mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-13 21:28:01 +02:00
637093a2db
This very slightly improves compression Found-by: Christophe Gisquet <christophe.gisquet@gmail.com> Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
651 lines
19 KiB
C
651 lines
19 KiB
C
/*
|
|
* Ut Video encoder
|
|
* Copyright (c) 2012 Jan Ekström
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Ut Video encoder
|
|
*/
|
|
|
|
#include "libavutil/imgutils.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "avcodec.h"
|
|
#include "internal.h"
|
|
#include "bytestream.h"
|
|
#include "put_bits.h"
|
|
#include "dsputil.h"
|
|
#include "huffyuvencdsp.h"
|
|
#include "mathops.h"
|
|
#include "utvideo.h"
|
|
#include "huffman.h"
|
|
|
|
/* Compare huffentry symbols */
|
|
static int huff_cmp_sym(const void *a, const void *b)
|
|
{
|
|
const HuffEntry *aa = a, *bb = b;
|
|
return aa->sym - bb->sym;
|
|
}
|
|
|
|
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
|
|
{
|
|
UtvideoContext *c = avctx->priv_data;
|
|
int i;
|
|
|
|
av_freep(&avctx->coded_frame);
|
|
av_freep(&c->slice_bits);
|
|
for (i = 0; i < 4; i++)
|
|
av_freep(&c->slice_buffer[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
|
|
{
|
|
UtvideoContext *c = avctx->priv_data;
|
|
int i, subsampled_height;
|
|
uint32_t original_format;
|
|
|
|
c->avctx = avctx;
|
|
c->frame_info_size = 4;
|
|
c->slice_stride = FFALIGN(avctx->width, 32);
|
|
|
|
switch (avctx->pix_fmt) {
|
|
case AV_PIX_FMT_RGB24:
|
|
c->planes = 3;
|
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
|
|
original_format = UTVIDEO_RGB;
|
|
break;
|
|
case AV_PIX_FMT_RGBA:
|
|
c->planes = 4;
|
|
avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
|
|
original_format = UTVIDEO_RGBA;
|
|
break;
|
|
case AV_PIX_FMT_YUV420P:
|
|
if (avctx->width & 1 || avctx->height & 1) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"4:2:0 video requires even width and height.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
c->planes = 3;
|
|
if (avctx->colorspace == AVCOL_SPC_BT709)
|
|
avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
|
|
else
|
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
|
|
original_format = UTVIDEO_420;
|
|
break;
|
|
case AV_PIX_FMT_YUV422P:
|
|
if (avctx->width & 1) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"4:2:2 video requires even width.\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
c->planes = 3;
|
|
if (avctx->colorspace == AVCOL_SPC_BT709)
|
|
avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
|
|
else
|
|
avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
|
|
original_format = UTVIDEO_422;
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
|
|
avctx->pix_fmt);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ff_dsputil_init(&c->dsp, avctx);
|
|
ff_huffyuvencdsp_init(&c->hdsp);
|
|
|
|
/* Check the prediction method, and error out if unsupported */
|
|
if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
|
|
av_log(avctx, AV_LOG_WARNING,
|
|
"Prediction method %d is not supported in Ut Video.\n",
|
|
avctx->prediction_method);
|
|
return AVERROR_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
if (avctx->prediction_method == FF_PRED_PLANE) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Plane prediction is not supported in Ut Video.\n");
|
|
return AVERROR_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
/* Convert from libavcodec prediction type to Ut Video's */
|
|
c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
|
|
|
|
if (c->frame_pred == PRED_GRADIENT) {
|
|
av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
|
|
return AVERROR_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
/*
|
|
* Check the asked slice count for obviously invalid
|
|
* values (> 256 or negative).
|
|
*/
|
|
if (avctx->slices > 256 || avctx->slices < 0) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
|
|
avctx->slices);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
/* Check that the slice count is not larger than the subsampled height */
|
|
subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
|
|
if (avctx->slices > subsampled_height) {
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Slice count %d is larger than the subsampling-applied height %d.\n",
|
|
avctx->slices, subsampled_height);
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
avctx->coded_frame = av_frame_alloc();
|
|
|
|
if (!avctx->coded_frame) {
|
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
|
|
utvideo_encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
/* extradata size is 4 * 32bit */
|
|
avctx->extradata_size = 16;
|
|
|
|
avctx->extradata = av_mallocz(avctx->extradata_size +
|
|
FF_INPUT_BUFFER_PADDING_SIZE);
|
|
|
|
if (!avctx->extradata) {
|
|
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
|
|
utvideo_encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < c->planes; i++) {
|
|
c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
|
|
FF_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!c->slice_buffer[i]) {
|
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
|
|
utvideo_encode_close(avctx);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the version of the encoder.
|
|
* Last byte is "implementation ID", which is
|
|
* obtained from the creator of the format.
|
|
* Libavcodec has been assigned with the ID 0xF0.
|
|
*/
|
|
AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
|
|
|
|
/*
|
|
* Set the "original format"
|
|
* Not used for anything during decoding.
|
|
*/
|
|
AV_WL32(avctx->extradata + 4, original_format);
|
|
|
|
/* Write 4 as the 'frame info size' */
|
|
AV_WL32(avctx->extradata + 8, c->frame_info_size);
|
|
|
|
/*
|
|
* Set how many slices are going to be used.
|
|
* By default uses multiple slices depending on the subsampled height.
|
|
* This enables multithreading in the official decoder.
|
|
*/
|
|
if (!avctx->slices) {
|
|
c->slices = subsampled_height / 120;
|
|
|
|
if (!c->slices)
|
|
c->slices = 1;
|
|
else if (c->slices > 256)
|
|
c->slices = 256;
|
|
} else {
|
|
c->slices = avctx->slices;
|
|
}
|
|
|
|
/* Set compression mode */
|
|
c->compression = COMP_HUFF;
|
|
|
|
/*
|
|
* Set the encoding flags:
|
|
* - Slice count minus 1
|
|
* - Interlaced encoding mode flag, set to zero for now.
|
|
* - Compression mode (none/huff)
|
|
* And write the flags.
|
|
*/
|
|
c->flags = (c->slices - 1) << 24;
|
|
c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
|
|
c->flags |= c->compression;
|
|
|
|
AV_WL32(avctx->extradata + 12, c->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
|
|
int step, int stride, int width, int height)
|
|
{
|
|
int i, j;
|
|
int k = 2 * dst_stride;
|
|
unsigned int g;
|
|
|
|
for (j = 0; j < height; j++) {
|
|
if (step == 3) {
|
|
for (i = 0; i < width * step; i += step) {
|
|
g = src[i + 1];
|
|
dst[0][k] = g;
|
|
g += 0x80;
|
|
dst[1][k] = src[i + 2] - g;
|
|
dst[2][k] = src[i + 0] - g;
|
|
k++;
|
|
}
|
|
} else {
|
|
for (i = 0; i < width * step; i += step) {
|
|
g = src[i + 1];
|
|
dst[0][k] = g;
|
|
g += 0x80;
|
|
dst[1][k] = src[i + 2] - g;
|
|
dst[2][k] = src[i + 0] - g;
|
|
dst[3][k] = src[i + 3];
|
|
k++;
|
|
}
|
|
}
|
|
k += dst_stride - width;
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
/* Write data to a plane with left prediction */
|
|
static void left_predict(uint8_t *src, uint8_t *dst, int stride,
|
|
int width, int height)
|
|
{
|
|
int i, j;
|
|
uint8_t prev;
|
|
|
|
prev = 0x80; /* Set the initial value */
|
|
for (j = 0; j < height; j++) {
|
|
for (i = 0; i < width; i++) {
|
|
*dst++ = src[i] - prev;
|
|
prev = src[i];
|
|
}
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
/* Write data to a plane with median prediction */
|
|
static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst, int stride,
|
|
int width, int height)
|
|
{
|
|
int i, j;
|
|
int A, B;
|
|
uint8_t prev;
|
|
|
|
/* First line uses left neighbour prediction */
|
|
prev = 0x80; /* Set the initial value */
|
|
for (i = 0; i < width; i++) {
|
|
*dst++ = src[i] - prev;
|
|
prev = src[i];
|
|
}
|
|
|
|
if (height == 1)
|
|
return;
|
|
|
|
src += stride;
|
|
|
|
/*
|
|
* Second line uses top prediction for the first sample,
|
|
* and median for the rest.
|
|
*/
|
|
A = B = 0;
|
|
|
|
/* Rest of the coded part uses median prediction */
|
|
for (j = 1; j < height; j++) {
|
|
c->hdsp.sub_hfyu_median_pred(dst, src - stride, src, width, &A, &B);
|
|
dst += width;
|
|
src += stride;
|
|
}
|
|
}
|
|
|
|
/* Count the usage of values in a plane */
|
|
static void count_usage(uint8_t *src, int width,
|
|
int height, uint64_t *counts)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = 0; j < height; j++) {
|
|
for (i = 0; i < width; i++) {
|
|
counts[src[i]]++;
|
|
}
|
|
src += width;
|
|
}
|
|
}
|
|
|
|
/* Calculate the actual huffman codes from the code lengths */
|
|
static void calculate_codes(HuffEntry *he)
|
|
{
|
|
int last, i;
|
|
uint32_t code;
|
|
|
|
qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
|
|
|
|
last = 255;
|
|
while (he[last].len == 255 && last)
|
|
last--;
|
|
|
|
code = 1;
|
|
for (i = last; i >= 0; i--) {
|
|
he[i].code = code >> (32 - he[i].len);
|
|
code += 0x80000000u >> (he[i].len - 1);
|
|
}
|
|
|
|
qsort(he, 256, sizeof(*he), huff_cmp_sym);
|
|
}
|
|
|
|
/* Write huffman bit codes to a memory block */
|
|
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
|
|
int width, int height, HuffEntry *he)
|
|
{
|
|
PutBitContext pb;
|
|
int i, j;
|
|
int count;
|
|
|
|
init_put_bits(&pb, dst, dst_size);
|
|
|
|
/* Write the codes */
|
|
for (j = 0; j < height; j++) {
|
|
for (i = 0; i < width; i++)
|
|
put_bits(&pb, he[src[i]].len, he[src[i]].code);
|
|
|
|
src += width;
|
|
}
|
|
|
|
/* Pad output to a 32bit boundary */
|
|
count = put_bits_count(&pb) & 0x1F;
|
|
|
|
if (count)
|
|
put_bits(&pb, 32 - count, 0);
|
|
|
|
/* Get the amount of bits written */
|
|
count = put_bits_count(&pb);
|
|
|
|
/* Flush the rest with zeroes */
|
|
flush_put_bits(&pb);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
|
|
uint8_t *dst, int stride,
|
|
int width, int height, PutByteContext *pb)
|
|
{
|
|
UtvideoContext *c = avctx->priv_data;
|
|
uint8_t lengths[256];
|
|
uint64_t counts[256] = { 0 };
|
|
|
|
HuffEntry he[256];
|
|
|
|
uint32_t offset = 0, slice_len = 0;
|
|
int i, sstart, send = 0;
|
|
int symbol;
|
|
int ret;
|
|
|
|
/* Do prediction / make planes */
|
|
switch (c->frame_pred) {
|
|
case PRED_NONE:
|
|
for (i = 0; i < c->slices; i++) {
|
|
sstart = send;
|
|
send = height * (i + 1) / c->slices;
|
|
av_image_copy_plane(dst + sstart * width, width,
|
|
src + sstart * stride, stride,
|
|
width, send - sstart);
|
|
}
|
|
break;
|
|
case PRED_LEFT:
|
|
for (i = 0; i < c->slices; i++) {
|
|
sstart = send;
|
|
send = height * (i + 1) / c->slices;
|
|
left_predict(src + sstart * stride, dst + sstart * width,
|
|
stride, width, send - sstart);
|
|
}
|
|
break;
|
|
case PRED_MEDIAN:
|
|
for (i = 0; i < c->slices; i++) {
|
|
sstart = send;
|
|
send = height * (i + 1) / c->slices;
|
|
median_predict(c, src + sstart * stride, dst + sstart * width,
|
|
stride, width, send - sstart);
|
|
}
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
|
|
c->frame_pred);
|
|
return AVERROR_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
/* Count the usage of values */
|
|
count_usage(dst, width, height, counts);
|
|
|
|
/* Check for a special case where only one symbol was used */
|
|
for (symbol = 0; symbol < 256; symbol++) {
|
|
/* If non-zero count is found, see if it matches width * height */
|
|
if (counts[symbol]) {
|
|
/* Special case if only one symbol was used */
|
|
if (counts[symbol] == width * (int64_t)height) {
|
|
/*
|
|
* Write a zero for the single symbol
|
|
* used in the plane, else 0xFF.
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
if (i == symbol)
|
|
bytestream2_put_byte(pb, 0);
|
|
else
|
|
bytestream2_put_byte(pb, 0xFF);
|
|
}
|
|
|
|
/* Write zeroes for lengths */
|
|
for (i = 0; i < c->slices; i++)
|
|
bytestream2_put_le32(pb, 0);
|
|
|
|
/* And that's all for that plane folks */
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Calculate huffman lengths */
|
|
if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Write the plane's header into the output packet:
|
|
* - huffman code lengths (256 bytes)
|
|
* - slice end offsets (gotten from the slice lengths)
|
|
*/
|
|
for (i = 0; i < 256; i++) {
|
|
bytestream2_put_byte(pb, lengths[i]);
|
|
|
|
he[i].len = lengths[i];
|
|
he[i].sym = i;
|
|
}
|
|
|
|
/* Calculate the huffman codes themselves */
|
|
calculate_codes(he);
|
|
|
|
send = 0;
|
|
for (i = 0; i < c->slices; i++) {
|
|
sstart = send;
|
|
send = height * (i + 1) / c->slices;
|
|
|
|
/*
|
|
* Write the huffman codes to a buffer,
|
|
* get the offset in bits and convert to bytes.
|
|
*/
|
|
offset += write_huff_codes(dst + sstart * width, c->slice_bits,
|
|
width * height + 4, width,
|
|
send - sstart, he) >> 3;
|
|
|
|
slice_len = offset - slice_len;
|
|
|
|
/* Byteswap the written huffman codes */
|
|
c->dsp.bswap_buf((uint32_t *) c->slice_bits,
|
|
(uint32_t *) c->slice_bits,
|
|
slice_len >> 2);
|
|
|
|
/* Write the offset to the stream */
|
|
bytestream2_put_le32(pb, offset);
|
|
|
|
/* Seek to the data part of the packet */
|
|
bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
|
|
offset - slice_len, SEEK_CUR);
|
|
|
|
/* Write the slices' data into the output packet */
|
|
bytestream2_put_buffer(pb, c->slice_bits, slice_len);
|
|
|
|
/* Seek back to the slice offsets */
|
|
bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
|
|
SEEK_CUR);
|
|
|
|
slice_len = offset;
|
|
}
|
|
|
|
/* And at the end seek to the end of written slice(s) */
|
|
bytestream2_seek_p(pb, offset, SEEK_CUR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
|
|
const AVFrame *pic, int *got_packet)
|
|
{
|
|
UtvideoContext *c = avctx->priv_data;
|
|
PutByteContext pb;
|
|
|
|
uint32_t frame_info;
|
|
|
|
uint8_t *dst;
|
|
|
|
int width = avctx->width, height = avctx->height;
|
|
int i, ret = 0;
|
|
|
|
/* Allocate a new packet if needed, and set it to the pointer dst */
|
|
ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
|
|
c->planes + 4);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dst = pkt->data;
|
|
|
|
bytestream2_init_writer(&pb, dst, pkt->size);
|
|
|
|
av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
|
|
|
|
if (!c->slice_bits) {
|
|
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
|
|
/* In case of RGB, mangle the planes to Ut Video's format */
|
|
if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
|
|
mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data[0],
|
|
c->planes, pic->linesize[0], width, height);
|
|
|
|
/* Deal with the planes */
|
|
switch (avctx->pix_fmt) {
|
|
case AV_PIX_FMT_RGB24:
|
|
case AV_PIX_FMT_RGBA:
|
|
for (i = 0; i < c->planes; i++) {
|
|
ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
|
|
c->slice_buffer[i], c->slice_stride,
|
|
width, height, &pb);
|
|
|
|
if (ret) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
break;
|
|
case AV_PIX_FMT_YUV422P:
|
|
for (i = 0; i < c->planes; i++) {
|
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
|
|
pic->linesize[i], width >> !!i, height, &pb);
|
|
|
|
if (ret) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
break;
|
|
case AV_PIX_FMT_YUV420P:
|
|
for (i = 0; i < c->planes; i++) {
|
|
ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
|
|
pic->linesize[i], width >> !!i, height >> !!i,
|
|
&pb);
|
|
|
|
if (ret) {
|
|
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
|
|
return ret;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
|
|
avctx->pix_fmt);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
/*
|
|
* Write frame information (LE 32bit unsigned)
|
|
* into the output packet.
|
|
* Contains the prediction method.
|
|
*/
|
|
frame_info = c->frame_pred << 8;
|
|
bytestream2_put_le32(&pb, frame_info);
|
|
|
|
/*
|
|
* At least currently Ut Video is IDR only.
|
|
* Set flags accordingly.
|
|
*/
|
|
avctx->coded_frame->key_frame = 1;
|
|
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
|
|
|
|
pkt->size = bytestream2_tell_p(&pb);
|
|
pkt->flags |= AV_PKT_FLAG_KEY;
|
|
|
|
/* Packet should be done */
|
|
*got_packet = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_utvideo_encoder = {
|
|
.name = "utvideo",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.id = AV_CODEC_ID_UTVIDEO,
|
|
.priv_data_size = sizeof(UtvideoContext),
|
|
.init = utvideo_encode_init,
|
|
.encode2 = utvideo_encode_frame,
|
|
.close = utvideo_encode_close,
|
|
.capabilities = CODEC_CAP_FRAME_THREADS | CODEC_CAP_INTRA_ONLY,
|
|
.pix_fmts = (const enum AVPixelFormat[]) {
|
|
AV_PIX_FMT_RGB24, AV_PIX_FMT_RGBA, AV_PIX_FMT_YUV422P,
|
|
AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
|
|
},
|
|
};
|