1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libav/mpegvideo.c
Fabrice Bellard 9aeeeb63f7 Initial revision
Originally committed as revision 2 to svn://svn.ffmpeg.org/ffmpeg/trunk
2000-12-20 00:02:47 +00:00

1099 lines
32 KiB
C

/*
* The simplest mpeg encoder
* Copyright (c) 2000 Gerard Lantau.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <netinet/in.h>
#include <math.h>
#include "avcodec.h"
#include "mpegvideo.h"
//#define DEBUG
/* depends on JPEG librarie */
extern void jpeg_fdct_ifast (DCTELEM * data);
/* depends on mpeg */
extern void j_rev_dct (DCTELEM *data);
/* for jpeg fast DCT */
#define CONST_BITS 14
static const unsigned short aanscales[64] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
static UINT8 cropTbl[256 + 2 * MAX_NEG_CROP];
static UINT32 squareTbl[512];
static void encode_picture(MpegEncContext *s, int picture_number);
static void rate_control_init(MpegEncContext *s);
static int rate_estimate_qscale(MpegEncContext *s);
static void mpeg1_skip_picture(MpegEncContext *s, int pict_num);
#include "mpegencodevlc.h"
static void put_header(MpegEncContext *s, int header)
{
align_put_bits(&s->pb);
put_bits(&s->pb, 32, header);
}
static void convert_matrix(int *qmat, const UINT8 *quant_matrix, int qscale)
{
int i;
for(i=0;i<64;i++) {
qmat[i] = (int)((1 << 22) * 16384.0 / (aanscales[i] * qscale * quant_matrix[i]));
}
}
int MPV_encode_init(AVEncodeContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
int pict_size, c_size, i;
UINT8 *pict;
s->bit_rate = avctx->bit_rate;
s->frame_rate = avctx->rate;
s->width = avctx->width;
s->height = avctx->height;
s->gop_size = avctx->gop_size;
if (s->gop_size <= 1) {
s->intra_only = 1;
s->gop_size = 12;
} else {
s->intra_only = 0;
}
switch(avctx->codec->id) {
case CODEC_ID_MPEG1VIDEO:
s->out_format = FMT_MPEG1;
break;
case CODEC_ID_MJPEG:
s->out_format = FMT_MJPEG;
s->intra_only = 1; /* force intra only for jpeg */
if (mjpeg_init(s) < 0)
return -1;
break;
case CODEC_ID_H263:
s->out_format = FMT_H263;
break;
case CODEC_ID_RV10:
s->out_format = FMT_H263;
s->h263_rv10 = 1;
break;
default:
return -1;
}
switch(s->frame_rate) {
case 24:
s->frame_rate_index = 2;
break;
case 25:
s->frame_rate_index = 3;
break;
case 30:
s->frame_rate_index = 5;
break;
case 50:
s->frame_rate_index = 6;
break;
case 60:
s->frame_rate_index = 8;
break;
default:
/* we accept lower frame rates than 24 for low bit rate mpeg */
if (s->frame_rate >= 1 && s->frame_rate < 24) {
s->frame_rate_index = 2;
} else {
return -1;
}
break;
}
/* init */
s->mb_width = s->width / 16;
s->mb_height = s->height / 16;
c_size = s->width * s->height;
pict_size = (c_size * 3) / 2;
pict = malloc(pict_size);
if (pict == NULL)
return -1;
s->last_picture[0] = pict;
s->last_picture[1] = pict + c_size;
s->last_picture[2] = pict + c_size + (c_size / 4);
pict = malloc(pict_size);
if (pict == NULL)
return -1;
s->last_picture[0] = pict;
s->last_picture[1] = pict + c_size;
s->last_picture[2] = pict + c_size + (c_size / 4);
pict = malloc(pict_size);
if (pict == NULL) {
free(s->last_picture[0]);
return -1;
}
s->current_picture[0] = pict;
s->current_picture[1] = pict + c_size;
s->current_picture[2] = pict + c_size + (c_size / 4);
for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i;
for(i=0;i<MAX_NEG_CROP;i++) {
cropTbl[i] = 0;
cropTbl[i + MAX_NEG_CROP + 256] = 255;
}
for(i=0;i<512;i++) {
squareTbl[i] = (i - 256) * (i - 256);
}
/* rate control init */
rate_control_init(s);
s->picture_number = 0;
s->fake_picture_number = 0;
return 0;
}
int MPV_encode_end(AVEncodeContext *avctx)
{
MpegEncContext *s = avctx->priv_data;
#if 0
/* end of sequence */
if (s->out_format == FMT_MPEG1) {
put_header(s, SEQ_END_CODE);
}
if (!s->flush_frames)
flush_put_bits(&s->pb);
#endif
free(s->last_picture[0]);
free(s->current_picture[0]);
if (s->out_format == FMT_MJPEG)
mjpeg_close(s);
return 0;
}
int MPV_encode_picture(AVEncodeContext *avctx,
unsigned char *buf, int buf_size, void *data)
{
MpegEncContext *s = avctx->priv_data;
int i;
memcpy(s->new_picture, data, 3 * sizeof(UINT8 *));
init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
/* group of picture */
if (s->out_format == FMT_MPEG1) {
unsigned int vbv_buffer_size;
unsigned int time_code, fps, n;
if ((s->picture_number % s->gop_size) == 0) {
/* mpeg1 header repeated every gop */
put_header(s, SEQ_START_CODE);
put_bits(&s->pb, 12, s->width);
put_bits(&s->pb, 12, s->height);
put_bits(&s->pb, 4, 1); /* 1/1 aspect ratio */
put_bits(&s->pb, 4, s->frame_rate_index);
put_bits(&s->pb, 18, 0x3ffff);
put_bits(&s->pb, 1, 1); /* marker */
/* vbv buffer size: slightly greater than an I frame. We add
some margin just in case */
vbv_buffer_size = (3 * s->I_frame_bits) / (2 * 8);
put_bits(&s->pb, 10, (vbv_buffer_size + 16383) / 16384);
put_bits(&s->pb, 1, 1); /* constrained parameter flag */
put_bits(&s->pb, 1, 0); /* no custom intra matrix */
put_bits(&s->pb, 1, 0); /* no custom non intra matrix */
put_header(s, GOP_START_CODE);
put_bits(&s->pb, 1, 0); /* do drop frame */
/* time code : we must convert from the real frame rate to a
fake mpeg frame rate in case of low frame rate */
fps = frame_rate_tab[s->frame_rate_index];
time_code = s->fake_picture_number;
s->gop_picture_number = time_code;
put_bits(&s->pb, 5, (time_code / (fps * 3600)) % 24);
put_bits(&s->pb, 6, (time_code / (fps * 60)) % 60);
put_bits(&s->pb, 1, 1);
put_bits(&s->pb, 6, (time_code / fps) % 60);
put_bits(&s->pb, 6, (time_code % fps));
put_bits(&s->pb, 1, 1); /* closed gop */
put_bits(&s->pb, 1, 0); /* broken link */
}
if (s->frame_rate < 24 && s->picture_number > 0) {
/* insert empty P pictures to slow down to the desired
frame rate. Each fake pictures takes about 20 bytes */
fps = frame_rate_tab[s->frame_rate_index];
n = ((s->picture_number * fps) / s->frame_rate) - 1;
while (s->fake_picture_number < n) {
mpeg1_skip_picture(s, s->fake_picture_number -
s->gop_picture_number);
s->fake_picture_number++;
}
}
s->fake_picture_number++;
}
if (!s->intra_only) {
/* first picture of GOP is intra */
if ((s->picture_number % s->gop_size) == 0)
s->pict_type = I_TYPE;
else
s->pict_type = P_TYPE;
} else {
s->pict_type = I_TYPE;
}
avctx->key_frame = (s->pict_type == I_TYPE);
encode_picture(s, s->picture_number);
/* swap current and last picture */
for(i=0;i<3;i++) {
UINT8 *tmp;
tmp = s->last_picture[i];
s->last_picture[i] = s->current_picture[i];
s->current_picture[i] = tmp;
}
s->picture_number++;
if (s->out_format == FMT_MJPEG)
mjpeg_picture_trailer(s);
flush_put_bits(&s->pb);
s->total_bits += (s->pb.buf_ptr - s->pb.buf) * 8;
return s->pb.buf_ptr - s->pb.buf;
}
/* insert a fake P picture */
static void mpeg1_skip_picture(MpegEncContext *s, int pict_num)
{
unsigned int mb_incr;
/* mpeg1 picture header */
put_header(s, PICTURE_START_CODE);
/* temporal reference */
put_bits(&s->pb, 10, pict_num & 0x3ff);
put_bits(&s->pb, 3, P_TYPE);
put_bits(&s->pb, 16, 0xffff); /* non constant bit rate */
put_bits(&s->pb, 1, 1); /* integer coordinates */
put_bits(&s->pb, 3, 1); /* forward_f_code */
put_bits(&s->pb, 1, 0); /* extra bit picture */
/* only one slice */
put_header(s, SLICE_MIN_START_CODE);
put_bits(&s->pb, 5, 1); /* quantizer scale */
put_bits(&s->pb, 1, 0); /* slice extra information */
mb_incr = 1;
put_bits(&s->pb, mbAddrIncrTable[mb_incr][1],
mbAddrIncrTable[mb_incr][0]);
/* empty macroblock */
put_bits(&s->pb, 3, 1); /* motion only */
/* zero motion x & y */
put_bits(&s->pb, 1, 1);
put_bits(&s->pb, 1, 1);
/* output a number of empty slice */
mb_incr = s->mb_width * s->mb_height - 1;
while (mb_incr > 33) {
put_bits(&s->pb, 11, 0x008);
mb_incr -= 33;
}
put_bits(&s->pb, mbAddrIncrTable[mb_incr][1],
mbAddrIncrTable[mb_incr][0]);
/* empty macroblock */
put_bits(&s->pb, 3, 1); /* motion only */
/* zero motion x & y */
put_bits(&s->pb, 1, 1);
put_bits(&s->pb, 1, 1);
}
static int pix_sum(UINT8 *pix, int line_size)
{
int s, i, j;
s = 0;
for(i=0;i<16;i++) {
for(j=0;j<16;j+=8) {
s += pix[0];
s += pix[1];
s += pix[2];
s += pix[3];
s += pix[4];
s += pix[5];
s += pix[6];
s += pix[7];
pix += 8;
}
pix += line_size - 16;
}
return s;
}
static int pix_norm1(UINT8 *pix, int line_size)
{
int s, i, j;
UINT32 *sq = squareTbl + 256;
s = 0;
for(i=0;i<16;i++) {
for(j=0;j<16;j+=8) {
s += sq[pix[0]];
s += sq[pix[1]];
s += sq[pix[2]];
s += sq[pix[3]];
s += sq[pix[4]];
s += sq[pix[5]];
s += sq[pix[6]];
s += sq[pix[7]];
pix += 8;
}
pix += line_size - 16;
}
return s;
}
static int pix_norm(UINT8 *pix1, UINT8 *pix2, int line_size)
{
int s, i, j;
UINT32 *sq = squareTbl + 256;
s = 0;
for(i=0;i<16;i++) {
for(j=0;j<16;j+=8) {
s += sq[pix1[0] - pix2[0]];
s += sq[pix1[1] - pix2[1]];
s += sq[pix1[2] - pix2[2]];
s += sq[pix1[3] - pix2[3]];
s += sq[pix1[4] - pix2[4]];
s += sq[pix1[5] - pix2[5]];
s += sq[pix1[6] - pix2[6]];
s += sq[pix1[7] - pix2[7]];
pix1 += 8;
pix2 += 8;
}
pix1 += line_size - 16;
pix2 += line_size - 16;
}
return s;
}
static int estimate_motion(MpegEncContext *s,
int mb_x, int mb_y,
int *mx_ptr, int *my_ptr)
{
UINT8 *pix, *ppix;
int sum, varc, vard;
pix = s->new_picture[0] + (mb_y * 16 * s->width) + mb_x * 16;
ppix = s->last_picture[0] + (mb_y * 16 * s->width) + mb_x * 16;
sum = pix_sum(pix, s->width);
varc = pix_norm1(pix, s->width);
vard = pix_norm(pix, ppix, s->width);
vard = vard >> 8;
sum = sum >> 8;
varc = (varc >> 8) - sum * sum;
*mx_ptr = 0;
*my_ptr = 0;
if (vard <= 64) {
return 0;
} else if (vard < varc) {
return 0;
} else {
return 1;
}
}
static void get_pixels(DCTELEM *block, const UINT8 *pixels, int line_size);
static void put_pixels(const DCTELEM *block, UINT8 *pixels, int line_size);
static void sub_pixels(DCTELEM *block, const UINT8 *pixels, int line_size);
static void add_pixels(DCTELEM *block, const UINT8 *pixels, int line_size);
static int dct_quantize(MpegEncContext *s, DCTELEM *block, int qscale);
static void encode_block(MpegEncContext *s,
DCTELEM *block,
int component);
static void dct_unquantize(MpegEncContext *s, DCTELEM *block, int qscale);
static void mpeg1_encode_mb(MpegEncContext *s, int mb_x, int mb_y,
DCTELEM block[6][64],
int motion_x, int motion_y);
static void encode_picture(MpegEncContext *s, int picture_number)
{
int mb_x, mb_y;
UINT8 *ptr;
DCTELEM block[6][64];
int i, motion_x, motion_y;
s->picture_number = picture_number;
s->qscale = rate_estimate_qscale(s);
/* precompute matrix */
if (s->out_format == FMT_MJPEG) {
/* for mjpeg, we do include qscale in the matrix */
s->init_intra_matrix[0] = default_intra_matrix[0];
for(i=1;i<64;i++)
s->init_intra_matrix[i] = (default_intra_matrix[i] * s->qscale) >> 3;
convert_matrix(s->intra_matrix, s->init_intra_matrix, 8);
} else {
convert_matrix(s->intra_matrix, default_intra_matrix, s->qscale);
convert_matrix(s->non_intra_matrix, default_non_intra_matrix, s->qscale);
}
switch(s->out_format) {
case FMT_MJPEG:
mjpeg_picture_header(s);
break;
case FMT_H263:
if (s->h263_rv10)
rv10_encode_picture_header(s, picture_number);
else
h263_picture_header(s, picture_number);
break;
case FMT_MPEG1:
/* mpeg1 picture header */
put_header(s, PICTURE_START_CODE);
/* temporal reference */
put_bits(&s->pb, 10, (s->fake_picture_number -
s->gop_picture_number) & 0x3ff);
put_bits(&s->pb, 3, s->pict_type);
put_bits(&s->pb, 16, 0xffff); /* non constant bit rate */
if (s->pict_type == P_TYPE) {
put_bits(&s->pb, 1, 1); /* integer coordinates */
put_bits(&s->pb, 3, 1); /* forward_f_code */
}
put_bits(&s->pb, 1, 0); /* extra bit picture */
/* only one slice */
put_header(s, SLICE_MIN_START_CODE);
put_bits(&s->pb, 5, s->qscale); /* quantizer scale */
put_bits(&s->pb, 1, 0); /* slice extra information */
break;
}
/* init last dc values */
/* XXX: quant matrix value is implied here */
s->last_dc[0] = 128;
s->last_dc[1] = 128;
s->last_dc[2] = 128;
s->mb_incr = 1;
for(mb_y=0; mb_y < s->mb_height; mb_y++) {
for(mb_x=0; mb_x < s->mb_width; mb_x++) {
/* compute motion vector and macro block type (intra or non intra) */
motion_x = 0;
motion_y = 0;
if (s->pict_type == P_TYPE) {
s->mb_intra = estimate_motion(s, mb_x, mb_y,
&motion_x,
&motion_y);
} else {
s->mb_intra = 1;
}
/* reset intra predictors if non intra mb */
if (!s->mb_intra) {
s->last_dc[0] = 128;
s->last_dc[1] = 128;
s->last_dc[2] = 128;
}
/* get the pixels */
ptr = s->new_picture[0] + (mb_y * 16 * s->width) + mb_x * 16;
get_pixels(block[0], ptr, s->width);
get_pixels(block[1], ptr + 8, s->width);
get_pixels(block[2], ptr + 8 * s->width, s->width);
get_pixels(block[3], ptr + 8 * s->width + 8, s->width);
ptr = s->new_picture[1] + (mb_y * 8 * (s->width >> 1)) + mb_x * 8;
get_pixels(block[4],ptr, s->width >> 1);
ptr = s->new_picture[2] + (mb_y * 8 * (s->width >> 1)) + mb_x * 8;
get_pixels(block[5],ptr, s->width >> 1);
/* subtract previous frame if non intra */
if (!s->mb_intra) {
ptr = s->last_picture[0] +
((mb_y * 16 + motion_y) * s->width) + (mb_x * 16 + motion_x);
sub_pixels(block[0], ptr, s->width);
sub_pixels(block[1], ptr + 8, s->width);
sub_pixels(block[2], ptr + s->width * 8, s->width);
sub_pixels(block[3], ptr + 8 + s->width * 8, s->width);
ptr = s->last_picture[1] +
((mb_y * 8 + (motion_y >> 1)) * (s->width >> 1)) +
(mb_x * 8 + (motion_x >> 1));
sub_pixels(block[4], ptr, s->width >> 1);
ptr = s->last_picture[2] +
((mb_y * 8 + (motion_y >> 1)) * (s->width >> 1)) +
(mb_x * 8 + (motion_x >> 1));
sub_pixels(block[5], ptr, s->width >> 1);
}
/* DCT & quantize */
for(i=0;i<6;i++) {
int last_index;
last_index = dct_quantize(s, block[i], s->qscale);
s->block_last_index[i] = last_index;
}
/* huffman encode */
switch(s->out_format) {
case FMT_MPEG1:
mpeg1_encode_mb(s, mb_x, mb_y, block, motion_x, motion_y);
break;
case FMT_H263:
h263_encode_mb(s, block, motion_x, motion_y);
break;
case FMT_MJPEG:
mjpeg_encode_mb(s, block);
break;
}
/* decompress blocks so that we keep the state of the decoder */
if (!s->intra_only) {
for(i=0;i<6;i++) {
if (s->block_last_index[i] >= 0) {
dct_unquantize(s, block[i], s->qscale);
}
}
if (!s->mb_intra) {
ptr = s->last_picture[0] +
((mb_y * 16 + motion_y) * s->width) + (mb_x * 16 + motion_x);
add_pixels(block[0], ptr, s->width);
add_pixels(block[1], ptr + 8, s->width);
add_pixels(block[2], ptr + s->width * 8, s->width);
add_pixels(block[3], ptr + 8 + s->width * 8, s->width);
ptr = s->last_picture[1] +
((mb_y * 8 + (motion_y >> 1)) * (s->width >> 1)) +
(mb_x * 8 + (motion_x >> 1));
add_pixels(block[4], ptr, s->width >> 1);
ptr = s->last_picture[2] +
((mb_y * 8 + (motion_y >> 1)) * (s->width >> 1)) +
(mb_x * 8 + (motion_x >> 1));
add_pixels(block[5], ptr, s->width >> 1);
}
/* write the pixels */
ptr = s->current_picture[0] + (mb_y * 16 * s->width) + mb_x * 16;
put_pixels(block[0], ptr, s->width);
put_pixels(block[1], ptr + 8, s->width);
put_pixels(block[2], ptr + 8 * s->width, s->width);
put_pixels(block[3], ptr + 8 * s->width + 8, s->width);
ptr = s->current_picture[1] + (mb_y * 8 * (s->width >> 1)) + mb_x * 8;
put_pixels(block[4],ptr, s->width >> 1);
ptr = s->current_picture[2] + (mb_y * 8 * (s->width >> 1)) + mb_x * 8;
put_pixels(block[5],ptr, s->width >> 1);
}
}
}
}
static void mpeg1_encode_mb(MpegEncContext *s, int mb_x, int mb_y,
DCTELEM block[6][64],
int motion_x, int motion_y)
{
int mb_incr, i, cbp;
/* compute cbp */
cbp = 0;
for(i=0;i<6;i++) {
if (s->block_last_index[i] >= 0)
cbp |= 1 << (5 - i);
}
/* skip macroblock, except if first or last macroblock of a slice */
if ((cbp | motion_x | motion_y) == 0 &&
(!((mb_x | mb_y) == 0 ||
(mb_x == s->mb_width - 1 && mb_y == s->mb_height - 1)))) {
s->mb_incr++;
} else {
/* output mb incr */
mb_incr = s->mb_incr;
while (mb_incr > 33) {
put_bits(&s->pb, 11, 0x008);
mb_incr -= 33;
}
put_bits(&s->pb, mbAddrIncrTable[mb_incr][1],
mbAddrIncrTable[mb_incr][0]);
if (s->pict_type == I_TYPE) {
put_bits(&s->pb, 1, 1); /* macroblock_type : macroblock_quant = 0 */
} else {
if (s->mb_intra) {
put_bits(&s->pb, 5, 0x03);
} else {
if (motion_x == 0 && motion_y == 0) {
if (cbp != 0) {
put_bits(&s->pb, 2, 1); /* macroblock_pattern only */
put_bits(&s->pb, mbPatTable[cbp][1], mbPatTable[cbp][0]);
} else {
put_bits(&s->pb, 3, 1); /* motion only & zero motion vectors */
/* zero motion x & y */
put_bits(&s->pb, 1, 1);
put_bits(&s->pb, 1, 1);
}
} else {
/* XXX: not used yet */
put_bits(&s->pb, mbPatTable[cbp][1], mbPatTable[cbp][0]);
}
}
}
for(i=0;i<6;i++) {
if (cbp & (1 << (5 - i))) {
encode_block(s, block[i], i);
}
}
s->mb_incr = 1;
}
}
static void get_pixels(DCTELEM *block, const UINT8 *pixels, int line_size)
{
DCTELEM *p;
const UINT8 *pix;
int i;
/* read the pixels */
p = block;
pix = pixels;
for(i=0;i<8;i++) {
p[0] = pix[0];
p[1] = pix[1];
p[2] = pix[2];
p[3] = pix[3];
p[4] = pix[4];
p[5] = pix[5];
p[6] = pix[6];
p[7] = pix[7];
pix += line_size;
p += 8;
}
}
static void put_pixels(const DCTELEM *block, UINT8 *pixels, int line_size)
{
const DCTELEM *p;
UINT8 *pix;
int i;
UINT8 *cm = cropTbl + MAX_NEG_CROP;
/* read the pixels */
p = block;
pix = pixels;
for(i=0;i<8;i++) {
pix[0] = cm[p[0]];
pix[1] = cm[p[1]];
pix[2] = cm[p[2]];
pix[3] = cm[p[3]];
pix[4] = cm[p[4]];
pix[5] = cm[p[5]];
pix[6] = cm[p[6]];
pix[7] = cm[p[7]];
pix += line_size;
p += 8;
}
}
static void sub_pixels(DCTELEM *block, const UINT8 *pixels, int line_size)
{
DCTELEM *p;
const UINT8 *pix;
int i;
/* read the pixels */
p = block;
pix = pixels;
for(i=0;i<8;i++) {
p[0] -= pix[0];
p[1] -= pix[1];
p[2] -= pix[2];
p[3] -= pix[3];
p[4] -= pix[4];
p[5] -= pix[5];
p[6] -= pix[6];
p[7] -= pix[7];
pix += line_size;
p += 8;
}
}
static void add_pixels(DCTELEM *block, const UINT8 *pixels, int line_size)
{
DCTELEM *p;
const UINT8 *pix;
int i;
/* read the pixels */
p = block;
pix = pixels;
for(i=0;i<8;i++) {
p[0] += pix[0];
p[1] += pix[1];
p[2] += pix[2];
p[3] += pix[3];
p[4] += pix[4];
p[5] += pix[5];
p[6] += pix[6];
p[7] += pix[7];
pix += line_size;
p += 8;
}
}
#define USE_FAST_MUL
static int dct_quantize(MpegEncContext *s,
DCTELEM *block,
int qscale)
{
int i, j, level, last_non_zero;
#ifdef USE_FAST_MUL
const int *qmat;
#else
const UINT8 *qmat;
#endif
jpeg_fdct_ifast (block);
if (s->mb_intra) {
block[0] = (block[0] + 4 * 8) >> 6;
i = 1;
last_non_zero = 0;
if (s->out_format == FMT_H263) {
#ifdef USE_FAST_MUL
qmat = s->non_intra_matrix;
#else
qmat = default_non_intra_matrix;
#endif
} else {
#ifdef USE_FAST_MUL
qmat = s->intra_matrix;
#else
qmat = default_intra_matrix;
#endif
}
} else {
i = 0;
last_non_zero = -1;
#ifdef USE_FAST_MUL
qmat = s->non_intra_matrix;
#else
qmat = default_non_intra_matrix;
#endif
}
for(;i<64;i++) {
j = zigzag_direct[i];
level = block[j];
#ifdef USE_FAST_MUL
level = (level * qmat[j]) / (1 << 22);
#else
/* post dct normalization */
level = (level << 11) / aanscales[j];
/* quantification */
level = (8 * level) / (qscale * qmat[j]);
#endif
block[j] = level;
if (level)
last_non_zero = i;
}
return last_non_zero;
}
static void dct_unquantize(MpegEncContext *s,
DCTELEM *block, int qscale)
{
int i, level, coeff;
const UINT8 *quant_matrix;
if (s->mb_intra) {
block[0] = block[0] << 3;
if (s->out_format == FMT_H263) {
i = 1;
goto unquant_even;
}
quant_matrix = default_intra_matrix;
for(i=1;i<64;i++) {
block[i] = (block[i] * qscale * quant_matrix[i]) >> 3;
}
} else {
i = 0;
unquant_even:
quant_matrix = default_non_intra_matrix;
for(;i<64;i++) {
level = block[i];
if (level) {
if (level < 0) {
coeff = (((level << 1) - 1) * qscale *
((int) (quant_matrix[i]))) >> 4;
coeff += (coeff & 1);
} else {
coeff = (((level << 1) + 1) * qscale *
((int) (quant_matrix[i]))) >> 4;
coeff -= (coeff & 1);
}
block[i] = coeff;
}
}
}
j_rev_dct(block);
}
static inline void encode_dc(MpegEncContext *s, int diff, int component)
{
int adiff, index;
// printf("dc=%d c=%d\n", diff, component);
adiff = abs(diff);
index = vlc_dc_table[adiff];
if (component == 0) {
put_bits(&s->pb, vlc_dc_lum_bits[index], vlc_dc_lum_code[index]);
} else {
put_bits(&s->pb, vlc_dc_chroma_bits[index], vlc_dc_chroma_code[index]);
}
if (diff > 0) {
put_bits(&s->pb, index, (diff & ((1 << index) - 1)));
} else if (diff < 0) {
put_bits(&s->pb, index, ((diff - 1) & ((1 << index) - 1)));
}
}
static void encode_block(MpegEncContext *s,
DCTELEM *block,
int n)
{
int alevel, level, last_non_zero, dc, diff, i, j, run, last_index;
int code, nbits, component;
last_index = s->block_last_index[n];
/* DC coef */
if (s->mb_intra) {
component = (n <= 3 ? 0 : n - 4 + 1);
dc = block[0]; /* overflow is impossible */
diff = dc - s->last_dc[component];
encode_dc(s, diff, component);
s->last_dc[component] = dc;
i = 1;
} else {
/* encode the first coefficient : needs to be done here because
it is handled slightly differently */
level = block[0];
if (abs(level) == 1) {
code = ((UINT32)level >> 31); /* the sign bit */
put_bits(&s->pb, 2, code | 0x02);
i = 1;
} else {
i = 0;
last_non_zero = -1;
goto next_coef;
}
}
/* now quantify & encode AC coefs */
last_non_zero = i - 1;
for(;i<=last_index;i++) {
j = zigzag_direct[i];
level = block[j];
next_coef:
#if 0
if (level != 0)
printf("level[%d]=%d\n", i, level);
#endif
/* encode using VLC */
if (level != 0) {
run = i - last_non_zero - 1;
alevel = abs(level);
// printf("run=%d level=%d\n", run, level);
if ( (run < HUFF_MAXRUN) && (alevel < huff_maxlevel[run])) {
/* encode using the Huffman tables */
code = (huff_table[run])[alevel];
nbits = (huff_bits[run])[alevel];
code |= ((UINT32)level >> 31); /* the sign bit */
put_bits(&s->pb, nbits, code);
} else {
/* escape: only clip in this case */
if (level > 255)
level = 255;
else if (level < -255)
level = -255;
put_bits(&s->pb, 6, 0x1);
put_bits(&s->pb, 6, run);
if (alevel < 128) {
put_bits(&s->pb, 8, level & 0xff);
} else {
if (level < 0) {
put_bits(&s->pb, 16, 0x8001 + level + 255);
} else {
put_bits(&s->pb, 16, level & 0xffff);
}
}
}
last_non_zero = i;
}
}
/* end of block */
put_bits(&s->pb, 2, 0x2);
}
/* rate control */
/* an I frame is I_FRAME_SIZE_RATIO bigger than a P frame */
#define I_FRAME_SIZE_RATIO 1.5
#define QSCALE_K 20
static void rate_control_init(MpegEncContext *s)
{
s->wanted_bits = 0;
if (s->intra_only) {
s->I_frame_bits = s->bit_rate / s->frame_rate;
s->P_frame_bits = s->I_frame_bits;
} else {
s->P_frame_bits = (int) ((float)(s->gop_size * s->bit_rate) /
(float)(s->frame_rate * (I_FRAME_SIZE_RATIO + s->gop_size - 1)));
s->I_frame_bits = (int)(s->P_frame_bits * I_FRAME_SIZE_RATIO);
}
#if defined(DEBUG)
printf("I_frame_size=%d P_frame_size=%d\n",
s->I_frame_bits, s->P_frame_bits);
#endif
}
/*
* This heuristic is rather poor, but at least we do not have to
* change the qscale at every macroblock.
*/
static int rate_estimate_qscale(MpegEncContext *s)
{
long long total_bits = s->total_bits;
float q;
int qscale, diff;
if (s->pict_type == I_TYPE) {
s->wanted_bits += s->I_frame_bits;
} else {
s->wanted_bits += s->P_frame_bits;
}
diff = s->wanted_bits - total_bits;
q = 31.0 - (float)diff / (QSCALE_K * s->mb_height * s->mb_width);
/* adjust for I frame */
if (s->pict_type == I_TYPE && !s->intra_only) {
q /= I_FRAME_SIZE_RATIO;
}
if (q < 1)
q = 1;
else if (q > 31)
q = 31;
qscale = (int)(q + 0.5);
#if defined(DEBUG)
printf("%d: total=%Ld br=%0.1f diff=%d qest=%0.1f\n",
s->picture_number,
total_bits, (float)s->frame_rate * total_bits / s->picture_number,
diff, q);
#endif
return qscale;
}
AVEncoder mpeg1video_encoder = {
"mpeg1video",
CODEC_TYPE_VIDEO,
CODEC_ID_MPEG1VIDEO,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVEncoder h263_encoder = {
"h263",
CODEC_TYPE_VIDEO,
CODEC_ID_H263,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVEncoder rv10_encoder = {
"rv10",
CODEC_TYPE_VIDEO,
CODEC_ID_RV10,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};
AVEncoder mjpeg_encoder = {
"mjpeg",
CODEC_TYPE_VIDEO,
CODEC_ID_MJPEG,
sizeof(MpegEncContext),
MPV_encode_init,
MPV_encode_picture,
MPV_encode_end,
};