1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/wavpack.c
Andreas Rheinhardt 315c956cbd avcodec/pthread_frame: Remove ff_thread_release_buffer()
It is unnecessary since the removal of non-thread-safe callbacks
in e0786a8eeb. Since then, the
AVCodecContext has only been used as logcontext.

Removing ff_thread_release_buffer() allowed to remove AVCodecContext*
parameters from several other functions (not only unref functions,
but also e.g. ff_h264_ref_picture() which calls ff_h264_unref_picture()
on error).

Reviewed-by: Anton Khirnov <anton@khirnov.net>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2023-10-22 22:09:59 +02:00

1707 lines
56 KiB
C

/*
* WavPack lossless audio decoder
* Copyright (c) 2006,2011 Konstantin Shishkov
* Copyright (c) 2020 David Bryant
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/buffer.h"
#include "libavutil/channel_layout.h"
#define BITSTREAM_READER_LE
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "get_bits.h"
#include "refstruct.h"
#include "thread.h"
#include "threadframe.h"
#include "unary.h"
#include "wavpack.h"
#include "dsd.h"
/**
* @file
* WavPack lossless audio decoder
*/
#define DSD_BYTE_READY(low,high) (!(((low) ^ (high)) & 0xff000000))
#define PTABLE_BITS 8
#define PTABLE_BINS (1<<PTABLE_BITS)
#define PTABLE_MASK (PTABLE_BINS-1)
#define UP 0x010000fe
#define DOWN 0x00010000
#define DECAY 8
#define PRECISION 20
#define VALUE_ONE (1 << PRECISION)
#define PRECISION_USE 12
#define RATE_S 20
#define MAX_HISTORY_BITS 5
#define MAX_HISTORY_BINS (1 << MAX_HISTORY_BITS)
#define MAX_BIN_BYTES 1280 // for value_lookup, per bin (2k - 512 - 256)
typedef enum {
MODULATION_PCM, // pulse code modulation
MODULATION_DSD // pulse density modulation (aka DSD)
} Modulation;
typedef struct WavpackFrameContext {
AVCodecContext *avctx;
int frame_flags;
int stereo, stereo_in;
int joint;
uint32_t CRC;
GetBitContext gb;
int got_extra_bits;
uint32_t crc_extra_bits;
GetBitContext gb_extra_bits;
int samples;
int terms;
Decorr decorr[MAX_TERMS];
int zero, one, zeroes;
int extra_bits;
int and, or, shift;
int post_shift;
int hybrid, hybrid_bitrate;
int hybrid_maxclip, hybrid_minclip;
int float_flag;
int float_shift;
int float_max_exp;
WvChannel ch[2];
GetByteContext gbyte;
int ptable [PTABLE_BINS];
uint8_t value_lookup_buffer[MAX_HISTORY_BINS*MAX_BIN_BYTES];
uint16_t summed_probabilities[MAX_HISTORY_BINS][256];
uint8_t probabilities[MAX_HISTORY_BINS][256];
uint8_t *value_lookup[MAX_HISTORY_BINS];
} WavpackFrameContext;
typedef struct WavpackContext {
AVCodecContext *avctx;
WavpackFrameContext **fdec;
int fdec_num;
int block;
int samples;
int ch_offset;
AVFrame *frame;
ThreadFrame curr_frame, prev_frame;
Modulation modulation;
DSDContext *dsdctx; ///< RefStruct reference
int dsd_channels;
} WavpackContext;
#define LEVEL_DECAY(a) (((a) + 0x80) >> 8)
static av_always_inline unsigned get_tail(GetBitContext *gb, unsigned k)
{
int p, e, res;
if (k < 1)
return 0;
p = av_log2(k);
e = (1LL << (p + 1)) - k - 1;
res = get_bits_long(gb, p);
if (res >= e)
res = res * 2U - e + get_bits1(gb);
return res;
}
static int update_error_limit(WavpackFrameContext *ctx)
{
int i, br[2], sl[2];
for (i = 0; i <= ctx->stereo_in; i++) {
if (ctx->ch[i].bitrate_acc > UINT_MAX - ctx->ch[i].bitrate_delta)
return AVERROR_INVALIDDATA;
ctx->ch[i].bitrate_acc += ctx->ch[i].bitrate_delta;
br[i] = ctx->ch[i].bitrate_acc >> 16;
sl[i] = LEVEL_DECAY(ctx->ch[i].slow_level);
}
if (ctx->stereo_in && ctx->hybrid_bitrate) {
int balance = (sl[1] - sl[0] + br[1] + 1) >> 1;
if (balance > br[0]) {
br[1] = br[0] * 2;
br[0] = 0;
} else if (-balance > br[0]) {
br[0] *= 2;
br[1] = 0;
} else {
br[1] = br[0] + balance;
br[0] = br[0] - balance;
}
}
for (i = 0; i <= ctx->stereo_in; i++) {
if (ctx->hybrid_bitrate) {
if (sl[i] - br[i] > -0x100)
ctx->ch[i].error_limit = wp_exp2(sl[i] - br[i] + 0x100);
else
ctx->ch[i].error_limit = 0;
} else {
ctx->ch[i].error_limit = wp_exp2(br[i]);
}
}
return 0;
}
static int wv_get_value(WavpackFrameContext *ctx, GetBitContext *gb,
int channel, int *last)
{
int t, t2;
int sign, base, add, ret;
WvChannel *c = &ctx->ch[channel];
*last = 0;
if ((ctx->ch[0].median[0] < 2U) && (ctx->ch[1].median[0] < 2U) &&
!ctx->zero && !ctx->one) {
if (ctx->zeroes) {
ctx->zeroes--;
if (ctx->zeroes) {
c->slow_level -= LEVEL_DECAY(c->slow_level);
return 0;
}
} else {
t = get_unary_0_33(gb);
if (t >= 2) {
if (t >= 32 || get_bits_left(gb) < t - 1)
goto error;
t = get_bits_long(gb, t - 1) | (1 << (t - 1));
} else {
if (get_bits_left(gb) < 0)
goto error;
}
ctx->zeroes = t;
if (ctx->zeroes) {
memset(ctx->ch[0].median, 0, sizeof(ctx->ch[0].median));
memset(ctx->ch[1].median, 0, sizeof(ctx->ch[1].median));
c->slow_level -= LEVEL_DECAY(c->slow_level);
return 0;
}
}
}
if (ctx->zero) {
t = 0;
ctx->zero = 0;
} else {
t = get_unary_0_33(gb);
if (get_bits_left(gb) < 0)
goto error;
if (t == 16) {
t2 = get_unary_0_33(gb);
if (t2 < 2) {
if (get_bits_left(gb) < 0)
goto error;
t += t2;
} else {
if (t2 >= 32 || get_bits_left(gb) < t2 - 1)
goto error;
t += get_bits_long(gb, t2 - 1) | (1 << (t2 - 1));
}
}
if (ctx->one) {
ctx->one = t & 1;
t = (t >> 1) + 1;
} else {
ctx->one = t & 1;
t >>= 1;
}
ctx->zero = !ctx->one;
}
if (ctx->hybrid && !channel) {
if (update_error_limit(ctx) < 0)
goto error;
}
if (!t) {
base = 0;
add = GET_MED(0) - 1;
DEC_MED(0);
} else if (t == 1) {
base = GET_MED(0);
add = GET_MED(1) - 1;
INC_MED(0);
DEC_MED(1);
} else if (t == 2) {
base = GET_MED(0) + GET_MED(1);
add = GET_MED(2) - 1;
INC_MED(0);
INC_MED(1);
DEC_MED(2);
} else {
base = GET_MED(0) + GET_MED(1) + GET_MED(2) * (t - 2U);
add = GET_MED(2) - 1;
INC_MED(0);
INC_MED(1);
INC_MED(2);
}
if (!c->error_limit) {
ret = base + get_tail(gb, add);
if (get_bits_left(gb) <= 0)
goto error;
} else {
int mid = (base * 2U + add + 1) >> 1;
while (add > c->error_limit) {
if (get_bits_left(gb) <= 0)
goto error;
if (get_bits1(gb)) {
add -= (mid - (unsigned)base);
base = mid;
} else
add = mid - (unsigned)base - 1;
mid = (base * 2U + add + 1) >> 1;
}
ret = mid;
}
sign = get_bits1(gb);
if (ctx->hybrid_bitrate)
c->slow_level += wp_log2(ret) - LEVEL_DECAY(c->slow_level);
return sign ? ~ret : ret;
error:
ret = get_bits_left(gb);
if (ret <= 0) {
av_log(ctx->avctx, AV_LOG_ERROR, "Too few bits (%d) left\n", ret);
}
*last = 1;
return 0;
}
static inline int wv_get_value_integer(WavpackFrameContext *s, uint32_t *crc,
unsigned S)
{
unsigned bit;
if (s->extra_bits) {
S *= 1 << s->extra_bits;
if (s->got_extra_bits &&
get_bits_left(&s->gb_extra_bits) >= s->extra_bits) {
S |= get_bits_long(&s->gb_extra_bits, s->extra_bits);
*crc = *crc * 9 + (S & 0xffff) * 3 + ((unsigned)S >> 16);
}
}
bit = (S & s->and) | s->or;
bit = ((S + bit) << s->shift) - bit;
if (s->hybrid)
bit = av_clip(bit, s->hybrid_minclip, s->hybrid_maxclip);
return bit << s->post_shift;
}
static float wv_get_value_float(WavpackFrameContext *s, uint32_t *crc, int S)
{
union {
float f;
uint32_t u;
} value;
unsigned int sign;
int exp = s->float_max_exp;
if (s->got_extra_bits) {
const int max_bits = 1 + 23 + 8 + 1;
const int left_bits = get_bits_left(&s->gb_extra_bits);
if (left_bits + 8 * AV_INPUT_BUFFER_PADDING_SIZE < max_bits)
return 0.0;
}
if (S) {
S *= 1U << s->float_shift;
sign = S < 0;
if (sign)
S = -(unsigned)S;
if (S >= 0x1000000U) {
if (s->got_extra_bits && get_bits1(&s->gb_extra_bits))
S = get_bits(&s->gb_extra_bits, 23);
else
S = 0;
exp = 255;
} else if (exp) {
int shift = 23 - av_log2(S);
exp = s->float_max_exp;
if (exp <= shift)
shift = --exp;
exp -= shift;
if (shift) {
S <<= shift;
if ((s->float_flag & WV_FLT_SHIFT_ONES) ||
(s->got_extra_bits &&
(s->float_flag & WV_FLT_SHIFT_SAME) &&
get_bits1(&s->gb_extra_bits))) {
S |= (1 << shift) - 1;
} else if (s->got_extra_bits &&
(s->float_flag & WV_FLT_SHIFT_SENT)) {
S |= get_bits(&s->gb_extra_bits, shift);
}
}
} else {
exp = s->float_max_exp;
}
S &= 0x7fffff;
} else {
sign = 0;
exp = 0;
if (s->got_extra_bits && (s->float_flag & WV_FLT_ZERO_SENT)) {
if (get_bits1(&s->gb_extra_bits)) {
S = get_bits(&s->gb_extra_bits, 23);
if (s->float_max_exp >= 25)
exp = get_bits(&s->gb_extra_bits, 8);
sign = get_bits1(&s->gb_extra_bits);
} else {
if (s->float_flag & WV_FLT_ZERO_SIGN)
sign = get_bits1(&s->gb_extra_bits);
}
}
}
*crc = *crc * 27 + S * 9 + exp * 3 + sign;
value.u = (sign << 31) | (exp << 23) | S;
return value.f;
}
static inline int wv_check_crc(WavpackFrameContext *s, uint32_t crc,
uint32_t crc_extra_bits)
{
if (crc != s->CRC) {
av_log(s->avctx, AV_LOG_ERROR, "CRC error\n");
return AVERROR_INVALIDDATA;
}
if (s->got_extra_bits && crc_extra_bits != s->crc_extra_bits) {
av_log(s->avctx, AV_LOG_ERROR, "Extra bits CRC error\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static void init_ptable(int *table, int rate_i, int rate_s)
{
int value = 0x808000, rate = rate_i << 8;
for (int c = (rate + 128) >> 8; c--;)
value += (DOWN - value) >> DECAY;
for (int i = 0; i < PTABLE_BINS/2; i++) {
table[i] = value;
table[PTABLE_BINS-1-i] = 0x100ffff - value;
if (value > 0x010000) {
rate += (rate * rate_s + 128) >> 8;
for (int c = (rate + 64) >> 7; c--;)
value += (DOWN - value) >> DECAY;
}
}
}
typedef struct {
int32_t value, fltr0, fltr1, fltr2, fltr3, fltr4, fltr5, fltr6, factor;
unsigned int byte;
} DSDfilters;
static int wv_unpack_dsd_high(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
{
uint32_t checksum = 0xFFFFFFFF;
uint8_t *dst_l = dst_left, *dst_r = dst_right;
int total_samples = s->samples, stereo = dst_r ? 1 : 0;
DSDfilters filters[2], *sp = filters;
int rate_i, rate_s;
uint32_t low, high, value;
if (bytestream2_get_bytes_left(&s->gbyte) < (stereo ? 20 : 13))
return AVERROR_INVALIDDATA;
rate_i = bytestream2_get_byte(&s->gbyte);
rate_s = bytestream2_get_byte(&s->gbyte);
if (rate_s != RATE_S)
return AVERROR_INVALIDDATA;
init_ptable(s->ptable, rate_i, rate_s);
for (int channel = 0; channel < stereo + 1; channel++) {
DSDfilters *sp = filters + channel;
sp->fltr1 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8);
sp->fltr2 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8);
sp->fltr3 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8);
sp->fltr4 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8);
sp->fltr5 = bytestream2_get_byte(&s->gbyte) << (PRECISION - 8);
sp->fltr6 = 0;
sp->factor = bytestream2_get_byte(&s->gbyte) & 0xff;
sp->factor |= (bytestream2_get_byte(&s->gbyte) << 8) & 0xff00;
sp->factor = (int32_t)((uint32_t)sp->factor << 16) >> 16;
}
value = bytestream2_get_be32(&s->gbyte);
high = 0xffffffff;
low = 0x0;
while (total_samples--) {
int bitcount = 8;
sp[0].value = sp[0].fltr1 - sp[0].fltr5 + ((sp[0].fltr6 * sp[0].factor) >> 2);
if (stereo)
sp[1].value = sp[1].fltr1 - sp[1].fltr5 + ((sp[1].fltr6 * sp[1].factor) >> 2);
while (bitcount--) {
int32_t *pp = s->ptable + ((sp[0].value >> (PRECISION - PRECISION_USE)) & PTABLE_MASK);
uint32_t split = low + ((high - low) >> 8) * (*pp >> 16);
if (value <= split) {
high = split;
*pp += (UP - *pp) >> DECAY;
sp[0].fltr0 = -1;
} else {
low = split + 1;
*pp += (DOWN - *pp) >> DECAY;
sp[0].fltr0 = 0;
}
if (DSD_BYTE_READY(high, low) && !bytestream2_get_bytes_left(&s->gbyte))
return AVERROR_INVALIDDATA;
while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) {
value = (value << 8) | bytestream2_get_byte(&s->gbyte);
high = (high << 8) | 0xff;
low <<= 8;
}
sp[0].value += sp[0].fltr6 * 8;
sp[0].byte = (sp[0].byte << 1) | (sp[0].fltr0 & 1);
sp[0].factor += (((sp[0].value ^ sp[0].fltr0) >> 31) | 1) &
((sp[0].value ^ (sp[0].value - (sp[0].fltr6 * 16))) >> 31);
sp[0].fltr1 += ((sp[0].fltr0 & VALUE_ONE) - sp[0].fltr1) >> 6;
sp[0].fltr2 += ((sp[0].fltr0 & VALUE_ONE) - sp[0].fltr2) >> 4;
sp[0].fltr3 += (sp[0].fltr2 - sp[0].fltr3) >> 4;
sp[0].fltr4 += (sp[0].fltr3 - sp[0].fltr4) >> 4;
sp[0].value = (sp[0].fltr4 - sp[0].fltr5) >> 4;
sp[0].fltr5 += sp[0].value;
sp[0].fltr6 += (sp[0].value - sp[0].fltr6) >> 3;
sp[0].value = sp[0].fltr1 - sp[0].fltr5 + ((sp[0].fltr6 * sp[0].factor) >> 2);
if (!stereo)
continue;
pp = s->ptable + ((sp[1].value >> (PRECISION - PRECISION_USE)) & PTABLE_MASK);
split = low + ((high - low) >> 8) * (*pp >> 16);
if (value <= split) {
high = split;
*pp += (UP - *pp) >> DECAY;
sp[1].fltr0 = -1;
} else {
low = split + 1;
*pp += (DOWN - *pp) >> DECAY;
sp[1].fltr0 = 0;
}
if (DSD_BYTE_READY(high, low) && !bytestream2_get_bytes_left(&s->gbyte))
return AVERROR_INVALIDDATA;
while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) {
value = (value << 8) | bytestream2_get_byte(&s->gbyte);
high = (high << 8) | 0xff;
low <<= 8;
}
sp[1].value += sp[1].fltr6 * 8;
sp[1].byte = (sp[1].byte << 1) | (sp[1].fltr0 & 1);
sp[1].factor += (((sp[1].value ^ sp[1].fltr0) >> 31) | 1) &
((sp[1].value ^ (sp[1].value - (sp[1].fltr6 * 16))) >> 31);
sp[1].fltr1 += ((sp[1].fltr0 & VALUE_ONE) - sp[1].fltr1) >> 6;
sp[1].fltr2 += ((sp[1].fltr0 & VALUE_ONE) - sp[1].fltr2) >> 4;
sp[1].fltr3 += (sp[1].fltr2 - sp[1].fltr3) >> 4;
sp[1].fltr4 += (sp[1].fltr3 - sp[1].fltr4) >> 4;
sp[1].value = (sp[1].fltr4 - sp[1].fltr5) >> 4;
sp[1].fltr5 += sp[1].value;
sp[1].fltr6 += (sp[1].value - sp[1].fltr6) >> 3;
sp[1].value = sp[1].fltr1 - sp[1].fltr5 + ((sp[1].fltr6 * sp[1].factor) >> 2);
}
checksum += (checksum << 1) + (*dst_l = sp[0].byte & 0xff);
sp[0].factor -= (sp[0].factor + 512) >> 10;
dst_l += 4;
if (stereo) {
checksum += (checksum << 1) + (*dst_r = filters[1].byte & 0xff);
filters[1].factor -= (filters[1].factor + 512) >> 10;
dst_r += 4;
}
}
if (wv_check_crc(s, checksum, 0)) {
if (s->avctx->err_recognition & AV_EF_CRCCHECK)
return AVERROR_INVALIDDATA;
memset(dst_left, 0x69, s->samples * 4);
if (dst_r)
memset(dst_right, 0x69, s->samples * 4);
}
return 0;
}
static int wv_unpack_dsd_fast(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
{
uint8_t *dst_l = dst_left, *dst_r = dst_right;
uint8_t history_bits, max_probability;
int total_summed_probabilities = 0;
int total_samples = s->samples;
uint8_t *vlb = s->value_lookup_buffer;
int history_bins, p0, p1, chan;
uint32_t checksum = 0xFFFFFFFF;
uint32_t low, high, value;
if (!bytestream2_get_bytes_left(&s->gbyte))
return AVERROR_INVALIDDATA;
history_bits = bytestream2_get_byte(&s->gbyte);
if (!bytestream2_get_bytes_left(&s->gbyte) || history_bits > MAX_HISTORY_BITS)
return AVERROR_INVALIDDATA;
history_bins = 1 << history_bits;
max_probability = bytestream2_get_byte(&s->gbyte);
if (max_probability < 0xff) {
uint8_t *outptr = (uint8_t *)s->probabilities;
uint8_t *outend = outptr + sizeof(*s->probabilities) * history_bins;
while (outptr < outend && bytestream2_get_bytes_left(&s->gbyte)) {
int code = bytestream2_get_byte(&s->gbyte);
if (code > max_probability) {
int zcount = code - max_probability;
while (outptr < outend && zcount--)
*outptr++ = 0;
} else if (code) {
*outptr++ = code;
}
else {
break;
}
}
if (outptr < outend ||
(bytestream2_get_bytes_left(&s->gbyte) && bytestream2_get_byte(&s->gbyte)))
return AVERROR_INVALIDDATA;
} else if (bytestream2_get_bytes_left(&s->gbyte) > (int)sizeof(*s->probabilities) * history_bins) {
bytestream2_get_buffer(&s->gbyte, (uint8_t *)s->probabilities,
sizeof(*s->probabilities) * history_bins);
} else {
return AVERROR_INVALIDDATA;
}
for (p0 = 0; p0 < history_bins; p0++) {
int32_t sum_values = 0;
for (int i = 0; i < 256; i++)
s->summed_probabilities[p0][i] = sum_values += s->probabilities[p0][i];
if (sum_values) {
total_summed_probabilities += sum_values;
if (total_summed_probabilities > history_bins * MAX_BIN_BYTES)
return AVERROR_INVALIDDATA;
s->value_lookup[p0] = vlb;
for (int i = 0; i < 256; i++) {
int c = s->probabilities[p0][i];
while (c--)
*vlb++ = i;
}
}
}
if (bytestream2_get_bytes_left(&s->gbyte) < 4)
return AVERROR_INVALIDDATA;
chan = p0 = p1 = 0;
low = 0; high = 0xffffffff;
value = bytestream2_get_be32(&s->gbyte);
if (dst_r)
total_samples *= 2;
while (total_samples--) {
unsigned int mult, index, code;
if (!s->summed_probabilities[p0][255])
return AVERROR_INVALIDDATA;
mult = (high - low) / s->summed_probabilities[p0][255];
if (!mult) {
if (bytestream2_get_bytes_left(&s->gbyte) >= 4)
value = bytestream2_get_be32(&s->gbyte);
low = 0;
high = 0xffffffff;
mult = high / s->summed_probabilities[p0][255];
if (!mult)
return AVERROR_INVALIDDATA;
}
index = (value - low) / mult;
if (index >= s->summed_probabilities[p0][255])
return AVERROR_INVALIDDATA;
if (!dst_r) {
if ((*dst_l = code = s->value_lookup[p0][index]))
low += s->summed_probabilities[p0][code-1] * mult;
dst_l += 4;
} else {
if ((code = s->value_lookup[p0][index]))
low += s->summed_probabilities[p0][code-1] * mult;
if (chan) {
*dst_r = code;
dst_r += 4;
}
else {
*dst_l = code;
dst_l += 4;
}
chan ^= 1;
}
high = low + s->probabilities[p0][code] * mult - 1;
checksum += (checksum << 1) + code;
if (!dst_r) {
p0 = code & (history_bins-1);
} else {
p0 = p1;
p1 = code & (history_bins-1);
}
while (DSD_BYTE_READY(high, low) && bytestream2_get_bytes_left(&s->gbyte)) {
value = (value << 8) | bytestream2_get_byte(&s->gbyte);
high = (high << 8) | 0xff;
low <<= 8;
}
}
if (wv_check_crc(s, checksum, 0)) {
if (s->avctx->err_recognition & AV_EF_CRCCHECK)
return AVERROR_INVALIDDATA;
memset(dst_left, 0x69, s->samples * 4);
if (dst_r)
memset(dst_right, 0x69, s->samples * 4);
}
return 0;
}
static int wv_unpack_dsd_copy(WavpackFrameContext *s, uint8_t *dst_left, uint8_t *dst_right)
{
uint8_t *dst_l = dst_left, *dst_r = dst_right;
int total_samples = s->samples;
uint32_t checksum = 0xFFFFFFFF;
if (bytestream2_get_bytes_left(&s->gbyte) != total_samples * (dst_r ? 2 : 1))
return AVERROR_INVALIDDATA;
while (total_samples--) {
checksum += (checksum << 1) + (*dst_l = bytestream2_get_byte(&s->gbyte));
dst_l += 4;
if (dst_r) {
checksum += (checksum << 1) + (*dst_r = bytestream2_get_byte(&s->gbyte));
dst_r += 4;
}
}
if (wv_check_crc(s, checksum, 0)) {
if (s->avctx->err_recognition & AV_EF_CRCCHECK)
return AVERROR_INVALIDDATA;
memset(dst_left, 0x69, s->samples * 4);
if (dst_r)
memset(dst_right, 0x69, s->samples * 4);
}
return 0;
}
static inline int wv_unpack_stereo(WavpackFrameContext *s, GetBitContext *gb,
void *dst_l, void *dst_r, const int type)
{
int i, j, count = 0;
int last, t;
int A, B, L, L2, R, R2;
int pos = 0;
uint32_t crc = 0xFFFFFFFF;
uint32_t crc_extra_bits = 0xFFFFFFFF;
int16_t *dst16_l = dst_l;
int16_t *dst16_r = dst_r;
int32_t *dst32_l = dst_l;
int32_t *dst32_r = dst_r;
float *dstfl_l = dst_l;
float *dstfl_r = dst_r;
s->one = s->zero = s->zeroes = 0;
do {
L = wv_get_value(s, gb, 0, &last);
if (last)
break;
R = wv_get_value(s, gb, 1, &last);
if (last)
break;
for (i = 0; i < s->terms; i++) {
Decorr *decorr = &s->decorr[i];
t = decorr->value;
if (t > 0) {
if (t > 8) {
if (t & 1) {
A = 2U * decorr->samplesA[0] - decorr->samplesA[1];
B = 2U * decorr->samplesB[0] - decorr->samplesB[1];
} else {
A = (int)(3U * decorr->samplesA[0] - decorr->samplesA[1]) >> 1;
B = (int)(3U * decorr->samplesB[0] - decorr->samplesB[1]) >> 1;
}
decorr->samplesA[1] = decorr->samplesA[0];
decorr->samplesB[1] = decorr->samplesB[0];
j = 0;
} else {
A = decorr->samplesA[pos];
B = decorr->samplesB[pos];
j = (pos + t) & 7;
}
if (type != AV_SAMPLE_FMT_S16P) {
L2 = L + ((decorr->weightA * (int64_t)A + 512) >> 10);
R2 = R + ((decorr->weightB * (int64_t)B + 512) >> 10);
} else {
L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)A + 512) >> 10);
R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)B + 512) >> 10);
}
if (A && L)
decorr->weightA -= ((((L ^ A) >> 30) & 2) - 1) * decorr->delta;
if (B && R)
decorr->weightB -= ((((R ^ B) >> 30) & 2) - 1) * decorr->delta;
decorr->samplesA[j] = L = L2;
decorr->samplesB[j] = R = R2;
} else if (t == -1) {
if (type != AV_SAMPLE_FMT_S16P)
L2 = L + ((decorr->weightA * (int64_t)decorr->samplesA[0] + 512) >> 10);
else
L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)decorr->samplesA[0] + 512) >> 10);
UPDATE_WEIGHT_CLIP(decorr->weightA, decorr->delta, decorr->samplesA[0], L);
L = L2;
if (type != AV_SAMPLE_FMT_S16P)
R2 = R + ((decorr->weightB * (int64_t)L2 + 512) >> 10);
else
R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)L2 + 512) >> 10);
UPDATE_WEIGHT_CLIP(decorr->weightB, decorr->delta, L2, R);
R = R2;
decorr->samplesA[0] = R;
} else {
if (type != AV_SAMPLE_FMT_S16P)
R2 = R + ((decorr->weightB * (int64_t)decorr->samplesB[0] + 512) >> 10);
else
R2 = R + (unsigned)((int)(decorr->weightB * (unsigned)decorr->samplesB[0] + 512) >> 10);
UPDATE_WEIGHT_CLIP(decorr->weightB, decorr->delta, decorr->samplesB[0], R);
R = R2;
if (t == -3) {
R2 = decorr->samplesA[0];
decorr->samplesA[0] = R;
}
if (type != AV_SAMPLE_FMT_S16P)
L2 = L + ((decorr->weightA * (int64_t)R2 + 512) >> 10);
else
L2 = L + (unsigned)((int)(decorr->weightA * (unsigned)R2 + 512) >> 10);
UPDATE_WEIGHT_CLIP(decorr->weightA, decorr->delta, R2, L);
L = L2;
decorr->samplesB[0] = L;
}
}
if (type == AV_SAMPLE_FMT_S16P) {
if (FFABS((int64_t)L) + FFABS((int64_t)R) > (1<<19)) {
av_log(s->avctx, AV_LOG_ERROR, "sample %d %d too large\n", L, R);
return AVERROR_INVALIDDATA;
}
}
pos = (pos + 1) & 7;
if (s->joint)
L += (unsigned)(R -= (unsigned)(L >> 1));
crc = (crc * 3 + L) * 3 + R;
if (type == AV_SAMPLE_FMT_FLTP) {
*dstfl_l++ = wv_get_value_float(s, &crc_extra_bits, L);
*dstfl_r++ = wv_get_value_float(s, &crc_extra_bits, R);
} else if (type == AV_SAMPLE_FMT_S32P) {
*dst32_l++ = wv_get_value_integer(s, &crc_extra_bits, L);
*dst32_r++ = wv_get_value_integer(s, &crc_extra_bits, R);
} else {
*dst16_l++ = wv_get_value_integer(s, &crc_extra_bits, L);
*dst16_r++ = wv_get_value_integer(s, &crc_extra_bits, R);
}
count++;
} while (!last && count < s->samples);
if (last && count < s->samples) {
int size = av_get_bytes_per_sample(type);
memset((uint8_t*)dst_l + count*size, 0, (s->samples-count)*size);
memset((uint8_t*)dst_r + count*size, 0, (s->samples-count)*size);
}
if ((s->avctx->err_recognition & AV_EF_CRCCHECK) &&
wv_check_crc(s, crc, crc_extra_bits))
return AVERROR_INVALIDDATA;
return 0;
}
static inline int wv_unpack_mono(WavpackFrameContext *s, GetBitContext *gb,
void *dst, const int type)
{
int i, j, count = 0;
int last, t;
int A, S, T;
int pos = 0;
uint32_t crc = 0xFFFFFFFF;
uint32_t crc_extra_bits = 0xFFFFFFFF;
int16_t *dst16 = dst;
int32_t *dst32 = dst;
float *dstfl = dst;
s->one = s->zero = s->zeroes = 0;
do {
T = wv_get_value(s, gb, 0, &last);
S = 0;
if (last)
break;
for (i = 0; i < s->terms; i++) {
Decorr *decorr = &s->decorr[i];
t = decorr->value;
if (t > 8) {
if (t & 1)
A = 2U * decorr->samplesA[0] - decorr->samplesA[1];
else
A = (int)(3U * decorr->samplesA[0] - decorr->samplesA[1]) >> 1;
decorr->samplesA[1] = decorr->samplesA[0];
j = 0;
} else {
A = decorr->samplesA[pos];
j = (pos + t) & 7;
}
if (type != AV_SAMPLE_FMT_S16P)
S = T + ((decorr->weightA * (int64_t)A + 512) >> 10);
else
S = T + (unsigned)((int)(decorr->weightA * (unsigned)A + 512) >> 10);
if (A && T)
decorr->weightA -= ((((T ^ A) >> 30) & 2) - 1) * decorr->delta;
decorr->samplesA[j] = T = S;
}
pos = (pos + 1) & 7;
crc = crc * 3 + S;
if (type == AV_SAMPLE_FMT_FLTP) {
*dstfl++ = wv_get_value_float(s, &crc_extra_bits, S);
} else if (type == AV_SAMPLE_FMT_S32P) {
*dst32++ = wv_get_value_integer(s, &crc_extra_bits, S);
} else {
*dst16++ = wv_get_value_integer(s, &crc_extra_bits, S);
}
count++;
} while (!last && count < s->samples);
if (last && count < s->samples) {
int size = av_get_bytes_per_sample(type);
memset((uint8_t*)dst + count*size, 0, (s->samples-count)*size);
}
if (s->avctx->err_recognition & AV_EF_CRCCHECK) {
int ret = wv_check_crc(s, crc, crc_extra_bits);
if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
}
return 0;
}
static av_cold int wv_alloc_frame_context(WavpackContext *c)
{
c->fdec = av_realloc_f(c->fdec, c->fdec_num + 1, sizeof(*c->fdec));
if (!c->fdec)
return -1;
c->fdec[c->fdec_num] = av_mallocz(sizeof(**c->fdec));
if (!c->fdec[c->fdec_num])
return -1;
c->fdec_num++;
c->fdec[c->fdec_num - 1]->avctx = c->avctx;
return 0;
}
static int wv_dsd_reset(WavpackContext *s, int channels)
{
int i;
s->dsd_channels = 0;
ff_refstruct_unref(&s->dsdctx);
if (!channels)
return 0;
if (channels > INT_MAX / sizeof(*s->dsdctx))
return AVERROR(EINVAL);
s->dsdctx = ff_refstruct_allocz(channels * sizeof(*s->dsdctx));
if (!s->dsdctx)
return AVERROR(ENOMEM);
s->dsd_channels = channels;
for (i = 0; i < channels; i++)
memset(s->dsdctx[i].buf, 0x69, sizeof(s->dsdctx[i].buf));
return 0;
}
#if HAVE_THREADS
static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
WavpackContext *fsrc = src->priv_data;
WavpackContext *fdst = dst->priv_data;
int ret;
if (dst == src)
return 0;
ff_thread_release_ext_buffer(&fdst->curr_frame);
if (fsrc->curr_frame.f->data[0]) {
if ((ret = ff_thread_ref_frame(&fdst->curr_frame, &fsrc->curr_frame)) < 0)
return ret;
}
ff_refstruct_replace(&fdst->dsdctx, fsrc->dsdctx);
fdst->dsd_channels = fsrc->dsd_channels;
return 0;
}
#endif
static av_cold int wavpack_decode_init(AVCodecContext *avctx)
{
WavpackContext *s = avctx->priv_data;
s->avctx = avctx;
s->fdec_num = 0;
s->curr_frame.f = av_frame_alloc();
s->prev_frame.f = av_frame_alloc();
if (!s->curr_frame.f || !s->prev_frame.f)
return AVERROR(ENOMEM);
ff_init_dsd_data();
return 0;
}
static av_cold int wavpack_decode_end(AVCodecContext *avctx)
{
WavpackContext *s = avctx->priv_data;
for (int i = 0; i < s->fdec_num; i++)
av_freep(&s->fdec[i]);
av_freep(&s->fdec);
s->fdec_num = 0;
ff_thread_release_ext_buffer(&s->curr_frame);
av_frame_free(&s->curr_frame.f);
ff_thread_release_ext_buffer(&s->prev_frame);
av_frame_free(&s->prev_frame.f);
ff_refstruct_unref(&s->dsdctx);
return 0;
}
static int wavpack_decode_block(AVCodecContext *avctx, int block_no,
const uint8_t *buf, int buf_size)
{
WavpackContext *wc = avctx->priv_data;
WavpackFrameContext *s;
GetByteContext gb;
enum AVSampleFormat sample_fmt;
void *samples_l = NULL, *samples_r = NULL;
int ret;
int got_terms = 0, got_weights = 0, got_samples = 0,
got_entropy = 0, got_pcm = 0, got_float = 0, got_hybrid = 0;
int got_dsd = 0;
int i, j, id, size, ssize, weights, t;
int bpp, chan = 0, orig_bpp, sample_rate = 0, rate_x = 1, dsd_mode = 0;
int multiblock;
uint64_t chmask = 0;
if (block_no >= wc->fdec_num && wv_alloc_frame_context(wc) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error creating frame decode context\n");
return AVERROR_INVALIDDATA;
}
s = wc->fdec[block_no];
if (!s) {
av_log(avctx, AV_LOG_ERROR, "Context for block %d is not present\n",
block_no);
return AVERROR_INVALIDDATA;
}
memset(s->decorr, 0, MAX_TERMS * sizeof(Decorr));
memset(s->ch, 0, sizeof(s->ch));
s->extra_bits = 0;
s->and = s->or = s->shift = 0;
s->got_extra_bits = 0;
bytestream2_init(&gb, buf, buf_size);
s->samples = bytestream2_get_le32(&gb);
if (s->samples != wc->samples) {
av_log(avctx, AV_LOG_ERROR, "Mismatching number of samples in "
"a sequence: %d and %d\n", wc->samples, s->samples);
return AVERROR_INVALIDDATA;
}
s->frame_flags = bytestream2_get_le32(&gb);
if (s->frame_flags & (WV_FLOAT_DATA | WV_DSD_DATA))
sample_fmt = AV_SAMPLE_FMT_FLTP;
else if ((s->frame_flags & 0x03) <= 1)
sample_fmt = AV_SAMPLE_FMT_S16P;
else
sample_fmt = AV_SAMPLE_FMT_S32P;
if (wc->ch_offset && avctx->sample_fmt != sample_fmt)
return AVERROR_INVALIDDATA;
bpp = av_get_bytes_per_sample(sample_fmt);
orig_bpp = ((s->frame_flags & 0x03) + 1) << 3;
multiblock = (s->frame_flags & WV_SINGLE_BLOCK) != WV_SINGLE_BLOCK;
s->stereo = !(s->frame_flags & WV_MONO);
s->stereo_in = (s->frame_flags & WV_FALSE_STEREO) ? 0 : s->stereo;
s->joint = s->frame_flags & WV_JOINT_STEREO;
s->hybrid = s->frame_flags & WV_HYBRID_MODE;
s->hybrid_bitrate = s->frame_flags & WV_HYBRID_BITRATE;
s->post_shift = bpp * 8 - orig_bpp + ((s->frame_flags >> 13) & 0x1f);
if (s->post_shift < 0 || s->post_shift > 31) {
return AVERROR_INVALIDDATA;
}
s->hybrid_maxclip = ((1LL << (orig_bpp - 1)) - 1);
s->hybrid_minclip = ((-1UL << (orig_bpp - 1)));
s->CRC = bytestream2_get_le32(&gb);
// parse metadata blocks
while (bytestream2_get_bytes_left(&gb)) {
id = bytestream2_get_byte(&gb);
size = bytestream2_get_byte(&gb);
if (id & WP_IDF_LONG)
size |= (bytestream2_get_le16u(&gb)) << 8;
size <<= 1; // size is specified in words
ssize = size;
if (id & WP_IDF_ODD)
size--;
if (size < 0) {
av_log(avctx, AV_LOG_ERROR,
"Got incorrect block %02X with size %i\n", id, size);
break;
}
if (bytestream2_get_bytes_left(&gb) < ssize) {
av_log(avctx, AV_LOG_ERROR,
"Block size %i is out of bounds\n", size);
break;
}
switch (id & WP_IDF_MASK) {
case WP_ID_DECTERMS:
if (size > MAX_TERMS) {
av_log(avctx, AV_LOG_ERROR, "Too many decorrelation terms\n");
s->terms = 0;
bytestream2_skip(&gb, ssize);
continue;
}
s->terms = size;
for (i = 0; i < s->terms; i++) {
uint8_t val = bytestream2_get_byte(&gb);
s->decorr[s->terms - i - 1].value = (val & 0x1F) - 5;
s->decorr[s->terms - i - 1].delta = val >> 5;
}
got_terms = 1;
break;
case WP_ID_DECWEIGHTS:
if (!got_terms) {
av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n");
continue;
}
weights = size >> s->stereo_in;
if (weights > MAX_TERMS || weights > s->terms) {
av_log(avctx, AV_LOG_ERROR, "Too many decorrelation weights\n");
bytestream2_skip(&gb, ssize);
continue;
}
for (i = 0; i < weights; i++) {
t = (int8_t)bytestream2_get_byte(&gb);
s->decorr[s->terms - i - 1].weightA = t * (1 << 3);
if (s->decorr[s->terms - i - 1].weightA > 0)
s->decorr[s->terms - i - 1].weightA +=
(s->decorr[s->terms - i - 1].weightA + 64) >> 7;
if (s->stereo_in) {
t = (int8_t)bytestream2_get_byte(&gb);
s->decorr[s->terms - i - 1].weightB = t * (1 << 3);
if (s->decorr[s->terms - i - 1].weightB > 0)
s->decorr[s->terms - i - 1].weightB +=
(s->decorr[s->terms - i - 1].weightB + 64) >> 7;
}
}
got_weights = 1;
break;
case WP_ID_DECSAMPLES:
if (!got_terms) {
av_log(avctx, AV_LOG_ERROR, "No decorrelation terms met\n");
continue;
}
t = 0;
for (i = s->terms - 1; (i >= 0) && (t < size); i--) {
Decorr *decorr = &s->decorr[i];
if (decorr->value > 8) {
decorr->samplesA[0] =
wp_exp2(bytestream2_get_le16(&gb));
decorr->samplesA[1] =
wp_exp2(bytestream2_get_le16(&gb));
if (s->stereo_in) {
decorr->samplesB[0] =
wp_exp2(bytestream2_get_le16(&gb));
decorr->samplesB[1] =
wp_exp2(bytestream2_get_le16(&gb));
t += 4;
}
t += 4;
} else if (decorr->value < 0) {
decorr->samplesA[0] =
wp_exp2(bytestream2_get_le16(&gb));
decorr->samplesB[0] =
wp_exp2(bytestream2_get_le16(&gb));
t += 4;
} else {
for (j = 0; j < decorr->value; j++) {
decorr->samplesA[j] =
wp_exp2(bytestream2_get_le16(&gb));
if (s->stereo_in) {
decorr->samplesB[j] =
wp_exp2(bytestream2_get_le16(&gb));
}
}
t += decorr->value * 2 * (s->stereo_in + 1);
}
}
got_samples = 1;
break;
case WP_ID_ENTROPY:
if (size != 6 * (s->stereo_in + 1)) {
av_log(avctx, AV_LOG_ERROR,
"Entropy vars size should be %i, got %i.\n",
6 * (s->stereo_in + 1), size);
bytestream2_skip(&gb, ssize);
continue;
}
for (j = 0; j <= s->stereo_in; j++)
for (i = 0; i < 3; i++) {
s->ch[j].median[i] = wp_exp2(bytestream2_get_le16(&gb));
}
got_entropy = 1;
break;
case WP_ID_HYBRID:
if (s->hybrid_bitrate) {
for (i = 0; i <= s->stereo_in; i++) {
s->ch[i].slow_level = wp_exp2(bytestream2_get_le16(&gb));
size -= 2;
}
}
for (i = 0; i < (s->stereo_in + 1); i++) {
s->ch[i].bitrate_acc = bytestream2_get_le16(&gb) << 16;
size -= 2;
}
if (size > 0) {
for (i = 0; i < (s->stereo_in + 1); i++) {
s->ch[i].bitrate_delta =
wp_exp2((int16_t)bytestream2_get_le16(&gb));
}
} else {
for (i = 0; i < (s->stereo_in + 1); i++)
s->ch[i].bitrate_delta = 0;
}
got_hybrid = 1;
break;
case WP_ID_INT32INFO: {
uint8_t val[4];
if (size != 4) {
av_log(avctx, AV_LOG_ERROR,
"Invalid INT32INFO, size = %i\n",
size);
bytestream2_skip(&gb, ssize - 4);
continue;
}
bytestream2_get_buffer(&gb, val, 4);
if (val[0] > 30) {
av_log(avctx, AV_LOG_ERROR,
"Invalid INT32INFO, extra_bits = %d (> 30)\n", val[0]);
continue;
} else {
s->extra_bits = val[0];
}
if (val[1])
s->shift = val[1];
if (val[2]) {
s->and = s->or = 1;
s->shift = val[2];
}
if (val[3]) {
s->and = 1;
s->shift = val[3];
}
if (s->shift > 31) {
av_log(avctx, AV_LOG_ERROR,
"Invalid INT32INFO, shift = %d (> 31)\n", s->shift);
s->and = s->or = s->shift = 0;
continue;
}
/* original WavPack decoder forces 32-bit lossy sound to be treated
* as 24-bit one in order to have proper clipping */
if (s->hybrid && bpp == 4 && s->post_shift < 8 && s->shift > 8) {
s->post_shift += 8;
s->shift -= 8;
s->hybrid_maxclip >>= 8;
s->hybrid_minclip >>= 8;
}
break;
}
case WP_ID_FLOATINFO:
if (size != 4) {
av_log(avctx, AV_LOG_ERROR,
"Invalid FLOATINFO, size = %i\n", size);
bytestream2_skip(&gb, ssize);
continue;
}
s->float_flag = bytestream2_get_byte(&gb);
s->float_shift = bytestream2_get_byte(&gb);
s->float_max_exp = bytestream2_get_byte(&gb);
if (s->float_shift > 31) {
av_log(avctx, AV_LOG_ERROR,
"Invalid FLOATINFO, shift = %d (> 31)\n", s->float_shift);
s->float_shift = 0;
continue;
}
got_float = 1;
bytestream2_skip(&gb, 1);
break;
case WP_ID_DATA:
if ((ret = init_get_bits8(&s->gb, gb.buffer, size)) < 0)
return ret;
bytestream2_skip(&gb, size);
got_pcm = 1;
break;
case WP_ID_DSD_DATA:
if (size < 2) {
av_log(avctx, AV_LOG_ERROR, "Invalid DSD_DATA, size = %i\n",
size);
bytestream2_skip(&gb, ssize);
continue;
}
rate_x = bytestream2_get_byte(&gb);
if (rate_x > 30)
return AVERROR_INVALIDDATA;
rate_x = 1 << rate_x;
dsd_mode = bytestream2_get_byte(&gb);
if (dsd_mode && dsd_mode != 1 && dsd_mode != 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid DSD encoding mode: %d\n",
dsd_mode);
return AVERROR_INVALIDDATA;
}
bytestream2_init(&s->gbyte, gb.buffer, size-2);
bytestream2_skip(&gb, size-2);
got_dsd = 1;
break;
case WP_ID_EXTRABITS:
if (size <= 4) {
av_log(avctx, AV_LOG_ERROR, "Invalid EXTRABITS, size = %i\n",
size);
bytestream2_skip(&gb, size);
continue;
}
if ((ret = init_get_bits8(&s->gb_extra_bits, gb.buffer, size)) < 0)
return ret;
s->crc_extra_bits = get_bits_long(&s->gb_extra_bits, 32);
bytestream2_skip(&gb, size);
s->got_extra_bits = 1;
break;
case WP_ID_CHANINFO:
if (size <= 1) {
av_log(avctx, AV_LOG_ERROR,
"Insufficient channel information\n");
return AVERROR_INVALIDDATA;
}
chan = bytestream2_get_byte(&gb);
switch (size - 2) {
case 0:
chmask = bytestream2_get_byte(&gb);
break;
case 1:
chmask = bytestream2_get_le16(&gb);
break;
case 2:
chmask = bytestream2_get_le24(&gb);
break;
case 3:
chmask = bytestream2_get_le32(&gb);
break;
case 4:
size = bytestream2_get_byte(&gb);
chan |= (bytestream2_get_byte(&gb) & 0xF) << 8;
chan += 1;
chmask = bytestream2_get_le24(&gb);
break;
case 5:
size = bytestream2_get_byte(&gb);
chan |= (bytestream2_get_byte(&gb) & 0xF) << 8;
chan += 1;
chmask = bytestream2_get_le32(&gb);
break;
default:
av_log(avctx, AV_LOG_ERROR, "Invalid channel info size %d\n",
size);
}
break;
case WP_ID_SAMPLE_RATE:
if (size != 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid custom sample rate.\n");
return AVERROR_INVALIDDATA;
}
sample_rate = bytestream2_get_le24(&gb);
break;
default:
bytestream2_skip(&gb, size);
}
if (id & WP_IDF_ODD)
bytestream2_skip(&gb, 1);
}
if (got_pcm) {
if (!got_terms) {
av_log(avctx, AV_LOG_ERROR, "No block with decorrelation terms\n");
return AVERROR_INVALIDDATA;
}
if (!got_weights) {
av_log(avctx, AV_LOG_ERROR, "No block with decorrelation weights\n");
return AVERROR_INVALIDDATA;
}
if (!got_samples) {
av_log(avctx, AV_LOG_ERROR, "No block with decorrelation samples\n");
return AVERROR_INVALIDDATA;
}
if (!got_entropy) {
av_log(avctx, AV_LOG_ERROR, "No block with entropy info\n");
return AVERROR_INVALIDDATA;
}
if (s->hybrid && !got_hybrid) {
av_log(avctx, AV_LOG_ERROR, "Hybrid config not found\n");
return AVERROR_INVALIDDATA;
}
if (!got_float && sample_fmt == AV_SAMPLE_FMT_FLTP) {
av_log(avctx, AV_LOG_ERROR, "Float information not found\n");
return AVERROR_INVALIDDATA;
}
if (s->got_extra_bits && sample_fmt != AV_SAMPLE_FMT_FLTP) {
const int size = get_bits_left(&s->gb_extra_bits);
const int wanted = s->samples * s->extra_bits << s->stereo_in;
if (size < wanted) {
av_log(avctx, AV_LOG_ERROR, "Too small EXTRABITS\n");
s->got_extra_bits = 0;
}
}
}
if (!got_pcm && !got_dsd) {
av_log(avctx, AV_LOG_ERROR, "Packed samples not found\n");
return AVERROR_INVALIDDATA;
}
if ((got_pcm && wc->modulation != MODULATION_PCM) ||
(got_dsd && wc->modulation != MODULATION_DSD)) {
av_log(avctx, AV_LOG_ERROR, "Invalid PCM/DSD mix encountered\n");
return AVERROR_INVALIDDATA;
}
if (!wc->ch_offset) {
AVChannelLayout new_ch_layout = { 0 };
int new_samplerate;
int sr = (s->frame_flags >> 23) & 0xf;
if (sr == 0xf) {
if (!sample_rate) {
av_log(avctx, AV_LOG_ERROR, "Custom sample rate missing.\n");
return AVERROR_INVALIDDATA;
}
new_samplerate = sample_rate;
} else
new_samplerate = wv_rates[sr];
if (new_samplerate * (uint64_t)rate_x > INT_MAX)
return AVERROR_INVALIDDATA;
new_samplerate *= rate_x;
if (multiblock) {
if (chmask) {
av_channel_layout_from_mask(&new_ch_layout, chmask);
if (chan && new_ch_layout.nb_channels != chan) {
av_log(avctx, AV_LOG_ERROR, "Channel mask does not match the channel count\n");
return AVERROR_INVALIDDATA;
}
} else {
av_channel_layout_default(&new_ch_layout, chan);
}
} else {
av_channel_layout_default(&new_ch_layout, s->stereo + 1);
}
/* clear DSD state if stream properties change */
if (new_ch_layout.nb_channels != wc->dsd_channels ||
av_channel_layout_compare(&new_ch_layout, &avctx->ch_layout) ||
new_samplerate != avctx->sample_rate ||
!!got_dsd != !!wc->dsdctx) {
ret = wv_dsd_reset(wc, got_dsd ? new_ch_layout.nb_channels : 0);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Error reinitializing the DSD context\n");
return ret;
}
ff_thread_release_ext_buffer(&wc->curr_frame);
}
av_channel_layout_copy(&avctx->ch_layout, &new_ch_layout);
avctx->sample_rate = new_samplerate;
avctx->sample_fmt = sample_fmt;
avctx->bits_per_raw_sample = orig_bpp;
ff_thread_release_ext_buffer(&wc->prev_frame);
FFSWAP(ThreadFrame, wc->curr_frame, wc->prev_frame);
/* get output buffer */
wc->curr_frame.f->nb_samples = s->samples;
ret = ff_thread_get_ext_buffer(avctx, &wc->curr_frame,
AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
return ret;
wc->frame = wc->curr_frame.f;
ff_thread_finish_setup(avctx);
}
if (wc->ch_offset + s->stereo >= avctx->ch_layout.nb_channels) {
av_log(avctx, AV_LOG_WARNING, "Too many channels coded in a packet.\n");
return ((avctx->err_recognition & AV_EF_EXPLODE) || !wc->ch_offset) ? AVERROR_INVALIDDATA : 0;
}
samples_l = wc->frame->extended_data[wc->ch_offset];
if (s->stereo)
samples_r = wc->frame->extended_data[wc->ch_offset + 1];
wc->ch_offset += 1 + s->stereo;
if (s->stereo_in) {
if (got_dsd) {
if (dsd_mode == 3) {
ret = wv_unpack_dsd_high(s, samples_l, samples_r);
} else if (dsd_mode == 1) {
ret = wv_unpack_dsd_fast(s, samples_l, samples_r);
} else {
ret = wv_unpack_dsd_copy(s, samples_l, samples_r);
}
} else {
ret = wv_unpack_stereo(s, &s->gb, samples_l, samples_r, avctx->sample_fmt);
}
if (ret < 0)
return ret;
} else {
if (got_dsd) {
if (dsd_mode == 3) {
ret = wv_unpack_dsd_high(s, samples_l, NULL);
} else if (dsd_mode == 1) {
ret = wv_unpack_dsd_fast(s, samples_l, NULL);
} else {
ret = wv_unpack_dsd_copy(s, samples_l, NULL);
}
} else {
ret = wv_unpack_mono(s, &s->gb, samples_l, avctx->sample_fmt);
}
if (ret < 0)
return ret;
if (s->stereo)
memcpy(samples_r, samples_l, bpp * s->samples);
}
return 0;
}
static void wavpack_decode_flush(AVCodecContext *avctx)
{
WavpackContext *s = avctx->priv_data;
wv_dsd_reset(s, 0);
}
static int dsd_channel(AVCodecContext *avctx, void *frmptr, int jobnr, int threadnr)
{
const WavpackContext *s = avctx->priv_data;
AVFrame *frame = frmptr;
ff_dsd2pcm_translate (&s->dsdctx [jobnr], s->samples, 0,
(uint8_t *)frame->extended_data[jobnr], 4,
(float *)frame->extended_data[jobnr], 1);
return 0;
}
static int wavpack_decode_frame(AVCodecContext *avctx, AVFrame *rframe,
int *got_frame_ptr, AVPacket *avpkt)
{
WavpackContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int frame_size, ret, frame_flags;
if (avpkt->size <= WV_HEADER_SIZE)
return AVERROR_INVALIDDATA;
s->frame = NULL;
s->block = 0;
s->ch_offset = 0;
/* determine number of samples */
s->samples = AV_RL32(buf + 20);
frame_flags = AV_RL32(buf + 24);
if (s->samples <= 0 || s->samples > WV_MAX_SAMPLES) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of samples: %d\n",
s->samples);
return AVERROR_INVALIDDATA;
}
s->modulation = (frame_flags & WV_DSD_DATA) ? MODULATION_DSD : MODULATION_PCM;
while (buf_size > WV_HEADER_SIZE) {
frame_size = AV_RL32(buf + 4) - 12;
buf += 20;
buf_size -= 20;
if (frame_size <= 0 || frame_size > buf_size) {
av_log(avctx, AV_LOG_ERROR,
"Block %d has invalid size (size %d vs. %d bytes left)\n",
s->block, frame_size, buf_size);
ret = AVERROR_INVALIDDATA;
goto error;
}
if ((ret = wavpack_decode_block(avctx, s->block, buf, frame_size)) < 0)
goto error;
s->block++;
buf += frame_size;
buf_size -= frame_size;
}
if (s->ch_offset != avctx->ch_layout.nb_channels) {
av_log(avctx, AV_LOG_ERROR, "Not enough channels coded in a packet.\n");
ret = AVERROR_INVALIDDATA;
goto error;
}
ff_thread_await_progress(&s->prev_frame, INT_MAX, 0);
ff_thread_release_ext_buffer(&s->prev_frame);
if (s->modulation == MODULATION_DSD)
avctx->execute2(avctx, dsd_channel, s->frame, NULL, avctx->ch_layout.nb_channels);
ff_thread_report_progress(&s->curr_frame, INT_MAX, 0);
if ((ret = av_frame_ref(rframe, s->frame)) < 0)
return ret;
*got_frame_ptr = 1;
return avpkt->size;
error:
if (s->frame) {
ff_thread_await_progress(&s->prev_frame, INT_MAX, 0);
ff_thread_release_ext_buffer(&s->prev_frame);
ff_thread_report_progress(&s->curr_frame, INT_MAX, 0);
}
return ret;
}
const FFCodec ff_wavpack_decoder = {
.p.name = "wavpack",
CODEC_LONG_NAME("WavPack"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_WAVPACK,
.priv_data_size = sizeof(WavpackContext),
.init = wavpack_decode_init,
.close = wavpack_decode_end,
FF_CODEC_DECODE_CB(wavpack_decode_frame),
.flush = wavpack_decode_flush,
UPDATE_THREAD_CONTEXT(update_thread_context),
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_CHANNEL_CONF,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP |
FF_CODEC_CAP_ALLOCATE_PROGRESS,
};