mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-03 05:10:03 +02:00
f73cc61bf5
more math unary operations will be added here It can be tested with the model file generated with below python scripy: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.subtract(x, 0.5) x2 = tf.abs(x1) y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
14 lines
882 B
Makefile
14 lines
882 B
Makefile
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o
|
|
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o
|
|
|
|
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
|
|
|
|
OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)
|