4)
*/
skip_bits(gb, 8);
if (sub_pic_hrd_params_present_flag)
skip_bits(gb, 4); // cpb_size_du_scale
/*
* initial_cpb_removal_delay_length_minus1 u(5)
* au_cpb_removal_delay_length_minus1 u(5)
* dpb_output_delay_length_minus1 u(5)
*/
skip_bits(gb, 15);
}
}
for (i = 0; i <= max_sub_layers_minus1; i++) {
unsigned int cpb_cnt_minus1 = 0;
uint8_t low_delay_hrd_flag = 0;
uint8_t fixed_pic_rate_within_cvs_flag = 0;
uint8_t fixed_pic_rate_general_flag = get_bits1(gb);
if (!fixed_pic_rate_general_flag)
fixed_pic_rate_within_cvs_flag = get_bits1(gb);
if (fixed_pic_rate_within_cvs_flag)
get_ue_golomb_long(gb); // elemental_duration_in_tc_minus1
else
low_delay_hrd_flag = get_bits1(gb);
if (!low_delay_hrd_flag)
cpb_cnt_minus1 = get_ue_golomb_long(gb);
if (nal_hrd_parameters_present_flag)
skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
sub_pic_hrd_params_present_flag);
if (vcl_hrd_parameters_present_flag)
skip_sub_layer_hrd_parameters(gb, cpb_cnt_minus1,
sub_pic_hrd_params_present_flag);
}
}
static void skip_timing_info(GetBitContext *gb)
{
skip_bits_long(gb, 32); // num_units_in_tick
skip_bits_long(gb, 32); // time_scale
if (get_bits1(gb)) // poc_proportional_to_timing_flag
get_ue_golomb_long(gb); // num_ticks_poc_diff_one_minus1
}
static void hvcc_parse_vui(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc,
unsigned int max_sub_layers_minus1)
{
unsigned int min_spatial_segmentation_idc;
if (get_bits1(gb)) // aspect_ratio_info_present_flag
if (get_bits(gb, 8) == 255) // aspect_ratio_idc
skip_bits_long(gb, 32); // sar_width u(16), sar_height u(16)
if (get_bits1(gb)) // overscan_info_present_flag
skip_bits1(gb); // overscan_appropriate_flag
if (get_bits1(gb)) { // video_signal_type_present_flag
skip_bits(gb, 4); // video_format u(3), video_full_range_flag u(1)
if (get_bits1(gb)) // colour_description_present_flag
/*
* colour_primaries u(8)
* transfer_characteristics u(8)
* matrix_coeffs u(8)
*/
skip_bits(gb, 24);
}
if (get_bits1(gb)) { // chroma_loc_info_present_flag
get_ue_golomb_long(gb); // chroma_sample_loc_type_top_field
get_ue_golomb_long(gb); // chroma_sample_loc_type_bottom_field
}
/*
* neutral_chroma_indication_flag u(1)
* field_seq_flag u(1)
* frame_field_info_present_flag u(1)
*/
skip_bits(gb, 3);
if (get_bits1(gb)) { // default_display_window_flag
get_ue_golomb_long(gb); // def_disp_win_left_offset
get_ue_golomb_long(gb); // def_disp_win_right_offset
get_ue_golomb_long(gb); // def_disp_win_top_offset
get_ue_golomb_long(gb); // def_disp_win_bottom_offset
}
if (get_bits1(gb)) { // vui_timing_info_present_flag
skip_timing_info(gb);
if (get_bits1(gb)) // vui_hrd_parameters_present_flag
skip_hrd_parameters(gb, 1, max_sub_layers_minus1);
}
if (get_bits1(gb)) { // bitstream_restriction_flag
/*
* tiles_fixed_structure_flag u(1)
* motion_vectors_over_pic_boundaries_flag u(1)
* restricted_ref_pic_lists_flag u(1)
*/
skip_bits(gb, 3);
min_spatial_segmentation_idc = get_ue_golomb_long(gb);
/*
* unsigned int(12) min_spatial_segmentation_idc;
*
* The min_spatial_segmentation_idc indication must indicate a level of
* spatial segmentation equal to or less than the lowest level of
* spatial segmentation indicated in all the parameter sets.
*/
hvcc->min_spatial_segmentation_idc = FFMIN(hvcc->min_spatial_segmentation_idc,
min_spatial_segmentation_idc);
get_ue_golomb_long(gb); // max_bytes_per_pic_denom
get_ue_golomb_long(gb); // max_bits_per_min_cu_denom
get_ue_golomb_long(gb); // log2_max_mv_length_horizontal
get_ue_golomb_long(gb); // log2_max_mv_length_vertical
}
}
static void skip_sub_layer_ordering_info(GetBitContext *gb)
{
get_ue_golomb_long(gb); // max_dec_pic_buffering_minus1
get_ue_golomb_long(gb); // max_num_reorder_pics
get_ue_golomb_long(gb); // max_latency_increase_plus1
}
static int hvcc_parse_vps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
unsigned int vps_max_sub_layers_minus1;
/*
* vps_video_parameter_set_id u(4)
* vps_reserved_three_2bits u(2)
* vps_max_layers_minus1 u(6)
*/
skip_bits(gb, 12);
vps_max_sub_layers_minus1 = get_bits(gb, 3);
/*
* numTemporalLayers greater than 1 indicates that the stream to which this
* configuration record applies is temporally scalable and the contained
* number of temporal layers (also referred to as temporal sub-layer or
* sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
* indicates that the stream is not temporally scalable. Value 0 indicates
* that it is unknown whether the stream is temporally scalable.
*/
hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
vps_max_sub_layers_minus1 + 1);
/*
* vps_temporal_id_nesting_flag u(1)
* vps_reserved_0xffff_16bits u(16)
*/
skip_bits(gb, 17);
hvcc_parse_ptl(gb, hvcc, vps_max_sub_layers_minus1);
/* nothing useful for hvcC past this point */
return 0;
}
static void skip_scaling_list_data(GetBitContext *gb)
{
int i, j, k, num_coeffs;
for (i = 0; i < 4; i++)
for (j = 0; j < (i == 3 ? 2 : 6); j++)
if (!get_bits1(gb)) // scaling_list_pred_mode_flag[i][j]
get_ue_golomb_long(gb); // scaling_list_pred_matrix_id_delta[i][j]
else {
num_coeffs = FFMIN(64, 1 << (4 + (i << 1)));
if (i > 1)
get_se_golomb_long(gb); // scaling_list_dc_coef_minus8[i-2][j]
for (k = 0; k < num_coeffs; k++)
get_se_golomb_long(gb); // scaling_list_delta_coef
}
}
static int parse_rps(GetBitContext *gb, unsigned int rps_idx,
unsigned int num_rps,
unsigned int num_delta_pocs[HEVC_MAX_SHORT_TERM_REF_PIC_SETS])
{
unsigned int i;
if (rps_idx && get_bits1(gb)) { // inter_ref_pic_set_prediction_flag
/* this should only happen for slice headers, and this isn't one */
if (rps_idx >= num_rps)
return AVERROR_INVALIDDATA;
skip_bits1 (gb); // delta_rps_sign
get_ue_golomb_long(gb); // abs_delta_rps_minus1
num_delta_pocs[rps_idx] = 0;
/*
* From libavcodec/hevc_ps.c:
*
* if (is_slice_header) {
* //foo
* } else
* rps_ridx = &sps->st_rps[rps - sps->st_rps - 1];
*
* where:
* rps: &sps->st_rps[rps_idx]
* sps->st_rps: &sps->st_rps[0]
* is_slice_header: rps_idx == num_rps
*
* thus:
* if (num_rps != rps_idx)
* rps_ridx = &sps->st_rps[rps_idx - 1];
*
* NumDeltaPocs[RefRpsIdx]: num_delta_pocs[rps_idx - 1]
*/
for (i = 0; i < num_delta_pocs[rps_idx - 1]; i++) {
uint8_t use_delta_flag = 0;
uint8_t used_by_curr_pic_flag = get_bits1(gb);
if (!used_by_curr_pic_flag)
use_delta_flag = get_bits1(gb);
if (used_by_curr_pic_flag || use_delta_flag)
num_delta_pocs[rps_idx]++;
}
} else {
unsigned int num_negative_pics = get_ue_golomb_long(gb);
unsigned int num_positive_pics = get_ue_golomb_long(gb);
num_delta_pocs[rps_idx] = num_negative_pics + num_positive_pics;
for (i = 0; i < num_negative_pics; i++) {
get_ue_golomb_long(gb); // delta_poc_s0_minus1[rps_idx]
skip_bits1 (gb); // used_by_curr_pic_s0_flag[rps_idx]
}
for (i = 0; i < num_positive_pics; i++) {
get_ue_golomb_long(gb); // delta_poc_s1_minus1[rps_idx]
skip_bits1 (gb); // used_by_curr_pic_s1_flag[rps_idx]
}
}
return 0;
}
static int hvcc_parse_sps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
unsigned int i, sps_max_sub_layers_minus1, log2_max_pic_order_cnt_lsb_minus4;
unsigned int num_short_term_ref_pic_sets, num_delta_pocs[HEVC_MAX_SHORT_TERM_REF_PIC_SETS];
skip_bits(gb, 4); // sps_video_parameter_set_id
sps_max_sub_layers_minus1 = get_bits (gb, 3);
/*
* numTemporalLayers greater than 1 indicates that the stream to which this
* configuration record applies is temporally scalable and the contained
* number of temporal layers (also referred to as temporal sub-layer or
* sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1
* indicates that the stream is not temporally scalable. Value 0 indicates
* that it is unknown whether the stream is temporally scalable.
*/
hvcc->numTemporalLayers = FFMAX(hvcc->numTemporalLayers,
sps_max_sub_layers_minus1 + 1);
hvcc->temporalIdNested = get_bits1(gb);
hvcc_parse_ptl(gb, hvcc, sps_max_sub_layers_minus1);
get_ue_golomb_long(gb); // sps_seq_parameter_set_id
hvcc->chromaFormat = get_ue_golomb_long(gb);
if (hvcc->chromaFormat == 3)
skip_bits1(gb); // separate_colour_plane_flag
get_ue_golomb_long(gb); // pic_width_in_luma_samples
get_ue_golomb_long(gb); // pic_height_in_luma_samples
if (get_bits1(gb)) { // conformance_window_flag
get_ue_golomb_long(gb); // conf_win_left_offset
get_ue_golomb_long(gb); // conf_win_right_offset
get_ue_golomb_long(gb); // conf_win_top_offset
get_ue_golomb_long(gb); // conf_win_bottom_offset
}
hvcc->bitDepthLumaMinus8 = get_ue_golomb_long(gb);
hvcc->bitDepthChromaMinus8 = get_ue_golomb_long(gb);
log2_max_pic_order_cnt_lsb_minus4 = get_ue_golomb_long(gb);
/* sps_sub_layer_ordering_info_present_flag */
i = get_bits1(gb) ? 0 : sps_max_sub_layers_minus1;
for (; i <= sps_max_sub_layers_minus1; i++)
skip_sub_layer_ordering_info(gb);
get_ue_golomb_long(gb); // log2_min_luma_coding_block_size_minus3
get_ue_golomb_long(gb); // log2_diff_max_min_luma_coding_block_size
get_ue_golomb_long(gb); // log2_min_transform_block_size_minus2
get_ue_golomb_long(gb); // log2_diff_max_min_transform_block_size
get_ue_golomb_long(gb); // max_transform_hierarchy_depth_inter
get_ue_golomb_long(gb); // max_transform_hierarchy_depth_intra
if (get_bits1(gb) && // scaling_list_enabled_flag
get_bits1(gb)) // sps_scaling_list_data_present_flag
skip_scaling_list_data(gb);
skip_bits1(gb); // amp_enabled_flag
skip_bits1(gb); // sample_adaptive_offset_enabled_flag
if (get_bits1(gb)) { // pcm_enabled_flag
skip_bits (gb, 4); // pcm_sample_bit_depth_luma_minus1
skip_bits (gb, 4); // pcm_sample_bit_depth_chroma_minus1
get_ue_golomb_long(gb); // log2_min_pcm_luma_coding_block_size_minus3
get_ue_golomb_long(gb); // log2_diff_max_min_pcm_luma_coding_block_size
skip_bits1 (gb); // pcm_loop_filter_disabled_flag
}
num_short_term_ref_pic_sets = get_ue_golomb_long(gb);
if (num_short_term_ref_pic_sets > HEVC_MAX_SHORT_TERM_REF_PIC_SETS)
return AVERROR_INVALIDDATA;
for (i = 0; i < num_short_term_ref_pic_sets; i++) {
int ret = parse_rps(gb, i, num_short_term_ref_pic_sets, num_delta_pocs);
if (ret < 0)
return ret;
}
if (get_bits1(gb)) { // long_term_ref_pics_present_flag
for (i = 0; i < get_ue_golomb_long(gb); i++) { // num_long_term_ref_pics_sps
int len = FFMIN(log2_max_pic_order_cnt_lsb_minus4 + 4, 16);
skip_bits (gb, len); // lt_ref_pic_poc_lsb_sps[i]
skip_bits1(gb); // used_by_curr_pic_lt_sps_flag[i]
}
}
skip_bits1(gb); // sps_temporal_mvp_enabled_flag
skip_bits1(gb); // strong_intra_smoothing_enabled_flag
if (get_bits1(gb)) // vui_parameters_present_flag
hvcc_parse_vui(gb, hvcc, sps_max_sub_layers_minus1);
/* nothing useful for hvcC past this point */
return 0;
}
static int hvcc_parse_pps(GetBitContext *gb,
HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t tiles_enabled_flag, entropy_coding_sync_enabled_flag;
get_ue_golomb_long(gb); // pps_pic_parameter_set_id
get_ue_golomb_long(gb); // pps_seq_parameter_set_id
/*
* dependent_slice_segments_enabled_flag u(1)
* output_flag_present_flag u(1)
* num_extra_slice_header_bits u(3)
* sign_data_hiding_enabled_flag u(1)
* cabac_init_present_flag u(1)
*/
skip_bits(gb, 7);
get_ue_golomb_long(gb); // num_ref_idx_l0_default_active_minus1
get_ue_golomb_long(gb); // num_ref_idx_l1_default_active_minus1
get_se_golomb_long(gb); // init_qp_minus26
/*
* constrained_intra_pred_flag u(1)
* transform_skip_enabled_flag u(1)
*/
skip_bits(gb, 2);
if (get_bits1(gb)) // cu_qp_delta_enabled_flag
get_ue_golomb_long(gb); // diff_cu_qp_delta_depth
get_se_golomb_long(gb); // pps_cb_qp_offset
get_se_golomb_long(gb); // pps_cr_qp_offset
/*
* weighted_pred_flag u(1)
* weighted_bipred_flag u(1)
* transquant_bypass_enabled_flag u(1)
*/
skip_bits(gb, 3);
tiles_enabled_flag = get_bits1(gb);
entropy_coding_sync_enabled_flag = get_bits1(gb);
if (entropy_coding_sync_enabled_flag && tiles_enabled_flag)
hvcc->parallelismType = 0; // mixed-type parallel decoding
else if (entropy_coding_sync_enabled_flag)
hvcc->parallelismType = 3; // wavefront-based parallel decoding
else if (tiles_enabled_flag)
hvcc->parallelismType = 2; // tile-based parallel decoding
else
hvcc->parallelismType = 1; // slice-based parallel decoding
/* nothing useful for hvcC past this point */
return 0;
}
static uint8_t *nal_unit_extract_rbsp(const uint8_t *src, uint32_t src_len,
uint32_t *dst_len)
{
uint8_t *dst;
uint32_t i, len;
dst = av_malloc(src_len + AV_INPUT_BUFFER_PADDING_SIZE);
if (!dst)
return NULL;
/* NAL unit header (2 bytes) */
i = len = 0;
while (i < 2 && i < src_len)
dst[len++] = src[i++];
while (i + 2 < src_len)
if (!src[i] && !src[i + 1] && src[i + 2] == 3) {
dst[len++] = src[i++];
dst[len++] = src[i++];
i++; // remove emulation_prevention_three_byte
} else
dst[len++] = src[i++];
while (i < src_len)
dst[len++] = src[i++];
*dst_len = len;
return dst;
}
static void nal_unit_parse_header(GetBitContext *gb, uint8_t *nal_type)
{
skip_bits1(gb); // forbidden_zero_bit
*nal_type = get_bits(gb, 6);
/*
* nuh_layer_id u(6)
* nuh_temporal_id_plus1 u(3)
*/
skip_bits(gb, 9);
}
static int hvcc_array_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
uint8_t nal_type, int ps_array_completeness,
HEVCDecoderConfigurationRecord *hvcc)
{
int ret;
uint8_t index;
uint16_t numNalus;
HVCCNALUnitArray *array;
for (index = 0; index < hvcc->numOfArrays; index++)
if (hvcc->array[index].NAL_unit_type == nal_type)
break;
if (index >= hvcc->numOfArrays) {
uint8_t i;
ret = av_reallocp_array(&hvcc->array, index + 1, sizeof(HVCCNALUnitArray));
if (ret < 0)
return ret;
for (i = hvcc->numOfArrays; i <= index; i++)
memset(&hvcc->array[i], 0, sizeof(HVCCNALUnitArray));
hvcc->numOfArrays = index + 1;
}
array = &hvcc->array[index];
numNalus = array->numNalus;
ret = av_reallocp_array(&array->nalUnit, numNalus + 1, sizeof(uint8_t*));
if (ret < 0)
return ret;
ret = av_reallocp_array(&array->nalUnitLength, numNalus + 1, sizeof(uint16_t));
if (ret < 0)
return ret;
array->nalUnit [numNalus] = nal_buf;
array->nalUnitLength[numNalus] = nal_size;
array->NAL_unit_type = nal_type;
array->numNalus++;
/*
* When the sample entry name is ‘hvc1’, the default and mandatory value of
* array_completeness is 1 for arrays of all types of parameter sets, and 0
* for all other arrays. When the sample entry name is ‘hev1’, the default
* value of array_completeness is 0 for all arrays.
*/
if (nal_type == HEVC_NAL_VPS || nal_type == HEVC_NAL_SPS || nal_type == HEVC_NAL_PPS)
array->array_completeness = ps_array_completeness;
return 0;
}
static int hvcc_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size,
int ps_array_completeness,
HEVCDecoderConfigurationRecord *hvcc)
{
int ret = 0;
GetBitContext gbc;
uint8_t nal_type;
uint8_t *rbsp_buf;
uint32_t rbsp_size;
rbsp_buf = nal_unit_extract_rbsp(nal_buf, nal_size, &rbsp_size);
if (!rbsp_buf) {
ret = AVERROR(ENOMEM);
goto end;
}
ret = init_get_bits8(&gbc, rbsp_buf, rbsp_size);
if (ret < 0)
goto end;
nal_unit_parse_header(&gbc, &nal_type);
/*
* Note: only 'declarative' SEI messages are allowed in
* hvcC. Perhaps the SEI playload type should be checked
* and non-declarative SEI messages discarded?
*/
switch (nal_type) {
case HEVC_NAL_VPS:
case HEVC_NAL_SPS:
case HEVC_NAL_PPS:
case HEVC_NAL_SEI_PREFIX:
case HEVC_NAL_SEI_SUFFIX:
ret = hvcc_array_add_nal_unit(nal_buf, nal_size, nal_type,
ps_array_completeness, hvcc);
if (ret < 0)
goto end;
else if (nal_type == HEVC_NAL_VPS)
ret = hvcc_parse_vps(&gbc, hvcc);
else if (nal_type == HEVC_NAL_SPS)
ret = hvcc_parse_sps(&gbc, hvcc);
else if (nal_type == HEVC_NAL_PPS)
ret = hvcc_parse_pps(&gbc, hvcc);
if (ret < 0)
goto end;
break;
default:
ret = AVERROR_INVALIDDATA;
goto end;
}
end:
av_free(rbsp_buf);
return ret;
}
static void hvcc_init(HEVCDecoderConfigurationRecord *hvcc)
{
memset(hvcc, 0, sizeof(HEVCDecoderConfigurationRecord));
hvcc->configurationVersion = 1;
hvcc->lengthSizeMinusOne = 3; // 4 bytes
/*
* The following fields have all their valid bits set by default,
* the ProfileTierLevel parsing code will unset them when needed.
*/
hvcc->general_profile_compatibility_flags = 0xffffffff;
hvcc->general_constraint_indicator_flags = 0xffffffffffff;
/*
* Initialize this field with an invalid value which can be used to detect
* whether we didn't see any VUI (in which case it should be reset to zero).
*/
hvcc->min_spatial_segmentation_idc = MAX_SPATIAL_SEGMENTATION + 1;
}
static void hvcc_close(HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t i;
for (i = 0; i < hvcc->numOfArrays; i++) {
hvcc->array[i].numNalus = 0;
av_freep(&hvcc->array[i].nalUnit);
av_freep(&hvcc->array[i].nalUnitLength);
}
hvcc->numOfArrays = 0;
av_freep(&hvcc->array);
}
static int hvcc_write(AVIOContext *pb, HEVCDecoderConfigurationRecord *hvcc)
{
uint8_t i;
uint16_t j, vps_count = 0, sps_count = 0, pps_count = 0;
/*
* We only support writing HEVCDecoderConfigurationRecord version 1.
*/
hvcc->configurationVersion = 1;
/*
* If min_spatial_segmentation_idc is invalid, reset to 0 (unspecified).
*/
if (hvcc->min_spatial_segmentation_idc > MAX_SPATIAL_SEGMENTATION)
hvcc->min_spatial_segmentation_idc = 0;
/*
* parallelismType indicates the type of parallelism that is used to meet
* the restrictions imposed by min_spatial_segmentation_idc when the value
* of min_spatial_segmentation_idc is greater than 0.
*/
if (!hvcc->min_spatial_segmentation_idc)
hvcc->parallelismType = 0;
/*
* It's unclear how to properly compute these fields, so
* let's always set them to values meaning 'unspecified'.
*/
hvcc->avgFrameRate = 0;
hvcc->constantFrameRate = 0;
av_log(NULL, AV_LOG_TRACE, "configurationVersion: %"PRIu8"\n",
hvcc->configurationVersion);
av_log(NULL, AV_LOG_TRACE, "general_profile_space: %"PRIu8"\n",
hvcc->general_profile_space);
av_log(NULL, AV_LOG_TRACE, "general_tier_flag: %"PRIu8"\n",
hvcc->general_tier_flag);
av_log(NULL, AV_LOG_TRACE, "general_profile_idc: %"PRIu8"\n",
hvcc->general_profile_idc);
av_log(NULL, AV_LOG_TRACE, "general_profile_compatibility_flags: 0x%08"PRIx32"\n",
hvcc->general_profile_compatibility_flags);
av_log(NULL, AV_LOG_TRACE, "general_constraint_indicator_flags: 0x%012"PRIx64"\n",
hvcc->general_constraint_indicator_flags);
av_log(NULL, AV_LOG_TRACE, "general_level_idc: %"PRIu8"\n",
hvcc->general_level_idc);
av_log(NULL, AV_LOG_TRACE, "min_spatial_segmentation_idc: %"PRIu16"\n",
hvcc->min_spatial_segmentation_idc);
av_log(NULL, AV_LOG_TRACE, "parallelismType: %"PRIu8"\n",
hvcc->parallelismType);
av_log(NULL, AV_LOG_TRACE, "chromaFormat: %"PRIu8"\n",
hvcc->chromaFormat);
av_log(NULL, AV_LOG_TRACE, "bitDepthLumaMinus8: %"PRIu8"\n",
hvcc->bitDepthLumaMinus8);
av_log(NULL, AV_LOG_TRACE, "bitDepthChromaMinus8: %"PRIu8"\n",
hvcc->bitDepthChromaMinus8);
av_log(NULL, AV_LOG_TRACE, "avgFrameRate: %"PRIu16"\n",
hvcc->avgFrameRate);
av_log(NULL, AV_LOG_TRACE, "constantFrameRate: %"PRIu8"\n",
hvcc->constantFrameRate);
av_log(NULL, AV_LOG_TRACE, "numTemporalLayers: %"PRIu8"\n",
hvcc->numTemporalLayers);
av_log(NULL, AV_LOG_TRACE, "temporalIdNested: %"PRIu8"\n",
hvcc->temporalIdNested);
av_log(NULL, AV_LOG_TRACE, "lengthSizeMinusOne: %"PRIu8"\n",
hvcc->lengthSizeMinusOne);
av_log(NULL, AV_LOG_TRACE, "numOfArrays: %"PRIu8"\n",
hvcc->numOfArrays);
for (i = 0; i < hvcc->numOfArrays; i++) {
av_log(NULL, AV_LOG_TRACE, "array_completeness[%"PRIu8"]: %"PRIu8"\n",
i, hvcc->array[i].array_completeness);
av_log(NULL, AV_LOG_TRACE, "NAL_unit_type[%"PRIu8"]: %"PRIu8"\n",
i, hvcc->array[i].NAL_unit_type);
av_log(NULL, AV_LOG_TRACE, "numNalus[%"PRIu8"]: %"PRIu16"\n",
i, hvcc->array[i].numNalus);
for (j = 0; j < hvcc->array[i].numNalus; j++)
av_log(NULL, AV_LOG_TRACE,
"nalUnitLength[%"PRIu8"][%"PRIu16"]: %"PRIu16"\n",
i, j, hvcc->array[i].nalUnitLength[j]);
}
/*
* We need at least one of each: VPS, SPS and PPS.
*/
for (i = 0; i < hvcc->numOfArrays; i++)
switch (hvcc->array[i].NAL_unit_type) {
case HEVC_NAL_VPS:
vps_count += hvcc->array[i].numNalus;
break;
case HEVC_NAL_SPS:
sps_count += hvcc->array[i].numNalus;
break;
case HEVC_NAL_PPS:
pps_count += hvcc->array[i].numNalus;
break;
default:
break;
}
if (!vps_count || vps_count > HEVC_MAX_VPS_COUNT ||
!sps_count || sps_count > HEVC_MAX_SPS_COUNT ||
!pps_count || pps_count > HEVC_MAX_PPS_COUNT)
return AVERROR_INVALIDDATA;
/* unsigned int(8) configurationVersion = 1; */
avio_w8(pb, hvcc->configurationVersion);
/*
* unsigned int(2) general_profile_space;
* unsigned int(1) general_tier_flag;
* unsigned int(5) general_profile_idc;
*/
avio_w8(pb, hvcc->general_profile_space << 6 |
hvcc->general_tier_flag << 5 |
hvcc->general_profile_idc);
/* unsigned int(32) general_profile_compatibility_flags; */
avio_wb32(pb, hvcc->general_profile_compatibility_flags);
/* unsigned int(48) general_constraint_indicator_flags; */
avio_wb32(pb, hvcc->general_constraint_indicator_flags >> 16);
avio_wb16(pb, hvcc->general_constraint_indicator_flags);
/* unsigned int(8) general_level_idc; */
avio_w8(pb, hvcc->general_level_idc);
/*
* bit(4) reserved = ‘1111’b;
* unsigned int(12) min_spatial_segmentation_idc;
*/
avio_wb16(pb, hvcc->min_spatial_segmentation_idc | 0xf000);
/*
* bit(6) reserved = ‘111111’b;
* unsigned int(2) parallelismType;
*/
avio_w8(pb, hvcc->parallelismType | 0xfc);
/*
* bit(6) reserved = ‘111111’b;
* unsigned int(2) chromaFormat;
*/
avio_w8(pb, hvcc->chromaFormat | 0xfc);
/*
* bit(5) reserved = ‘11111’b;
* unsigned int(3) bitDepthLumaMinus8;
*/
avio_w8(pb, hvcc->bitDepthLumaMinus8 | 0xf8);
/*
* bit(5) reserved = ‘11111’b;
* unsigned int(3) bitDepthChromaMinus8;
*/
avio_w8(pb, hvcc->bitDepthChromaMinus8 | 0xf8);
/* bit(16) avgFrameRate; */
avio_wb16(pb, hvcc->avgFrameRate);
/*
* bit(2) constantFrameRate;
* bit(3) numTemporalLayers;
* bit(1) temporalIdNested;
* unsigned int(2) lengthSizeMinusOne;
*/
avio_w8(pb, hvcc->constantFrameRate << 6 |
hvcc->numTemporalLayers << 3 |
hvcc->temporalIdNested << 2 |
hvcc->lengthSizeMinusOne);
/* unsigned int(8) numOfArrays; */
avio_w8(pb, hvcc->numOfArrays);
for (i = 0; i < hvcc->numOfArrays; i++) {
/*
* bit(1) array_completeness;
* unsigned int(1) reserved = 0;
* unsigned int(6) NAL_unit_type;
*/
avio_w8(pb, hvcc->array[i].array_completeness << 7 |
hvcc->array[i].NAL_unit_type & 0x3f);
/* unsigned int(16) numNalus; */
avio_wb16(pb, hvcc->array[i].numNalus);
for (j = 0; j < hvcc->array[i].numNalus; j++) {
/* unsigned int(16) nalUnitLength; */
avio_wb16(pb, hvcc->array[i].nalUnitLength[j]);
/* bit(8*nalUnitLength) nalUnit; */
avio_write(pb, hvcc->array[i].nalUnit[j],
hvcc->array[i].nalUnitLength[j]);
}
}
return 0;
}
int ff_hevc_annexb2mp4(AVIOContext *pb, const uint8_t *buf_in,
int size, int filter_ps, int *ps_count)
{
int num_ps = 0, ret = 0;
uint8_t *buf, *end, *start = NULL;
if (!filter_ps) {
ret = ff_avc_parse_nal_units(pb, buf_in, size);
goto end;
}
ret = ff_avc_parse_nal_units_buf(buf_in, &start, &size);
if (ret < 0)
goto end;
ret = 0;
buf = start;
end = start + size;
while (end - buf > 4) {
uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
uint8_t type = (buf[4] >> 1) & 0x3f;
buf += 4;
switch (type) {
case HEVC_NAL_VPS:
case HEVC_NAL_SPS:
case HEVC_NAL_PPS:
num_ps++;
break;
default:
ret += 4 + len;
avio_wb32(pb, len);
avio_write(pb, buf, len);
break;
}
buf += len;
}
end:
av_free(start);
if (ps_count)
*ps_count = num_ps;
return ret;
}
int ff_hevc_annexb2mp4_buf(const uint8_t *buf_in, uint8_t **buf_out,
int *size, int filter_ps, int *ps_count)
{
AVIOContext *pb;
int ret;
ret = avio_open_dyn_buf(&pb);
if (ret < 0)
return ret;
ret = ff_hevc_annexb2mp4(pb, buf_in, *size, filter_ps, ps_count);
*size = avio_close_dyn_buf(pb, buf_out);
return ret;
}
int ff_isom_write_hvcc(AVIOContext *pb, const uint8_t *data,
int size, int ps_array_completeness)
{
int ret = 0;
uint8_t *buf, *end, *start = NULL;
HEVCDecoderConfigurationRecord hvcc;
hvcc_init(&hvcc);
if (size < 6) {
/* We can't write a valid hvcC from the provided data */
ret = AVERROR_INVALIDDATA;
goto end;
} else if (*data == 1) {
/* Data is already hvcC-formatted */
avio_write(pb, data, size);
goto end;
} else if (!(AV_RB24(data) == 1 || AV_RB32(data) == 1)) {
/* Not a valid Annex B start code prefix */
ret = AVERROR_INVALIDDATA;
goto end;
}
ret = ff_avc_parse_nal_units_buf(data, &start, &size);
if (ret < 0)
goto end;
buf = start;
end = start + size;
while (end - buf > 4) {
uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4);
uint8_t type = (buf[4] >> 1) & 0x3f;
buf += 4;
switch (type) {
case HEVC_NAL_VPS:
case HEVC_NAL_SPS:
case HEVC_NAL_PPS:
case HEVC_NAL_SEI_PREFIX:
case HEVC_NAL_SEI_SUFFIX:
ret = hvcc_add_nal_unit(buf, len, ps_array_completeness, &hvcc);
if (ret < 0)
goto end;
break;
default:
break;
}
buf += len;
}
ret = hvcc_write(pb, &hvcc);
end:
hvcc_close(&hvcc);
av_free(start);
return ret;
}