mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-07 11:13:41 +02:00
d52ceed9fd
Signed-off-by: James Almer <jamrial@gmail.com>
237 lines
8.8 KiB
C
237 lines
8.8 KiB
C
/*
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#include "libswscale/swscale.h"
|
|
#include "libswscale/swscale_internal.h"
|
|
|
|
#include "checkasm.h"
|
|
|
|
#define randomize_buffers(buf, size) \
|
|
do { \
|
|
int j; \
|
|
for (j = 0; j < size; j+=4) \
|
|
AV_WN32(buf + j, rnd()); \
|
|
} while (0)
|
|
|
|
// This reference function is the same approximate algorithm employed by the
|
|
// SIMD functions
|
|
static void ref_function(const int16_t *filter, int filterSize,
|
|
const int16_t **src, uint8_t *dest, int dstW,
|
|
const uint8_t *dither, int offset)
|
|
{
|
|
int i, d;
|
|
d = ((filterSize - 1) * 8 + dither[0]) >> 4;
|
|
for ( i = 0; i < dstW; i++) {
|
|
int16_t val = d;
|
|
int j;
|
|
union {
|
|
int val;
|
|
int16_t v[2];
|
|
} t;
|
|
for (j = 0; j < filterSize; j++){
|
|
t.val = (int)src[j][i + offset] * (int)filter[j];
|
|
val += t.v[1];
|
|
}
|
|
dest[i]= av_clip_uint8(val>>3);
|
|
}
|
|
}
|
|
|
|
static void check_yuv2yuvX(void)
|
|
{
|
|
struct SwsContext *ctx;
|
|
int fsi, osi, isi, i, j;
|
|
int dstW;
|
|
#define LARGEST_FILTER 16
|
|
#define FILTER_SIZES 4
|
|
static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16};
|
|
#define LARGEST_INPUT_SIZE 512
|
|
#define INPUT_SIZES 4
|
|
static const int input_sizes[INPUT_SIZES] = {128, 144, 256, 512};
|
|
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
|
|
int filterSize, const int16_t **src, uint8_t *dest,
|
|
int dstW, const uint8_t *dither, int offset);
|
|
|
|
const int16_t **src;
|
|
LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]);
|
|
LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
|
|
LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]);
|
|
union VFilterData{
|
|
const int16_t *src;
|
|
uint16_t coeff[8];
|
|
} *vFilterData;
|
|
uint8_t d_val = rnd();
|
|
memset(dither, d_val, LARGEST_INPUT_SIZE);
|
|
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
|
|
randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t));
|
|
ctx = sws_alloc_context();
|
|
if (sws_init_context(ctx, NULL, NULL) < 0)
|
|
fail();
|
|
|
|
ff_getSwsFunc(ctx);
|
|
for(isi = 0; isi < INPUT_SIZES; ++isi){
|
|
dstW = input_sizes[isi];
|
|
for(osi = 0; osi < 64; osi += 16){
|
|
for(fsi = 0; fsi < FILTER_SIZES; ++fsi){
|
|
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
|
|
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
|
|
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
|
|
for(i = 0; i < filter_sizes[fsi]; ++i){
|
|
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
|
|
vFilterData[i].src = src[i];
|
|
for(j = 0; j < 4; ++j)
|
|
vFilterData[i].coeff[j + 4] = filter_coeff[i];
|
|
}
|
|
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d", filter_sizes[fsi], osi)){
|
|
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
|
|
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
|
|
|
|
// The reference function is not the scalar function selected when mmx
|
|
// is deactivated as the SIMD functions do not give the same result as
|
|
// the scalar ones due to rounding. The SIMD functions are activated by
|
|
// the flag SWS_ACCURATE_RND
|
|
ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
|
|
// There's no point in calling new for the reference function
|
|
if(ctx->use_mmx_vfilter){
|
|
call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
|
|
if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])))
|
|
fail();
|
|
if(dstW == LARGEST_INPUT_SIZE)
|
|
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
|
|
}
|
|
}
|
|
av_freep(&src);
|
|
av_freep(&vFilterData);
|
|
}
|
|
}
|
|
}
|
|
sws_freeContext(ctx);
|
|
#undef FILTER_SIZES
|
|
}
|
|
|
|
#undef SRC_PIXELS
|
|
#define SRC_PIXELS 128
|
|
|
|
static void check_hscale(void)
|
|
{
|
|
#define MAX_FILTER_WIDTH 40
|
|
#define FILTER_SIZES 5
|
|
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 };
|
|
|
|
#define HSCALE_PAIRS 2
|
|
static const int hscale_pairs[HSCALE_PAIRS][2] = {
|
|
{ 8, 14 },
|
|
{ 8, 18 },
|
|
};
|
|
|
|
int i, j, fsi, hpi, width;
|
|
struct SwsContext *ctx;
|
|
|
|
// padded
|
|
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
|
|
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
|
|
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
|
|
|
|
// padded
|
|
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
|
|
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
|
|
|
|
// The dst parameter here is either int16_t or int32_t but we use void* to
|
|
// just cover both cases.
|
|
declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
|
|
const uint8_t *src, const int16_t *filter,
|
|
const int32_t *filterPos, int filterSize);
|
|
|
|
ctx = sws_alloc_context();
|
|
if (sws_init_context(ctx, NULL, NULL) < 0)
|
|
fail();
|
|
|
|
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
|
|
|
|
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
|
|
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
|
|
width = filter_sizes[fsi];
|
|
|
|
ctx->srcBpc = hscale_pairs[hpi][0];
|
|
ctx->dstBpc = hscale_pairs[hpi][1];
|
|
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
|
|
|
|
for (i = 0; i < SRC_PIXELS; i++) {
|
|
filterPos[i] = i;
|
|
|
|
// These filter cofficients are chosen to try break two corner
|
|
// cases, namely:
|
|
//
|
|
// - Negative filter coefficients. The filters output signed
|
|
// values, and it should be possible to end up with negative
|
|
// output values.
|
|
//
|
|
// - Positive clipping. The hscale filter function has clipping
|
|
// at (1<<15) - 1
|
|
//
|
|
// The coefficients sum to the 1.0 point for the hscale
|
|
// functions (1 << 14).
|
|
|
|
for (j = 0; j < width; j++) {
|
|
filter[i * width + j] = -((1 << 14) / (width - 1));
|
|
}
|
|
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
|
|
}
|
|
|
|
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
|
|
// These values should be unused in SIMD implementations but
|
|
// may still be read, random coefficients here should help show
|
|
// issues where they are used in error.
|
|
|
|
filter[SRC_PIXELS * width + i] = rnd();
|
|
}
|
|
ff_getSwsFunc(ctx);
|
|
|
|
if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
|
|
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
|
|
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
|
|
|
|
call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
|
|
call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width);
|
|
if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
|
|
fail();
|
|
bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
|
|
}
|
|
}
|
|
}
|
|
sws_freeContext(ctx);
|
|
}
|
|
|
|
void checkasm_check_sw_scale(void)
|
|
{
|
|
check_hscale();
|
|
report("hscale");
|
|
check_yuv2yuvX();
|
|
report("yuv2yuvX");
|
|
}
|