1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/vorbisenc.c
Andreas Rheinhardt 56e9e0273a avcodec/encode: Always use intermediate buffer in ff_alloc_packet2()
Up until now, ff_alloc_packet2() has a min_size parameter:
It is supposed to be a lower bound on the final size of the packet
to allocate. If it is not too far from the upper bound (namely,
if it is at least half the upper bound), then ff_alloc_packet2()
already allocates the final, already refcounted packet; if it is
not, then the packet is not refcounted and its data only points to
a buffer owned by the AVCodecContext (in this case, the packet will
be made refcounted in encode_simple_internal() in libavcodec/encode.c).
The goal of this was to avoid data copies and intermediate buffers
if one has a precise lower bound.

Yet those encoders for which precise lower bounds exist have recently
been switched to ff_get_encode_buffer() (which automatically allocates
final buffers), leaving only two encoders to actually set the min_size
to something else than zero (namely aliaspixenc and hapenc). Both of
these encoders use a very low lower bound that is not helpful in any
nontrivial case.

This commit therefore removes the min_size parameter as well as the
codepath in ff_alloc_packet2() for the allocation of final buffers.
Furthermore, the function has been renamed to ff_alloc_packet() and
moved to encode.h alongside ff_get_encode_buffer().

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-06-08 12:52:50 +02:00

1313 lines
40 KiB
C

/*
* copyright (c) 2006 Oded Shimon <ods15@ods15.dyndns.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Native Vorbis encoder.
* @author Oded Shimon <ods15@ods15.dyndns.org>
*/
#include <float.h>
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "encode.h"
#include "internal.h"
#include "fft.h"
#include "mathops.h"
#include "vorbis.h"
#include "vorbis_enc_data.h"
#include "audio_frame_queue.h"
#include "libavfilter/bufferqueue.h"
#define BITSTREAM_WRITER_LE
#include "put_bits.h"
#undef NDEBUG
#include <assert.h>
typedef struct vorbis_enc_codebook {
int nentries;
uint8_t *lens;
uint32_t *codewords;
int ndimensions;
float min;
float delta;
int seq_p;
int lookup;
int *quantlist;
float *dimensions;
float *pow2;
} vorbis_enc_codebook;
typedef struct vorbis_enc_floor_class {
int dim;
int subclass;
int masterbook;
int *books;
} vorbis_enc_floor_class;
typedef struct vorbis_enc_floor {
int partitions;
int *partition_to_class;
int nclasses;
vorbis_enc_floor_class *classes;
int multiplier;
int rangebits;
int values;
vorbis_floor1_entry *list;
} vorbis_enc_floor;
typedef struct vorbis_enc_residue {
int type;
int begin;
int end;
int partition_size;
int classifications;
int classbook;
int8_t (*books)[8];
float (*maxes)[2];
} vorbis_enc_residue;
typedef struct vorbis_enc_mapping {
int submaps;
int *mux;
int *floor;
int *residue;
int coupling_steps;
int *magnitude;
int *angle;
} vorbis_enc_mapping;
typedef struct vorbis_enc_mode {
int blockflag;
int mapping;
} vorbis_enc_mode;
typedef struct vorbis_enc_context {
int channels;
int sample_rate;
int log2_blocksize[2];
FFTContext mdct[2];
const float *win[2];
int have_saved;
float *saved;
float *samples;
float *floor; // also used for tmp values for mdct
float *coeffs; // also used for residue after floor
float *scratch; // used for tmp values for psy model
float quality;
AudioFrameQueue afq;
struct FFBufQueue bufqueue;
int ncodebooks;
vorbis_enc_codebook *codebooks;
int nfloors;
vorbis_enc_floor *floors;
int nresidues;
vorbis_enc_residue *residues;
int nmappings;
vorbis_enc_mapping *mappings;
int nmodes;
vorbis_enc_mode *modes;
int64_t next_pts;
AVFloatDSPContext *fdsp;
} vorbis_enc_context;
#define MAX_CHANNELS 2
#define MAX_CODEBOOK_DIM 8
#define MAX_FLOOR_CLASS_DIM 4
#define NUM_FLOOR_PARTITIONS 8
#define MAX_FLOOR_VALUES (MAX_FLOOR_CLASS_DIM*NUM_FLOOR_PARTITIONS+2)
#define RESIDUE_SIZE 1600
#define RESIDUE_PART_SIZE 32
#define NUM_RESIDUE_PARTITIONS (RESIDUE_SIZE/RESIDUE_PART_SIZE)
static inline int put_codeword(PutBitContext *pb, vorbis_enc_codebook *cb,
int entry)
{
av_assert2(entry >= 0);
av_assert2(entry < cb->nentries);
av_assert2(cb->lens[entry]);
if (put_bits_left(pb) < cb->lens[entry])
return AVERROR(EINVAL);
put_bits(pb, cb->lens[entry], cb->codewords[entry]);
return 0;
}
static int cb_lookup_vals(int lookup, int dimensions, int entries)
{
if (lookup == 1)
return ff_vorbis_nth_root(entries, dimensions);
else if (lookup == 2)
return dimensions *entries;
return 0;
}
static int ready_codebook(vorbis_enc_codebook *cb)
{
int i;
ff_vorbis_len2vlc(cb->lens, cb->codewords, cb->nentries);
if (!cb->lookup) {
cb->pow2 = cb->dimensions = NULL;
} else {
int vals = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries);
cb->dimensions = av_malloc_array(cb->nentries, sizeof(float) * cb->ndimensions);
cb->pow2 = av_mallocz_array(cb->nentries, sizeof(float));
if (!cb->dimensions || !cb->pow2)
return AVERROR(ENOMEM);
for (i = 0; i < cb->nentries; i++) {
float last = 0;
int j;
int div = 1;
for (j = 0; j < cb->ndimensions; j++) {
int off;
if (cb->lookup == 1)
off = (i / div) % vals; // lookup type 1
else
off = i * cb->ndimensions + j; // lookup type 2
cb->dimensions[i * cb->ndimensions + j] = last + cb->min + cb->quantlist[off] * cb->delta;
if (cb->seq_p)
last = cb->dimensions[i * cb->ndimensions + j];
cb->pow2[i] += cb->dimensions[i * cb->ndimensions + j] * cb->dimensions[i * cb->ndimensions + j];
div *= vals;
}
cb->pow2[i] /= 2.0;
}
}
return 0;
}
static int ready_residue(vorbis_enc_residue *rc, vorbis_enc_context *venc)
{
int i;
av_assert0(rc->type == 2);
rc->maxes = av_mallocz_array(rc->classifications, sizeof(float[2]));
if (!rc->maxes)
return AVERROR(ENOMEM);
for (i = 0; i < rc->classifications; i++) {
int j;
vorbis_enc_codebook * cb;
for (j = 0; j < 8; j++)
if (rc->books[i][j] != -1)
break;
if (j == 8) // zero
continue;
cb = &venc->codebooks[rc->books[i][j]];
assert(cb->ndimensions >= 2);
assert(cb->lookup);
for (j = 0; j < cb->nentries; j++) {
float a;
if (!cb->lens[j])
continue;
a = fabs(cb->dimensions[j * cb->ndimensions]);
if (a > rc->maxes[i][0])
rc->maxes[i][0] = a;
a = fabs(cb->dimensions[j * cb->ndimensions + 1]);
if (a > rc->maxes[i][1])
rc->maxes[i][1] = a;
}
}
// small bias
for (i = 0; i < rc->classifications; i++) {
rc->maxes[i][0] += 0.8;
rc->maxes[i][1] += 0.8;
}
return 0;
}
static av_cold int dsp_init(AVCodecContext *avctx, vorbis_enc_context *venc)
{
int ret = 0;
venc->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
if (!venc->fdsp)
return AVERROR(ENOMEM);
// init windows
venc->win[0] = ff_vorbis_vwin[venc->log2_blocksize[0] - 6];
venc->win[1] = ff_vorbis_vwin[venc->log2_blocksize[1] - 6];
if ((ret = ff_mdct_init(&venc->mdct[0], venc->log2_blocksize[0], 0, 1.0)) < 0)
return ret;
if ((ret = ff_mdct_init(&venc->mdct[1], venc->log2_blocksize[1], 0, 1.0)) < 0)
return ret;
return 0;
}
static int create_vorbis_context(vorbis_enc_context *venc,
AVCodecContext *avctx)
{
vorbis_enc_floor *fc;
vorbis_enc_residue *rc;
vorbis_enc_mapping *mc;
const uint8_t *clens, *quant;
int i, book, ret;
venc->channels = avctx->channels;
venc->sample_rate = avctx->sample_rate;
venc->log2_blocksize[0] = venc->log2_blocksize[1] = 11;
venc->ncodebooks = FF_ARRAY_ELEMS(cvectors);
venc->codebooks = av_mallocz(sizeof(vorbis_enc_codebook) * venc->ncodebooks);
if (!venc->codebooks)
return AVERROR(ENOMEM);
// codebook 0..14 - floor1 book, values 0..255
// codebook 15 residue masterbook
// codebook 16..29 residue
clens = codebooks;
quant = quant_tables;
for (book = 0; book < venc->ncodebooks; book++) {
vorbis_enc_codebook *cb = &venc->codebooks[book];
int vals;
cb->ndimensions = cvectors[book].dim;
cb->nentries = cvectors[book].real_len;
cb->min = cvectors[book].min;
cb->delta = cvectors[book].delta;
cb->lookup = cvectors[book].lookup;
cb->seq_p = 0;
cb->lens = av_malloc_array(cb->nentries, sizeof(uint8_t));
cb->codewords = av_malloc_array(cb->nentries, sizeof(uint32_t));
if (!cb->lens || !cb->codewords)
return AVERROR(ENOMEM);
memcpy(cb->lens, clens, cvectors[book].len);
memset(cb->lens + cvectors[book].len, 0, cb->nentries - cvectors[book].len);
clens += cvectors[book].len;
if (cb->lookup) {
vals = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries);
cb->quantlist = av_malloc_array(vals, sizeof(int));
if (!cb->quantlist)
return AVERROR(ENOMEM);
for (i = 0; i < vals; i++)
cb->quantlist[i] = *quant++;
} else {
cb->quantlist = NULL;
}
if ((ret = ready_codebook(cb)) < 0)
return ret;
}
venc->nfloors = 1;
venc->floors = av_mallocz(sizeof(vorbis_enc_floor) * venc->nfloors);
if (!venc->floors)
return AVERROR(ENOMEM);
// just 1 floor
fc = &venc->floors[0];
fc->partitions = NUM_FLOOR_PARTITIONS;
fc->partition_to_class = av_malloc(sizeof(int) * fc->partitions);
if (!fc->partition_to_class)
return AVERROR(ENOMEM);
fc->nclasses = 0;
for (i = 0; i < fc->partitions; i++) {
static const int a[] = {0, 1, 2, 2, 3, 3, 4, 4};
fc->partition_to_class[i] = a[i];
fc->nclasses = FFMAX(fc->nclasses, fc->partition_to_class[i]);
}
fc->nclasses++;
fc->classes = av_calloc(fc->nclasses, sizeof(vorbis_enc_floor_class));
if (!fc->classes)
return AVERROR(ENOMEM);
for (i = 0; i < fc->nclasses; i++) {
vorbis_enc_floor_class * c = &fc->classes[i];
int j, books;
c->dim = floor_classes[i].dim;
c->subclass = floor_classes[i].subclass;
c->masterbook = floor_classes[i].masterbook;
books = (1 << c->subclass);
c->books = av_malloc_array(books, sizeof(int));
if (!c->books)
return AVERROR(ENOMEM);
for (j = 0; j < books; j++)
c->books[j] = floor_classes[i].nbooks[j];
}
fc->multiplier = 2;
fc->rangebits = venc->log2_blocksize[1] - 1;
fc->values = 2;
for (i = 0; i < fc->partitions; i++)
fc->values += fc->classes[fc->partition_to_class[i]].dim;
fc->list = av_malloc_array(fc->values, sizeof(vorbis_floor1_entry));
if (!fc->list)
return AVERROR(ENOMEM);
fc->list[0].x = 0;
fc->list[1].x = 1 << fc->rangebits;
for (i = 2; i < fc->values; i++) {
static const int a[] = {
93, 23,372, 6, 46,186,750, 14, 33, 65,
130,260,556, 3, 10, 18, 28, 39, 55, 79,
111,158,220,312,464,650,850
};
fc->list[i].x = a[i - 2];
}
if (ff_vorbis_ready_floor1_list(avctx, fc->list, fc->values))
return AVERROR_BUG;
venc->nresidues = 1;
venc->residues = av_mallocz(sizeof(vorbis_enc_residue) * venc->nresidues);
if (!venc->residues)
return AVERROR(ENOMEM);
// single residue
rc = &venc->residues[0];
rc->type = 2;
rc->begin = 0;
rc->end = 1600;
rc->partition_size = 32;
rc->classifications = 10;
rc->classbook = 15;
rc->books = av_malloc(sizeof(*rc->books) * rc->classifications);
if (!rc->books)
return AVERROR(ENOMEM);
{
static const int8_t a[10][8] = {
{ -1, -1, -1, -1, -1, -1, -1, -1, },
{ -1, -1, 16, -1, -1, -1, -1, -1, },
{ -1, -1, 17, -1, -1, -1, -1, -1, },
{ -1, -1, 18, -1, -1, -1, -1, -1, },
{ -1, -1, 19, -1, -1, -1, -1, -1, },
{ -1, -1, 20, -1, -1, -1, -1, -1, },
{ -1, -1, 21, -1, -1, -1, -1, -1, },
{ 22, 23, -1, -1, -1, -1, -1, -1, },
{ 24, 25, -1, -1, -1, -1, -1, -1, },
{ 26, 27, 28, -1, -1, -1, -1, -1, },
};
memcpy(rc->books, a, sizeof a);
}
if ((ret = ready_residue(rc, venc)) < 0)
return ret;
venc->nmappings = 1;
venc->mappings = av_mallocz(sizeof(vorbis_enc_mapping) * venc->nmappings);
if (!venc->mappings)
return AVERROR(ENOMEM);
// single mapping
mc = &venc->mappings[0];
mc->submaps = 1;
mc->mux = av_malloc(sizeof(int) * venc->channels);
if (!mc->mux)
return AVERROR(ENOMEM);
for (i = 0; i < venc->channels; i++)
mc->mux[i] = 0;
mc->floor = av_malloc(sizeof(int) * mc->submaps);
mc->residue = av_malloc(sizeof(int) * mc->submaps);
if (!mc->floor || !mc->residue)
return AVERROR(ENOMEM);
for (i = 0; i < mc->submaps; i++) {
mc->floor[i] = 0;
mc->residue[i] = 0;
}
mc->coupling_steps = venc->channels == 2 ? 1 : 0;
mc->magnitude = av_malloc(sizeof(int) * mc->coupling_steps);
mc->angle = av_malloc(sizeof(int) * mc->coupling_steps);
if (!mc->magnitude || !mc->angle)
return AVERROR(ENOMEM);
if (mc->coupling_steps) {
mc->magnitude[0] = 0;
mc->angle[0] = 1;
}
venc->nmodes = 2;
venc->modes = av_malloc(sizeof(vorbis_enc_mode) * venc->nmodes);
if (!venc->modes)
return AVERROR(ENOMEM);
// Short block
venc->modes[0].blockflag = 0;
venc->modes[0].mapping = 0;
// Long block
venc->modes[1].blockflag = 1;
venc->modes[1].mapping = 0;
venc->have_saved = 0;
venc->saved = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2);
venc->samples = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]));
venc->floor = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2);
venc->coeffs = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]) / 2);
venc->scratch = av_malloc_array(sizeof(float) * venc->channels, (1 << venc->log2_blocksize[1]));
if (!venc->saved || !venc->samples || !venc->floor || !venc->coeffs || !venc->scratch)
return AVERROR(ENOMEM);
if ((ret = dsp_init(avctx, venc)) < 0)
return ret;
return 0;
}
static void put_float(PutBitContext *pb, float f)
{
int exp, mant;
uint32_t res = 0;
mant = (int)ldexp(frexp(f, &exp), 20);
exp += 788 - 20;
if (mant < 0) {
res |= (1U << 31);
mant = -mant;
}
res |= mant | (exp << 21);
put_bits32(pb, res);
}
static void put_codebook_header(PutBitContext *pb, vorbis_enc_codebook *cb)
{
int i;
int ordered = 0;
put_bits(pb, 24, 0x564342); //magic
put_bits(pb, 16, cb->ndimensions);
put_bits(pb, 24, cb->nentries);
for (i = 1; i < cb->nentries; i++)
if (cb->lens[i] < cb->lens[i-1])
break;
if (i == cb->nentries)
ordered = 1;
put_bits(pb, 1, ordered);
if (ordered) {
int len = cb->lens[0];
put_bits(pb, 5, len - 1);
i = 0;
while (i < cb->nentries) {
int j;
for (j = 0; j+i < cb->nentries; j++)
if (cb->lens[j+i] != len)
break;
put_bits(pb, ilog(cb->nentries - i), j);
i += j;
len++;
}
} else {
int sparse = 0;
for (i = 0; i < cb->nentries; i++)
if (!cb->lens[i])
break;
if (i != cb->nentries)
sparse = 1;
put_bits(pb, 1, sparse);
for (i = 0; i < cb->nentries; i++) {
if (sparse)
put_bits(pb, 1, !!cb->lens[i]);
if (cb->lens[i])
put_bits(pb, 5, cb->lens[i] - 1);
}
}
put_bits(pb, 4, cb->lookup);
if (cb->lookup) {
int tmp = cb_lookup_vals(cb->lookup, cb->ndimensions, cb->nentries);
int bits = ilog(cb->quantlist[0]);
for (i = 1; i < tmp; i++)
bits = FFMAX(bits, ilog(cb->quantlist[i]));
put_float(pb, cb->min);
put_float(pb, cb->delta);
put_bits(pb, 4, bits - 1);
put_bits(pb, 1, cb->seq_p);
for (i = 0; i < tmp; i++)
put_bits(pb, bits, cb->quantlist[i]);
}
}
static void put_floor_header(PutBitContext *pb, vorbis_enc_floor *fc)
{
int i;
put_bits(pb, 16, 1); // type, only floor1 is supported
put_bits(pb, 5, fc->partitions);
for (i = 0; i < fc->partitions; i++)
put_bits(pb, 4, fc->partition_to_class[i]);
for (i = 0; i < fc->nclasses; i++) {
int j, books;
put_bits(pb, 3, fc->classes[i].dim - 1);
put_bits(pb, 2, fc->classes[i].subclass);
if (fc->classes[i].subclass)
put_bits(pb, 8, fc->classes[i].masterbook);
books = (1 << fc->classes[i].subclass);
for (j = 0; j < books; j++)
put_bits(pb, 8, fc->classes[i].books[j] + 1);
}
put_bits(pb, 2, fc->multiplier - 1);
put_bits(pb, 4, fc->rangebits);
for (i = 2; i < fc->values; i++)
put_bits(pb, fc->rangebits, fc->list[i].x);
}
static void put_residue_header(PutBitContext *pb, vorbis_enc_residue *rc)
{
int i;
put_bits(pb, 16, rc->type);
put_bits(pb, 24, rc->begin);
put_bits(pb, 24, rc->end);
put_bits(pb, 24, rc->partition_size - 1);
put_bits(pb, 6, rc->classifications - 1);
put_bits(pb, 8, rc->classbook);
for (i = 0; i < rc->classifications; i++) {
int j, tmp = 0;
for (j = 0; j < 8; j++)
tmp |= (rc->books[i][j] != -1) << j;
put_bits(pb, 3, tmp & 7);
put_bits(pb, 1, tmp > 7);
if (tmp > 7)
put_bits(pb, 5, tmp >> 3);
}
for (i = 0; i < rc->classifications; i++) {
int j;
for (j = 0; j < 8; j++)
if (rc->books[i][j] != -1)
put_bits(pb, 8, rc->books[i][j]);
}
}
static int put_main_header(vorbis_enc_context *venc, uint8_t **out)
{
int i;
PutBitContext pb;
int len, hlens[3];
int buffer_len = 50000;
uint8_t *buffer = av_mallocz(buffer_len), *p = buffer;
if (!buffer)
return AVERROR(ENOMEM);
// identification header
init_put_bits(&pb, p, buffer_len);
put_bits(&pb, 8, 1); //magic
for (i = 0; "vorbis"[i]; i++)
put_bits(&pb, 8, "vorbis"[i]);
put_bits32(&pb, 0); // version
put_bits(&pb, 8, venc->channels);
put_bits32(&pb, venc->sample_rate);
put_bits32(&pb, 0); // bitrate
put_bits32(&pb, 0); // bitrate
put_bits32(&pb, 0); // bitrate
put_bits(&pb, 4, venc->log2_blocksize[0]);
put_bits(&pb, 4, venc->log2_blocksize[1]);
put_bits(&pb, 1, 1); // framing
flush_put_bits(&pb);
hlens[0] = put_bytes_output(&pb);
buffer_len -= hlens[0];
p += hlens[0];
// comment header
init_put_bits(&pb, p, buffer_len);
put_bits(&pb, 8, 3); //magic
for (i = 0; "vorbis"[i]; i++)
put_bits(&pb, 8, "vorbis"[i]);
put_bits32(&pb, 0); // vendor length TODO
put_bits32(&pb, 0); // amount of comments
put_bits(&pb, 1, 1); // framing
flush_put_bits(&pb);
hlens[1] = put_bytes_output(&pb);
buffer_len -= hlens[1];
p += hlens[1];
// setup header
init_put_bits(&pb, p, buffer_len);
put_bits(&pb, 8, 5); //magic
for (i = 0; "vorbis"[i]; i++)
put_bits(&pb, 8, "vorbis"[i]);
// codebooks
put_bits(&pb, 8, venc->ncodebooks - 1);
for (i = 0; i < venc->ncodebooks; i++)
put_codebook_header(&pb, &venc->codebooks[i]);
// time domain, reserved, zero
put_bits(&pb, 6, 0);
put_bits(&pb, 16, 0);
// floors
put_bits(&pb, 6, venc->nfloors - 1);
for (i = 0; i < venc->nfloors; i++)
put_floor_header(&pb, &venc->floors[i]);
// residues
put_bits(&pb, 6, venc->nresidues - 1);
for (i = 0; i < venc->nresidues; i++)
put_residue_header(&pb, &venc->residues[i]);
// mappings
put_bits(&pb, 6, venc->nmappings - 1);
for (i = 0; i < venc->nmappings; i++) {
vorbis_enc_mapping *mc = &venc->mappings[i];
int j;
put_bits(&pb, 16, 0); // mapping type
put_bits(&pb, 1, mc->submaps > 1);
if (mc->submaps > 1)
put_bits(&pb, 4, mc->submaps - 1);
put_bits(&pb, 1, !!mc->coupling_steps);
if (mc->coupling_steps) {
put_bits(&pb, 8, mc->coupling_steps - 1);
for (j = 0; j < mc->coupling_steps; j++) {
put_bits(&pb, ilog(venc->channels - 1), mc->magnitude[j]);
put_bits(&pb, ilog(venc->channels - 1), mc->angle[j]);
}
}
put_bits(&pb, 2, 0); // reserved
if (mc->submaps > 1)
for (j = 0; j < venc->channels; j++)
put_bits(&pb, 4, mc->mux[j]);
for (j = 0; j < mc->submaps; j++) {
put_bits(&pb, 8, 0); // reserved time configuration
put_bits(&pb, 8, mc->floor[j]);
put_bits(&pb, 8, mc->residue[j]);
}
}
// modes
put_bits(&pb, 6, venc->nmodes - 1);
for (i = 0; i < venc->nmodes; i++) {
put_bits(&pb, 1, venc->modes[i].blockflag);
put_bits(&pb, 16, 0); // reserved window type
put_bits(&pb, 16, 0); // reserved transform type
put_bits(&pb, 8, venc->modes[i].mapping);
}
put_bits(&pb, 1, 1); // framing
flush_put_bits(&pb);
hlens[2] = put_bytes_output(&pb);
len = hlens[0] + hlens[1] + hlens[2];
p = *out = av_mallocz(64 + len + len/255);
if (!p)
return AVERROR(ENOMEM);
*p++ = 2;
p += av_xiphlacing(p, hlens[0]);
p += av_xiphlacing(p, hlens[1]);
buffer_len = 0;
for (i = 0; i < 3; i++) {
memcpy(p, buffer + buffer_len, hlens[i]);
p += hlens[i];
buffer_len += hlens[i];
}
av_freep(&buffer);
return p - *out;
}
static float get_floor_average(vorbis_enc_floor * fc, float *coeffs, int i)
{
int begin = fc->list[fc->list[FFMAX(i-1, 0)].sort].x;
int end = fc->list[fc->list[FFMIN(i+1, fc->values - 1)].sort].x;
int j;
float average = 0;
for (j = begin; j < end; j++)
average += fabs(coeffs[j]);
return average / (end - begin);
}
static void floor_fit(vorbis_enc_context *venc, vorbis_enc_floor *fc,
float *coeffs, uint16_t *posts, int samples)
{
int range = 255 / fc->multiplier + 1;
int i;
float tot_average = 0.0;
float averages[MAX_FLOOR_VALUES];
for (i = 0; i < fc->values; i++) {
averages[i] = get_floor_average(fc, coeffs, i);
tot_average += averages[i];
}
tot_average /= fc->values;
tot_average /= venc->quality;
for (i = 0; i < fc->values; i++) {
int position = fc->list[fc->list[i].sort].x;
float average = averages[i];
int j;
average = sqrt(tot_average * average) * pow(1.25f, position*0.005f); // MAGIC!
for (j = 0; j < range - 1; j++)
if (ff_vorbis_floor1_inverse_db_table[j * fc->multiplier] > average)
break;
posts[fc->list[i].sort] = j;
}
}
static int render_point(int x0, int y0, int x1, int y1, int x)
{
return y0 + (x - x0) * (y1 - y0) / (x1 - x0);
}
static int floor_encode(vorbis_enc_context *venc, vorbis_enc_floor *fc,
PutBitContext *pb, uint16_t *posts,
float *floor, int samples)
{
int range = 255 / fc->multiplier + 1;
int coded[MAX_FLOOR_VALUES]; // first 2 values are unused
int i, counter;
if (put_bits_left(pb) < 1 + 2 * ilog(range - 1))
return AVERROR(EINVAL);
put_bits(pb, 1, 1); // non zero
put_bits(pb, ilog(range - 1), posts[0]);
put_bits(pb, ilog(range - 1), posts[1]);
coded[0] = coded[1] = 1;
for (i = 2; i < fc->values; i++) {
int predicted = render_point(fc->list[fc->list[i].low].x,
posts[fc->list[i].low],
fc->list[fc->list[i].high].x,
posts[fc->list[i].high],
fc->list[i].x);
int highroom = range - predicted;
int lowroom = predicted;
int room = FFMIN(highroom, lowroom);
if (predicted == posts[i]) {
coded[i] = 0; // must be used later as flag!
continue;
} else {
if (!coded[fc->list[i].low ])
coded[fc->list[i].low ] = -1;
if (!coded[fc->list[i].high])
coded[fc->list[i].high] = -1;
}
if (posts[i] > predicted) {
if (posts[i] - predicted > room)
coded[i] = posts[i] - predicted + lowroom;
else
coded[i] = (posts[i] - predicted) << 1;
} else {
if (predicted - posts[i] > room)
coded[i] = predicted - posts[i] + highroom - 1;
else
coded[i] = ((predicted - posts[i]) << 1) - 1;
}
}
counter = 2;
for (i = 0; i < fc->partitions; i++) {
vorbis_enc_floor_class * c = &fc->classes[fc->partition_to_class[i]];
int k, cval = 0, csub = 1<<c->subclass;
if (c->subclass) {
vorbis_enc_codebook * book = &venc->codebooks[c->masterbook];
int cshift = 0;
for (k = 0; k < c->dim; k++) {
int l;
for (l = 0; l < csub; l++) {
int maxval = 1;
if (c->books[l] != -1)
maxval = venc->codebooks[c->books[l]].nentries;
// coded could be -1, but this still works, cause that is 0
if (coded[counter + k] < maxval)
break;
}
assert(l != csub);
cval |= l << cshift;
cshift += c->subclass;
}
if (put_codeword(pb, book, cval))
return AVERROR(EINVAL);
}
for (k = 0; k < c->dim; k++) {
int book = c->books[cval & (csub-1)];
int entry = coded[counter++];
cval >>= c->subclass;
if (book == -1)
continue;
if (entry == -1)
entry = 0;
if (put_codeword(pb, &venc->codebooks[book], entry))
return AVERROR(EINVAL);
}
}
ff_vorbis_floor1_render_list(fc->list, fc->values, posts, coded,
fc->multiplier, floor, samples);
return 0;
}
static float *put_vector(vorbis_enc_codebook *book, PutBitContext *pb,
float *num)
{
int i, entry = -1;
float distance = FLT_MAX;
assert(book->dimensions);
for (i = 0; i < book->nentries; i++) {
float * vec = book->dimensions + i * book->ndimensions, d = book->pow2[i];
int j;
if (!book->lens[i])
continue;
for (j = 0; j < book->ndimensions; j++)
d -= vec[j] * num[j];
if (distance > d) {
entry = i;
distance = d;
}
}
if (put_codeword(pb, book, entry))
return NULL;
return &book->dimensions[entry * book->ndimensions];
}
static int residue_encode(vorbis_enc_context *venc, vorbis_enc_residue *rc,
PutBitContext *pb, float *coeffs, int samples,
int real_ch)
{
int pass, i, j, p, k;
int psize = rc->partition_size;
int partitions = (rc->end - rc->begin) / psize;
int channels = (rc->type == 2) ? 1 : real_ch;
int classes[MAX_CHANNELS][NUM_RESIDUE_PARTITIONS];
int classwords = venc->codebooks[rc->classbook].ndimensions;
av_assert0(rc->type == 2);
av_assert0(real_ch == 2);
for (p = 0; p < partitions; p++) {
float max1 = 0.0, max2 = 0.0;
int s = rc->begin + p * psize;
for (k = s; k < s + psize; k += 2) {
max1 = FFMAX(max1, fabs(coeffs[ k / real_ch]));
max2 = FFMAX(max2, fabs(coeffs[samples + k / real_ch]));
}
for (i = 0; i < rc->classifications - 1; i++)
if (max1 < rc->maxes[i][0] && max2 < rc->maxes[i][1])
break;
classes[0][p] = i;
}
for (pass = 0; pass < 8; pass++) {
p = 0;
while (p < partitions) {
if (pass == 0)
for (j = 0; j < channels; j++) {
vorbis_enc_codebook * book = &venc->codebooks[rc->classbook];
int entry = 0;
for (i = 0; i < classwords; i++) {
entry *= rc->classifications;
entry += classes[j][p + i];
}
if (put_codeword(pb, book, entry))
return AVERROR(EINVAL);
}
for (i = 0; i < classwords && p < partitions; i++, p++) {
for (j = 0; j < channels; j++) {
int nbook = rc->books[classes[j][p]][pass];
vorbis_enc_codebook * book = &venc->codebooks[nbook];
float *buf = coeffs + samples*j + rc->begin + p*psize;
if (nbook == -1)
continue;
assert(rc->type == 0 || rc->type == 2);
assert(!(psize % book->ndimensions));
if (rc->type == 0) {
for (k = 0; k < psize; k += book->ndimensions) {
int l;
float *a = put_vector(book, pb, &buf[k]);
if (!a)
return AVERROR(EINVAL);
for (l = 0; l < book->ndimensions; l++)
buf[k + l] -= a[l];
}
} else {
int s = rc->begin + p * psize, a1, b1;
a1 = (s % real_ch) * samples;
b1 = s / real_ch;
s = real_ch * samples;
for (k = 0; k < psize; k += book->ndimensions) {
int dim, a2 = a1, b2 = b1;
float vec[MAX_CODEBOOK_DIM], *pv = vec;
for (dim = book->ndimensions; dim--; ) {
*pv++ = coeffs[a2 + b2];
if ((a2 += samples) == s) {
a2 = 0;
b2++;
}
}
pv = put_vector(book, pb, vec);
if (!pv)
return AVERROR(EINVAL);
for (dim = book->ndimensions; dim--; ) {
coeffs[a1 + b1] -= *pv++;
if ((a1 += samples) == s) {
a1 = 0;
b1++;
}
}
}
}
}
}
}
}
return 0;
}
static int apply_window_and_mdct(vorbis_enc_context *venc)
{
int channel;
const float * win = venc->win[1];
int window_len = 1 << (venc->log2_blocksize[1] - 1);
float n = (float)(1 << venc->log2_blocksize[1]) / 4.0;
AVFloatDSPContext *fdsp = venc->fdsp;
for (channel = 0; channel < venc->channels; channel++) {
float *offset = venc->samples + channel * window_len * 2;
fdsp->vector_fmul(offset, offset, win, window_len);
fdsp->vector_fmul_scalar(offset, offset, 1/n, window_len);
offset += window_len;
fdsp->vector_fmul_reverse(offset, offset, win, window_len);
fdsp->vector_fmul_scalar(offset, offset, 1/n, window_len);
venc->mdct[1].mdct_calc(&venc->mdct[1], venc->coeffs + channel * window_len,
venc->samples + channel * window_len * 2);
}
return 1;
}
/* Used for padding the last encoded packet */
static AVFrame *spawn_empty_frame(AVCodecContext *avctx, int channels)
{
AVFrame *f = av_frame_alloc();
int ch;
if (!f)
return NULL;
f->format = avctx->sample_fmt;
f->nb_samples = avctx->frame_size;
f->channel_layout = avctx->channel_layout;
if (av_frame_get_buffer(f, 4)) {
av_frame_free(&f);
return NULL;
}
for (ch = 0; ch < channels; ch++) {
size_t bps = av_get_bytes_per_sample(f->format);
memset(f->extended_data[ch], 0, bps * f->nb_samples);
}
return f;
}
/* Set up audio samples for psy analysis and window/mdct */
static void move_audio(vorbis_enc_context *venc, int sf_size)
{
AVFrame *cur = NULL;
int frame_size = 1 << (venc->log2_blocksize[1] - 1);
int subframes = frame_size / sf_size;
int sf, ch;
/* Copy samples from last frame into current frame */
if (venc->have_saved)
for (ch = 0; ch < venc->channels; ch++)
memcpy(venc->samples + 2 * ch * frame_size,
venc->saved + ch * frame_size, sizeof(float) * frame_size);
else
for (ch = 0; ch < venc->channels; ch++)
memset(venc->samples + 2 * ch * frame_size, 0, sizeof(float) * frame_size);
for (sf = 0; sf < subframes; sf++) {
cur = ff_bufqueue_get(&venc->bufqueue);
for (ch = 0; ch < venc->channels; ch++) {
float *offset = venc->samples + 2 * ch * frame_size + frame_size;
float *save = venc->saved + ch * frame_size;
const float *input = (float *) cur->extended_data[ch];
const size_t len = cur->nb_samples * sizeof(float);
memcpy(offset + sf*sf_size, input, len);
memcpy(save + sf*sf_size, input, len); // Move samples for next frame
}
av_frame_free(&cur);
}
venc->have_saved = 1;
memcpy(venc->scratch, venc->samples, 2 * venc->channels * frame_size);
}
static int vorbis_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
vorbis_enc_context *venc = avctx->priv_data;
int i, ret, need_more;
int frame_size = 1 << (venc->log2_blocksize[1] - 1);
vorbis_enc_mode *mode;
vorbis_enc_mapping *mapping;
PutBitContext pb;
if (frame) {
AVFrame *clone;
if ((ret = ff_af_queue_add(&venc->afq, frame)) < 0)
return ret;
clone = av_frame_clone(frame);
if (!clone)
return AVERROR(ENOMEM);
ff_bufqueue_add(avctx, &venc->bufqueue, clone);
} else
if (!venc->afq.remaining_samples)
return 0;
need_more = venc->bufqueue.available * avctx->frame_size < frame_size;
need_more = frame && need_more;
if (need_more)
return 0;
/* Pad the bufqueue with empty frames for encoding the last packet. */
if (!frame) {
if (venc->bufqueue.available * avctx->frame_size < frame_size) {
int frames_needed = (frame_size/avctx->frame_size) - venc->bufqueue.available;
int i;
for (i = 0; i < frames_needed; i++) {
AVFrame *empty = spawn_empty_frame(avctx, venc->channels);
if (!empty)
return AVERROR(ENOMEM);
ff_bufqueue_add(avctx, &venc->bufqueue, empty);
}
}
}
move_audio(venc, avctx->frame_size);
if (!apply_window_and_mdct(venc))
return 0;
if ((ret = ff_alloc_packet(avctx, avpkt, 8192)) < 0)
return ret;
init_put_bits(&pb, avpkt->data, avpkt->size);
put_bits(&pb, 1, 0); // magic bit
put_bits(&pb, ilog(venc->nmodes - 1), 1); // Mode for current frame
mode = &venc->modes[1];
mapping = &venc->mappings[mode->mapping];
if (mode->blockflag) {
put_bits(&pb, 1, 1); // Previous windowflag
put_bits(&pb, 1, 1); // Next windowflag
}
for (i = 0; i < venc->channels; i++) {
vorbis_enc_floor *fc = &venc->floors[mapping->floor[mapping->mux[i]]];
uint16_t posts[MAX_FLOOR_VALUES];
floor_fit(venc, fc, &venc->coeffs[i * frame_size], posts, frame_size);
if (floor_encode(venc, fc, &pb, posts, &venc->floor[i * frame_size], frame_size)) {
av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n");
return AVERROR(EINVAL);
}
}
for (i = 0; i < venc->channels * frame_size; i++)
venc->coeffs[i] /= venc->floor[i];
for (i = 0; i < mapping->coupling_steps; i++) {
float *mag = venc->coeffs + mapping->magnitude[i] * frame_size;
float *ang = venc->coeffs + mapping->angle[i] * frame_size;
int j;
for (j = 0; j < frame_size; j++) {
float a = ang[j];
ang[j] -= mag[j];
if (mag[j] > 0)
ang[j] = -ang[j];
if (ang[j] < 0)
mag[j] = a;
}
}
if (residue_encode(venc, &venc->residues[mapping->residue[mapping->mux[0]]],
&pb, venc->coeffs, frame_size, venc->channels)) {
av_log(avctx, AV_LOG_ERROR, "output buffer is too small\n");
return AVERROR(EINVAL);
}
flush_put_bits(&pb);
avpkt->size = put_bytes_output(&pb);
ff_af_queue_remove(&venc->afq, frame_size, &avpkt->pts, &avpkt->duration);
if (frame_size > avpkt->duration) {
uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
if (!side)
return AVERROR(ENOMEM);
AV_WL32(&side[4], frame_size - avpkt->duration);
}
*got_packet_ptr = 1;
return 0;
}
static av_cold int vorbis_encode_close(AVCodecContext *avctx)
{
vorbis_enc_context *venc = avctx->priv_data;
int i;
if (venc->codebooks)
for (i = 0; i < venc->ncodebooks; i++) {
av_freep(&venc->codebooks[i].lens);
av_freep(&venc->codebooks[i].codewords);
av_freep(&venc->codebooks[i].quantlist);
av_freep(&venc->codebooks[i].dimensions);
av_freep(&venc->codebooks[i].pow2);
}
av_freep(&venc->codebooks);
if (venc->floors)
for (i = 0; i < venc->nfloors; i++) {
int j;
if (venc->floors[i].classes)
for (j = 0; j < venc->floors[i].nclasses; j++)
av_freep(&venc->floors[i].classes[j].books);
av_freep(&venc->floors[i].classes);
av_freep(&venc->floors[i].partition_to_class);
av_freep(&venc->floors[i].list);
}
av_freep(&venc->floors);
if (venc->residues)
for (i = 0; i < venc->nresidues; i++) {
av_freep(&venc->residues[i].books);
av_freep(&venc->residues[i].maxes);
}
av_freep(&venc->residues);
if (venc->mappings)
for (i = 0; i < venc->nmappings; i++) {
av_freep(&venc->mappings[i].mux);
av_freep(&venc->mappings[i].floor);
av_freep(&venc->mappings[i].residue);
av_freep(&venc->mappings[i].magnitude);
av_freep(&venc->mappings[i].angle);
}
av_freep(&venc->mappings);
av_freep(&venc->modes);
av_freep(&venc->saved);
av_freep(&venc->samples);
av_freep(&venc->floor);
av_freep(&venc->coeffs);
av_freep(&venc->scratch);
av_freep(&venc->fdsp);
ff_mdct_end(&venc->mdct[0]);
ff_mdct_end(&venc->mdct[1]);
ff_af_queue_close(&venc->afq);
ff_bufqueue_discard_all(&venc->bufqueue);
return 0 ;
}
static av_cold int vorbis_encode_init(AVCodecContext *avctx)
{
vorbis_enc_context *venc = avctx->priv_data;
int ret;
if (avctx->channels != 2) {
av_log(avctx, AV_LOG_ERROR, "Current FFmpeg Vorbis encoder only supports 2 channels.\n");
return -1;
}
if ((ret = create_vorbis_context(venc, avctx)) < 0)
goto error;
avctx->bit_rate = 0;
if (avctx->flags & AV_CODEC_FLAG_QSCALE)
venc->quality = avctx->global_quality / (float)FF_QP2LAMBDA;
else
venc->quality = 8;
venc->quality *= venc->quality;
if ((ret = put_main_header(venc, (uint8_t**)&avctx->extradata)) < 0)
goto error;
avctx->extradata_size = ret;
avctx->frame_size = 64;
ff_af_queue_init(avctx, &venc->afq);
return 0;
error:
vorbis_encode_close(avctx);
return ret;
}
const AVCodec ff_vorbis_encoder = {
.name = "vorbis",
.long_name = NULL_IF_CONFIG_SMALL("Vorbis"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_VORBIS,
.priv_data_size = sizeof(vorbis_enc_context),
.init = vorbis_encode_init,
.encode2 = vorbis_encode_frame,
.close = vorbis_encode_close,
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_EXPERIMENTAL,
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_NONE },
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};