1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/sbrdsp.c
Christophe GISQUET 34454c761f SBR DSP x86: implement SSE sbr_sum_square_sse
The 32bits targets have been compiled with -mfpmath=sse for proper reference.
sbr_sum_square C  /32bits: 82c (unrolled)/102c
               C  /64bits: 69c (unrolled)/82c
               SSE/32bits: 42c
               SSE/64bits: 31c

Use of SSE4.1 dpps to perform the final sum is slower.
Not unrolling to perform 8 operations in a loop yields 10 more cycles.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2012-02-23 15:50:06 -08:00

244 lines
7.2 KiB
C

/*
* AAC Spectral Band Replication decoding functions
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "libavutil/attributes.h"
#include "sbrdsp.h"
static void sbr_sum64x5_c(float *z)
{
int k;
for (k = 0; k < 64; k++) {
float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
z[k] = f;
}
}
static float sbr_sum_square_c(float (*x)[2], int n)
{
float sum = 0.0f;
int i;
for (i = 0; i < n; i++)
sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
return sum;
}
static void sbr_neg_odd_64_c(float *x)
{
int i;
for (i = 1; i < 64; i += 2)
x[i] = -x[i];
}
static void sbr_qmf_pre_shuffle_c(float *z)
{
int k;
z[64] = z[0];
z[65] = z[1];
for (k = 1; k < 32; k++) {
z[64+2*k ] = -z[64 - k];
z[64+2*k+1] = z[ k + 1];
}
}
static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
{
int k;
for (k = 0; k < 32; k++) {
W[k][0] = -z[63-k];
W[k][1] = z[k];
}
}
static void sbr_qmf_deint_neg_c(float *v, const float *src)
{
int i;
for (i = 0; i < 32; i++) {
v[ i] = src[63 - 2*i ];
v[63 - i] = -src[63 - 2*i - 1];
}
}
static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
{
int i;
for (i = 0; i < 64; i++) {
v[ i] = src0[i] - src1[63 - i];
v[127 - i] = src0[i] + src1[63 - i];
}
}
static av_always_inline void autocorrelate(const float x[40][2],
float phi[3][2][2], int lag)
{
int i;
float real_sum = 0.0f;
float imag_sum = 0.0f;
if (lag) {
for (i = 1; i < 38; i++) {
real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
}
phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
if (lag == 1) {
phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
}
} else {
for (i = 1; i < 38; i++) {
real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
}
phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
}
}
static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
{
autocorrelate(x, phi, 0);
autocorrelate(x, phi, 1);
autocorrelate(x, phi, 2);
}
static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
const float alpha0[2], const float alpha1[2],
float bw, int start, int end)
{
float alpha[4];
int i;
alpha[0] = alpha1[0] * bw * bw;
alpha[1] = alpha1[1] * bw * bw;
alpha[2] = alpha0[0] * bw;
alpha[3] = alpha0[1] * bw;
for (i = start; i < end; i++) {
X_high[i][0] =
X_low[i - 2][0] * alpha[0] -
X_low[i - 2][1] * alpha[1] +
X_low[i - 1][0] * alpha[2] -
X_low[i - 1][1] * alpha[3] +
X_low[i][0];
X_high[i][1] =
X_low[i - 2][1] * alpha[0] +
X_low[i - 2][0] * alpha[1] +
X_low[i - 1][1] * alpha[2] +
X_low[i - 1][0] * alpha[3] +
X_low[i][1];
}
}
static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
const float *g_filt, int m_max, intptr_t ixh)
{
int m;
for (m = 0; m < m_max; m++) {
Y[m][0] = X_high[m][ixh][0] * g_filt[m];
Y[m][1] = X_high[m][ixh][1] * g_filt[m];
}
}
static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
const float *s_m,
const float *q_filt,
int noise,
float phi_sign0,
float phi_sign1,
int m_max)
{
int m;
for (m = 0; m < m_max; m++) {
float y0 = Y[m][0];
float y1 = Y[m][1];
noise = (noise + 1) & 0x1ff;
if (s_m[m]) {
y0 += s_m[m] * phi_sign0;
y1 += s_m[m] * phi_sign1;
} else {
y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
}
Y[m][0] = y0;
Y[m][1] = y1;
phi_sign1 = -phi_sign1;
}
}
static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
const float *q_filt, int noise,
int kx, int m_max)
{
sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
}
static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
const float *q_filt, int noise,
int kx, int m_max)
{
float phi_sign = 1 - 2 * (kx & 1);
sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
}
static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
const float *q_filt, int noise,
int kx, int m_max)
{
sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
}
static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
const float *q_filt, int noise,
int kx, int m_max)
{
float phi_sign = 1 - 2 * (kx & 1);
sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
}
av_cold void ff_sbrdsp_init(SBRDSPContext *s)
{
s->sum64x5 = sbr_sum64x5_c;
s->sum_square = sbr_sum_square_c;
s->neg_odd_64 = sbr_neg_odd_64_c;
s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
s->qmf_deint_neg = sbr_qmf_deint_neg_c;
s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
s->autocorrelate = sbr_autocorrelate_c;
s->hf_gen = sbr_hf_gen_c;
s->hf_g_filt = sbr_hf_g_filt_c;
s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
if (ARCH_ARM)
ff_sbrdsp_init_arm(s);
if (HAVE_MMX)
ff_sbrdsp_init_x86(s);
}