1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libswscale/x86/scale.asm
Michael Niedermayer f59750641a swscale: x86: Add some forgotten 12-bit planar YUV cases
Signed-off-by: Diego Biurrun <diego@biurrun.de>
2016-10-12 17:39:30 +02:00

430 lines
14 KiB
NASM

;******************************************************************************
;* x86-optimized horizontal line scaling functions
;* Copyright (c) 2011 Ronald S. Bultje <rsbultje@gmail.com>
;*
;* This file is part of Libav.
;*
;* Libav is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* Libav is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with Libav; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "libavutil/x86/x86util.asm"
SECTION_RODATA
max_19bit_int: times 4 dd 0x7ffff
max_19bit_flt: times 4 dd 524287.0
minshort: times 8 dw 0x8000
unicoeff: times 4 dd 0x20000000
SECTION .text
;-----------------------------------------------------------------------------
; horizontal line scaling
;
; void hscale<source_width>to<intermediate_nbits>_<filterSize>_<opt>
; (SwsContext *c, int{16,32}_t *dst,
; int dstW, const uint{8,16}_t *src,
; const int16_t *filter,
; const int32_t *filterPos, int filterSize);
;
; Scale one horizontal line. Input is either 8-bit width or 16-bit width
; ($source_width can be either 8, 9, 10 or 16, difference is whether we have to
; downscale before multiplying). Filter is 14 bits. Output is either 15 bits
; (in int16_t) or 19 bits (in int32_t), as given in $intermediate_nbits. Each
; output pixel is generated from $filterSize input pixels, the position of
; the first pixel is given in filterPos[nOutputPixel].
;-----------------------------------------------------------------------------
; SCALE_FUNC source_width, intermediate_nbits, filtersize, filtersuffix, n_args, n_xmm
%macro SCALE_FUNC 6
%ifnidn %3, X
cglobal hscale%1to%2_%4, %5, 7, %6, pos0, dst, w, src, filter, fltpos, pos1
%else
cglobal hscale%1to%2_%4, %5, 10, %6, pos0, dst, w, srcmem, filter, fltpos, fltsize
%endif
%if ARCH_X86_64
movsxd wq, wd
%define mov32 movsxd
%else ; x86-32
%define mov32 mov
%endif ; x86-64
%if %2 == 19
%if mmsize == 8 ; mmx
mova m2, [max_19bit_int]
%elif cpuflag(sse4)
mova m2, [max_19bit_int]
%else ; ssse3/sse2
mova m2, [max_19bit_flt]
%endif ; mmx/sse2/ssse3/sse4
%endif ; %2 == 19
%if %1 == 16
mova m6, [minshort]
mova m7, [unicoeff]
%elif %1 == 8
pxor m3, m3
%endif ; %1 == 8/16
%if %1 == 8
%define movlh movd
%define movbh movh
%define srcmul 1
%else ; %1 == 9-16
%define movlh movq
%define movbh movu
%define srcmul 2
%endif ; %1 == 8/9-16
%ifnidn %3, X
; setup loop
%if %3 == 8
shl wq, 1 ; this allows *16 (i.e. now *8) in lea instructions for the 8-tap filter
%define wshr 1
%else ; %3 == 4
%define wshr 0
%endif ; %3 == 8
lea filterq, [filterq+wq*8]
%if %2 == 15
lea dstq, [dstq+wq*(2>>wshr)]
%else ; %2 == 19
lea dstq, [dstq+wq*(4>>wshr)]
%endif ; %2 == 15/19
lea fltposq, [fltposq+wq*(4>>wshr)]
neg wq
.loop:
%if %3 == 4 ; filterSize == 4 scaling
; load 2x4 or 4x4 source pixels into m0/m1
mov32 pos0q, dword [fltposq+wq*4+ 0] ; filterPos[0]
mov32 pos1q, dword [fltposq+wq*4+ 4] ; filterPos[1]
movlh m0, [srcq+pos0q*srcmul] ; src[filterPos[0] + {0,1,2,3}]
%if mmsize == 8
movlh m1, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%else ; mmsize == 16
%if %1 > 8
movhps m0, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%else ; %1 == 8
movd m4, [srcq+pos1q*srcmul] ; src[filterPos[1] + {0,1,2,3}]
%endif
mov32 pos0q, dword [fltposq+wq*4+ 8] ; filterPos[2]
mov32 pos1q, dword [fltposq+wq*4+12] ; filterPos[3]
movlh m1, [srcq+pos0q*srcmul] ; src[filterPos[2] + {0,1,2,3}]
%if %1 > 8
movhps m1, [srcq+pos1q*srcmul] ; src[filterPos[3] + {0,1,2,3}]
%else ; %1 == 8
movd m5, [srcq+pos1q*srcmul] ; src[filterPos[3] + {0,1,2,3}]
punpckldq m0, m4
punpckldq m1, m5
%endif ; %1 == 8
%endif ; mmsize == 8/16
%if %1 == 8
punpcklbw m0, m3 ; byte -> word
punpcklbw m1, m3 ; byte -> word
%endif ; %1 == 8
; multiply with filter coefficients
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
%endif ; %1 == 16
pmaddwd m0, [filterq+wq*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
pmaddwd m1, [filterq+wq*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
; add up horizontally (4 srcpix * 4 coefficients -> 1 dstpix)
%if mmsize == 8 ; mmx
movq m4, m0
punpckldq m0, m1
punpckhdq m4, m1
paddd m0, m4
%elif notcpuflag(ssse3) ; sse2
mova m4, m0
shufps m0, m1, 10001000b
shufps m4, m1, 11011101b
paddd m0, m4
%else ; ssse3/sse4
phaddd m0, m1 ; filter[{ 0, 1, 2, 3}]*src[filterPos[0]+{0,1,2,3}],
; filter[{ 4, 5, 6, 7}]*src[filterPos[1]+{0,1,2,3}],
; filter[{ 8, 9,10,11}]*src[filterPos[2]+{0,1,2,3}],
; filter[{12,13,14,15}]*src[filterPos[3]+{0,1,2,3}]
%endif ; mmx/sse2/ssse3/sse4
%else ; %3 == 8, i.e. filterSize == 8 scaling
; load 2x8 or 4x8 source pixels into m0, m1, m4 and m5
mov32 pos0q, dword [fltposq+wq*2+0] ; filterPos[0]
mov32 pos1q, dword [fltposq+wq*2+4] ; filterPos[1]
movbh m0, [srcq+ pos0q *srcmul] ; src[filterPos[0] + {0,1,2,3,4,5,6,7}]
%if mmsize == 8
movbh m1, [srcq+(pos0q+4)*srcmul] ; src[filterPos[0] + {4,5,6,7}]
movbh m4, [srcq+ pos1q *srcmul] ; src[filterPos[1] + {0,1,2,3}]
movbh m5, [srcq+(pos1q+4)*srcmul] ; src[filterPos[1] + {4,5,6,7}]
%else ; mmsize == 16
movbh m1, [srcq+ pos1q *srcmul] ; src[filterPos[1] + {0,1,2,3,4,5,6,7}]
mov32 pos0q, dword [fltposq+wq*2+8] ; filterPos[2]
mov32 pos1q, dword [fltposq+wq*2+12] ; filterPos[3]
movbh m4, [srcq+ pos0q *srcmul] ; src[filterPos[2] + {0,1,2,3,4,5,6,7}]
movbh m5, [srcq+ pos1q *srcmul] ; src[filterPos[3] + {0,1,2,3,4,5,6,7}]
%endif ; mmsize == 8/16
%if %1 == 8
punpcklbw m0, m3 ; byte -> word
punpcklbw m1, m3 ; byte -> word
punpcklbw m4, m3 ; byte -> word
punpcklbw m5, m3 ; byte -> word
%endif ; %1 == 8
; multiply
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
psubw m4, m6
psubw m5, m6
%endif ; %1 == 16
pmaddwd m0, [filterq+wq*8+mmsize*0] ; *= filter[{0,1,..,6,7}]
pmaddwd m1, [filterq+wq*8+mmsize*1] ; *= filter[{8,9,..,14,15}]
pmaddwd m4, [filterq+wq*8+mmsize*2] ; *= filter[{16,17,..,22,23}]
pmaddwd m5, [filterq+wq*8+mmsize*3] ; *= filter[{24,25,..,30,31}]
; add up horizontally (8 srcpix * 8 coefficients -> 1 dstpix)
%if mmsize == 8
paddd m0, m1
paddd m4, m5
movq m1, m0
punpckldq m0, m4
punpckhdq m1, m4
paddd m0, m1
%elif notcpuflag(ssse3) ; sse2
%if %1 == 8
%define mex m6
%else
%define mex m3
%endif
; emulate horizontal add as transpose + vertical add
mova mex, m0
punpckldq m0, m1
punpckhdq mex, m1
paddd m0, mex
mova m1, m4
punpckldq m4, m5
punpckhdq m1, m5
paddd m4, m1
mova m1, m0
punpcklqdq m0, m4
punpckhqdq m1, m4
paddd m0, m1
%else ; ssse3/sse4
; FIXME if we rearrange the filter in pairs of 4, we can
; load pixels likewise and use 2 x paddd + phaddd instead
; of 3 x phaddd here, faster on older cpus
phaddd m0, m1
phaddd m4, m5
phaddd m0, m4 ; filter[{ 0, 1,..., 6, 7}]*src[filterPos[0]+{0,1,...,6,7}],
; filter[{ 8, 9,...,14,15}]*src[filterPos[1]+{0,1,...,6,7}],
; filter[{16,17,...,22,23}]*src[filterPos[2]+{0,1,...,6,7}],
; filter[{24,25,...,30,31}]*src[filterPos[3]+{0,1,...,6,7}]
%endif ; mmx/sse2/ssse3/sse4
%endif ; %3 == 4/8
%else ; %3 == X, i.e. any filterSize scaling
%ifidn %4, X4
%define dlt 4
%else ; %4 == X || %4 == X8
%define dlt 0
%endif ; %4 ==/!= X4
%if ARCH_X86_64
%define srcq r8
%define pos1q r7
%define srcendq r9
movsxd fltsizeq, fltsized ; filterSize
lea srcendq, [srcmemq+(fltsizeq-dlt)*srcmul] ; &src[filterSize&~4]
%else ; x86-32
%define srcq srcmemq
%define pos1q dstq
%define srcendq r6m
lea pos0q, [srcmemq+(fltsizeq-dlt)*srcmul] ; &src[filterSize&~4]
mov srcendq, pos0q
%endif ; x86-32/64
lea fltposq, [fltposq+wq*4]
%if %2 == 15
lea dstq, [dstq+wq*2]
%else ; %2 == 19
lea dstq, [dstq+wq*4]
%endif ; %2 == 15/19
movifnidn dstmp, dstq
neg wq
.loop:
mov32 pos0q, dword [fltposq+wq*4+0] ; filterPos[0]
mov32 pos1q, dword [fltposq+wq*4+4] ; filterPos[1]
; FIXME maybe do 4px/iteration on x86-64 (x86-32 wouldn't have enough regs)?
pxor m4, m4
pxor m5, m5
mov srcq, srcmemmp
.innerloop:
; load 2x4 (mmx) or 2x8 (sse) source pixels into m0/m1 -> m4/m5
movbh m0, [srcq+ pos0q *srcmul] ; src[filterPos[0] + {0,1,2,3(,4,5,6,7)}]
movbh m1, [srcq+(pos1q+dlt)*srcmul] ; src[filterPos[1] + {0,1,2,3(,4,5,6,7)}]
%if %1 == 8
punpcklbw m0, m3
punpcklbw m1, m3
%endif ; %1 == 8
; multiply
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
psubw m1, m6
%endif ; %1 == 16
pmaddwd m0, [filterq] ; filter[{0,1,2,3(,4,5,6,7)}]
pmaddwd m1, [filterq+(fltsizeq+dlt)*2]; filter[filtersize+{0,1,2,3(,4,5,6,7)}]
paddd m4, m0
paddd m5, m1
add filterq, mmsize
add srcq, srcmul*mmsize/2
cmp srcq, srcendq ; while (src += 4) < &src[filterSize]
jl .innerloop
%ifidn %4, X4
mov32 pos1q, dword [fltposq+wq*4+4] ; filterPos[1]
movlh m0, [srcq+ pos0q *srcmul] ; split last 4 srcpx of dstpx[0]
sub pos1q, fltsizeq ; and first 4 srcpx of dstpx[1]
%if %1 > 8
movhps m0, [srcq+(pos1q+dlt)*srcmul]
%else ; %1 == 8
movd m1, [srcq+(pos1q+dlt)*srcmul]
punpckldq m0, m1
%endif ; %1 == 8
%if %1 == 8
punpcklbw m0, m3
%endif ; %1 == 8
%if %1 == 16 ; pmaddwd needs signed adds, so this moves unsigned -> signed, we'll
; add back 0x8000 * sum(coeffs) after the horizontal add
psubw m0, m6
%endif ; %1 == 16
pmaddwd m0, [filterq]
%endif ; %4 == X4
lea filterq, [filterq+(fltsizeq+dlt)*2]
%if mmsize == 8 ; mmx
movq m0, m4
punpckldq m4, m5
punpckhdq m0, m5
paddd m0, m4
%else ; mmsize == 16
%if notcpuflag(ssse3) ; sse2
mova m1, m4
punpcklqdq m4, m5
punpckhqdq m1, m5
paddd m4, m1
%else ; ssse3/sse4
phaddd m4, m5
%endif ; sse2/ssse3/sse4
%ifidn %4, X4
paddd m4, m0
%endif ; %3 == X4
%if notcpuflag(ssse3) ; sse2
pshufd m4, m4, 11011000b
movhlps m0, m4
paddd m0, m4
%else ; ssse3/sse4
phaddd m4, m4
SWAP 0, 4
%endif ; sse2/ssse3/sse4
%endif ; mmsize == 8/16
%endif ; %3 ==/!= X
%if %1 == 16 ; add 0x8000 * sum(coeffs), i.e. back from signed -> unsigned
paddd m0, m7
%endif ; %1 == 16
; clip, store
psrad m0, 14 + %1 - %2
%ifidn %3, X
movifnidn dstq, dstmp
%endif ; %3 == X
%if %2 == 15
packssdw m0, m0
%ifnidn %3, X
movh [dstq+wq*(2>>wshr)], m0
%else ; %3 == X
movd [dstq+wq*2], m0
%endif ; %3 ==/!= X
%else ; %2 == 19
%if mmsize == 8
PMINSD_MMX m0, m2, m4
%elif cpuflag(sse4)
pminsd m0, m2
%else ; sse2/ssse3
cvtdq2ps m0, m0
minps m0, m2
cvtps2dq m0, m0
%endif ; mmx/sse2/ssse3/sse4
%ifnidn %3, X
mova [dstq+wq*(4>>wshr)], m0
%else ; %3 == X
movq [dstq+wq*4], m0
%endif ; %3 ==/!= X
%endif ; %2 == 15/19
%ifnidn %3, X
add wq, (mmsize<<wshr)/4 ; both 8tap and 4tap really only do 4 pixels (or for mmx: 2 pixels)
; per iteration. see "shl wq,1" above as for why we do this
%else ; %3 == X
add wq, 2
%endif ; %3 ==/!= X
jl .loop
REP_RET
%endmacro
; SCALE_FUNCS source_width, intermediate_nbits, n_xmm
%macro SCALE_FUNCS 3
SCALE_FUNC %1, %2, 4, 4, 6, %3
SCALE_FUNC %1, %2, 8, 8, 6, %3
%if mmsize == 8
SCALE_FUNC %1, %2, X, X, 7, %3
%else
SCALE_FUNC %1, %2, X, X4, 7, %3
SCALE_FUNC %1, %2, X, X8, 7, %3
%endif
%endmacro
; SCALE_FUNCS2 8_xmm_args, 9to10_xmm_args, 16_xmm_args
%macro SCALE_FUNCS2 3
%if notcpuflag(sse4)
SCALE_FUNCS 8, 15, %1
SCALE_FUNCS 9, 15, %2
SCALE_FUNCS 10, 15, %2
SCALE_FUNCS 12, 15, %2
SCALE_FUNCS 16, 15, %3
%endif ; !sse4
SCALE_FUNCS 8, 19, %1
SCALE_FUNCS 9, 19, %2
SCALE_FUNCS 10, 19, %2
SCALE_FUNCS 12, 19, %2
SCALE_FUNCS 16, 19, %3
%endmacro
%if ARCH_X86_32
INIT_MMX mmx
SCALE_FUNCS2 0, 0, 0
%endif
INIT_XMM sse2
SCALE_FUNCS2 6, 7, 8
INIT_XMM ssse3
SCALE_FUNCS2 6, 6, 8
INIT_XMM sse4
SCALE_FUNCS2 6, 6, 8