1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavfilter/vf_framerate.c
Alexis Ballier bbc8f3d20e lavf/vf_framerate: Fix frame leak when increasing framerate.
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2017-03-16 16:16:05 +01:00

732 lines
28 KiB
C

/*
* Copyright (C) 2012 Mark Himsley
*
* get_scene_score() Copyright (c) 2011 Stefano Sabatini
* taken from libavfilter/vf_select.c
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* filter for upsampling or downsampling a progressive source
*/
#define DEBUG
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixelutils.h"
#include "avfilter.h"
#include "internal.h"
#include "video.h"
#define N_SRCE 3
typedef struct FrameRateContext {
const AVClass *class;
// parameters
AVRational dest_frame_rate; ///< output frames per second
int flags; ///< flags affecting frame rate conversion algorithm
double scene_score; ///< score that denotes a scene change has happened
int interp_start; ///< start of range to apply linear interpolation
int interp_end; ///< end of range to apply linear interpolation
int line_size[4]; ///< bytes of pixel data per line for each plane
int vsub;
int frst, next, prev, crnt, last;
int pending_srce_frames; ///< how many input frames are still waiting to be processed
int flush; ///< are we flushing final frames
int pending_end_frame; ///< flag indicating we are waiting to call filter_frame()
AVRational srce_time_base; ///< timebase of source
AVRational dest_time_base; ///< timebase of destination
int32_t dest_frame_num;
int64_t last_dest_frame_pts; ///< pts of the last frame output
int64_t average_srce_pts_dest_delta;///< average input pts delta converted from input rate to output rate
int64_t average_dest_pts_delta; ///< calculated average output pts delta
av_pixelutils_sad_fn sad; ///< Sum of the absolute difference function (scene detect only)
double prev_mafd; ///< previous MAFD (scene detect only)
AVFrame *srce[N_SRCE]; ///< buffered source frames
int64_t srce_pts_dest[N_SRCE]; ///< pts for source frames scaled to output timebase
int64_t pts; ///< pts of frame we are working on
int (*blend_frames)(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2);
int max;
int bitdepth;
AVFrame *work;
} FrameRateContext;
#define OFFSET(x) offsetof(FrameRateContext, x)
#define V AV_OPT_FLAG_VIDEO_PARAM
#define F AV_OPT_FLAG_FILTERING_PARAM
#define FRAMERATE_FLAG_SCD 01
static const AVOption framerate_options[] = {
{"fps", "required output frames per second rate", OFFSET(dest_frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="50"}, 0, INT_MAX, V|F },
{"interp_start", "point to start linear interpolation", OFFSET(interp_start), AV_OPT_TYPE_INT, {.i64=15}, 0, 255, V|F },
{"interp_end", "point to end linear interpolation", OFFSET(interp_end), AV_OPT_TYPE_INT, {.i64=240}, 0, 255, V|F },
{"scene", "scene change level", OFFSET(scene_score), AV_OPT_TYPE_DOUBLE, {.dbl=7.0}, 0, INT_MAX, V|F },
{"flags", "set flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, INT_MAX, V|F, "flags" },
{"scene_change_detect", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" },
{"scd", "enable scene change detection", 0, AV_OPT_TYPE_CONST, {.i64=FRAMERATE_FLAG_SCD}, INT_MIN, INT_MAX, V|F, "flags" },
{NULL}
};
AVFILTER_DEFINE_CLASS(framerate);
static void next_source(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int i;
ff_dlog(ctx, "next_source()\n");
if (s->srce[s->last] && s->srce[s->last] != s->srce[s->last-1]) {
ff_dlog(ctx, "next_source() unlink %d\n", s->last);
av_frame_free(&s->srce[s->last]);
}
for (i = s->last; i > s->frst; i--) {
ff_dlog(ctx, "next_source() copy %d to %d\n", i - 1, i);
s->srce[i] = s->srce[i - 1];
}
ff_dlog(ctx, "next_source() make %d null\n", s->frst);
s->srce[s->frst] = NULL;
}
static av_always_inline int64_t sad_8x8_16(const uint16_t *src1, ptrdiff_t stride1,
const uint16_t *src2, ptrdiff_t stride2)
{
int sum = 0;
int x, y;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++)
sum += FFABS(src1[x] - src2[x]);
src1 += stride1;
src2 += stride2;
}
return sum;
}
static double get_scene_score16(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next)
{
FrameRateContext *s = ctx->priv;
double ret = 0;
ff_dlog(ctx, "get_scene_score16()\n");
if (crnt &&
crnt->height == next->height &&
crnt->width == next->width) {
int x, y;
int64_t sad;
double mafd, diff;
const uint16_t *p1 = (const uint16_t *)crnt->data[0];
const uint16_t *p2 = (const uint16_t *)next->data[0];
const int p1_linesize = crnt->linesize[0] / 2;
const int p2_linesize = next->linesize[0] / 2;
ff_dlog(ctx, "get_scene_score16() process\n");
for (sad = y = 0; y < crnt->height; y += 8) {
for (x = 0; x < p1_linesize; x += 8) {
sad += sad_8x8_16(p1 + y * p1_linesize + x,
p1_linesize,
p2 + y * p2_linesize + x,
p2_linesize);
}
}
mafd = sad / (crnt->height * crnt->width * 3);
diff = fabs(mafd - s->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
s->prev_mafd = mafd;
}
ff_dlog(ctx, "get_scene_score16() result is:%f\n", ret);
return ret;
}
static double get_scene_score(AVFilterContext *ctx, AVFrame *crnt, AVFrame *next)
{
FrameRateContext *s = ctx->priv;
double ret = 0;
ff_dlog(ctx, "get_scene_score()\n");
if (crnt &&
crnt->height == next->height &&
crnt->width == next->width) {
int x, y;
int64_t sad;
double mafd, diff;
uint8_t *p1 = crnt->data[0];
uint8_t *p2 = next->data[0];
const int p1_linesize = crnt->linesize[0];
const int p2_linesize = next->linesize[0];
ff_dlog(ctx, "get_scene_score() process\n");
for (sad = y = 0; y < crnt->height; y += 8) {
for (x = 0; x < p1_linesize; x += 8) {
sad += s->sad(p1 + y * p1_linesize + x,
p1_linesize,
p2 + y * p2_linesize + x,
p2_linesize);
}
}
emms_c();
mafd = sad / (crnt->height * crnt->width * 3);
diff = fabs(mafd - s->prev_mafd);
ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
s->prev_mafd = mafd;
}
ff_dlog(ctx, "get_scene_score() result is:%f\n", ret);
return ret;
}
static int blend_frames16(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2)
{
FrameRateContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
double interpolate_scene_score = 0;
if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) {
interpolate_scene_score = get_scene_score16(ctx, copy_src1, copy_src2);
ff_dlog(ctx, "blend_frames16() interpolate scene score:%f\n", interpolate_scene_score);
}
// decide if the shot-change detection allows us to blend two frames
if (interpolate_scene_score < s->scene_score && copy_src2) {
uint16_t src2_factor = fabsf(interpolate) * (1 << (s->bitdepth - 8));
uint16_t src1_factor = s->max - src2_factor;
const int half = s->max / 2;
const int uv = (s->max + 1) * half;
const int shift = s->bitdepth;
int plane, line, pixel;
// get work-space for output frame
s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->work)
return AVERROR(ENOMEM);
av_frame_copy_props(s->work, s->srce[s->crnt]);
ff_dlog(ctx, "blend_frames16() INTERPOLATE to create work frame\n");
for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) {
int cpy_line_width = s->line_size[plane];
const uint16_t *cpy_src1_data = (const uint16_t *)copy_src1->data[plane];
int cpy_src1_line_size = copy_src1->linesize[plane] / 2;
const uint16_t *cpy_src2_data = (const uint16_t *)copy_src2->data[plane];
int cpy_src2_line_size = copy_src2->linesize[plane] / 2;
int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height);
uint16_t *cpy_dst_data = (uint16_t *)s->work->data[plane];
int cpy_dst_line_size = s->work->linesize[plane] / 2;
if (plane <1 || plane >2) {
// luma or alpha
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++)
cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + half) >> shift;
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
} else {
// chroma
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - half) * src1_factor) + ((cpy_src2_data[pixel] - half) * src2_factor) + uv) >> shift;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
}
}
return 1;
}
return 0;
}
static int blend_frames8(AVFilterContext *ctx, float interpolate,
AVFrame *copy_src1, AVFrame *copy_src2)
{
FrameRateContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
double interpolate_scene_score = 0;
if ((s->flags & FRAMERATE_FLAG_SCD) && copy_src2) {
interpolate_scene_score = get_scene_score(ctx, copy_src1, copy_src2);
ff_dlog(ctx, "blend_frames8() interpolate scene score:%f\n", interpolate_scene_score);
}
// decide if the shot-change detection allows us to blend two frames
if (interpolate_scene_score < s->scene_score && copy_src2) {
uint16_t src2_factor = fabsf(interpolate);
uint16_t src1_factor = 256 - src2_factor;
int plane, line, pixel;
// get work-space for output frame
s->work = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!s->work)
return AVERROR(ENOMEM);
av_frame_copy_props(s->work, s->srce[s->crnt]);
ff_dlog(ctx, "blend_frames8() INTERPOLATE to create work frame\n");
for (plane = 0; plane < 4 && copy_src1->data[plane] && copy_src2->data[plane]; plane++) {
int cpy_line_width = s->line_size[plane];
uint8_t *cpy_src1_data = copy_src1->data[plane];
int cpy_src1_line_size = copy_src1->linesize[plane];
uint8_t *cpy_src2_data = copy_src2->data[plane];
int cpy_src2_line_size = copy_src2->linesize[plane];
int cpy_src_h = (plane > 0 && plane < 3) ? (copy_src1->height >> s->vsub) : (copy_src1->height);
uint8_t *cpy_dst_data = s->work->data[plane];
int cpy_dst_line_size = s->work->linesize[plane];
if (plane <1 || plane >2) {
// luma or alpha
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
// integer version of (src1 * src1_factor) + (src2 + src2_factor) + 0.5
// 0.5 is for rounding
// 128 is the integer representation of 0.5 << 8
cpy_dst_data[pixel] = ((cpy_src1_data[pixel] * src1_factor) + (cpy_src2_data[pixel] * src2_factor) + 128) >> 8;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
} else {
// chroma
for (line = 0; line < cpy_src_h; line++) {
for (pixel = 0; pixel < cpy_line_width; pixel++) {
// as above
// because U and V are based around 128 we have to subtract 128 from the components.
// 32896 is the integer representation of 128.5 << 8
cpy_dst_data[pixel] = (((cpy_src1_data[pixel] - 128) * src1_factor) + ((cpy_src2_data[pixel] - 128) * src2_factor) + 32896) >> 8;
}
cpy_src1_data += cpy_src1_line_size;
cpy_src2_data += cpy_src2_line_size;
cpy_dst_data += cpy_dst_line_size;
}
}
}
return 1;
}
return 0;
}
static int process_work_frame(AVFilterContext *ctx, int stop)
{
FrameRateContext *s = ctx->priv;
int64_t work_next_pts;
AVFrame *copy_src1;
float interpolate;
ff_dlog(ctx, "process_work_frame()\n");
ff_dlog(ctx, "process_work_frame() pending_input_frames %d\n", s->pending_srce_frames);
if (s->srce[s->prev]) ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts);
if (s->srce[s->crnt]) ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts);
if (s->srce[s->next]) ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64"\n", s->srce[s->next]->pts);
if (!s->srce[s->crnt]) {
// the filter cannot do anything
ff_dlog(ctx, "process_work_frame() no current frame cached: move on to next frame, do not output a frame\n");
next_source(ctx);
return 0;
}
work_next_pts = s->pts + s->average_dest_pts_delta;
ff_dlog(ctx, "process_work_frame() work crnt pts:%"PRId64"\n", s->pts);
ff_dlog(ctx, "process_work_frame() work next pts:%"PRId64"\n", work_next_pts);
if (s->srce[s->prev])
ff_dlog(ctx, "process_work_frame() srce prev pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->prev], s->dest_time_base.num, s->dest_time_base.den);
if (s->srce[s->crnt])
ff_dlog(ctx, "process_work_frame() srce crnt pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->crnt], s->dest_time_base.num, s->dest_time_base.den);
if (s->srce[s->next])
ff_dlog(ctx, "process_work_frame() srce next pts:%"PRId64" at dest time base:%u/%u\n",
s->srce_pts_dest[s->next], s->dest_time_base.num, s->dest_time_base.den);
av_assert0(s->srce[s->next]);
// should filter be skipping input frame (output frame rate is lower than input frame rate)
if (!s->flush && s->pts >= s->srce_pts_dest[s->next]) {
ff_dlog(ctx, "process_work_frame() work crnt pts >= srce next pts: SKIP FRAME, move on to next frame, do not output a frame\n");
next_source(ctx);
s->pending_srce_frames--;
return 0;
}
// calculate interpolation
interpolate = ((s->pts - s->srce_pts_dest[s->crnt]) * 256.0 / s->average_srce_pts_dest_delta);
ff_dlog(ctx, "process_work_frame() interpolate:%f/256\n", interpolate);
copy_src1 = s->srce[s->crnt];
if (interpolate > s->interp_end) {
ff_dlog(ctx, "process_work_frame() source is:NEXT\n");
copy_src1 = s->srce[s->next];
}
if (s->srce[s->prev] && interpolate < -s->interp_end) {
ff_dlog(ctx, "process_work_frame() source is:PREV\n");
copy_src1 = s->srce[s->prev];
}
// decide whether to blend two frames
if ((interpolate >= s->interp_start && interpolate <= s->interp_end) || (interpolate <= -s->interp_start && interpolate >= -s->interp_end)) {
AVFrame *copy_src2;
if (interpolate > 0) {
ff_dlog(ctx, "process_work_frame() interpolate source is:NEXT\n");
copy_src2 = s->srce[s->next];
} else {
ff_dlog(ctx, "process_work_frame() interpolate source is:PREV\n");
copy_src2 = s->srce[s->prev];
}
if (s->blend_frames(ctx, interpolate, copy_src1, copy_src2))
goto copy_done;
else
ff_dlog(ctx, "process_work_frame() CUT - DON'T INTERPOLATE\n");
}
ff_dlog(ctx, "process_work_frame() COPY to the work frame\n");
// copy the frame we decided is our base source
s->work = av_frame_clone(copy_src1);
if (!s->work)
return AVERROR(ENOMEM);
copy_done:
s->work->pts = s->pts;
// should filter be re-using input frame (output frame rate is higher than input frame rate)
if (!s->flush && (work_next_pts + s->average_dest_pts_delta) < (s->srce_pts_dest[s->crnt] + s->average_srce_pts_dest_delta)) {
ff_dlog(ctx, "process_work_frame() REPEAT FRAME\n");
} else {
ff_dlog(ctx, "process_work_frame() CONSUME FRAME, move to next frame\n");
s->pending_srce_frames--;
next_source(ctx);
}
ff_dlog(ctx, "process_work_frame() output a frame\n");
s->dest_frame_num++;
if (stop)
s->pending_end_frame = 0;
s->last_dest_frame_pts = s->work->pts;
return ff_filter_frame(ctx->outputs[0], s->work);
}
static void set_srce_frame_dest_pts(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
ff_dlog(ctx, "set_srce_frame_output_pts()\n");
// scale the input pts from the timebase difference between input and output
if (s->srce[s->prev])
s->srce_pts_dest[s->prev] = av_rescale_q(s->srce[s->prev]->pts, s->srce_time_base, s->dest_time_base);
if (s->srce[s->crnt])
s->srce_pts_dest[s->crnt] = av_rescale_q(s->srce[s->crnt]->pts, s->srce_time_base, s->dest_time_base);
if (s->srce[s->next])
s->srce_pts_dest[s->next] = av_rescale_q(s->srce[s->next]->pts, s->srce_time_base, s->dest_time_base);
}
static void set_work_frame_pts(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int64_t pts, average_srce_pts_delta = 0;
ff_dlog(ctx, "set_work_frame_pts()\n");
av_assert0(s->srce[s->next]);
av_assert0(s->srce[s->crnt]);
ff_dlog(ctx, "set_work_frame_pts() srce crnt pts:%"PRId64"\n", s->srce[s->crnt]->pts);
ff_dlog(ctx, "set_work_frame_pts() srce next pts:%"PRId64"\n", s->srce[s->next]->pts);
if (s->srce[s->prev])
ff_dlog(ctx, "set_work_frame_pts() srce prev pts:%"PRId64"\n", s->srce[s->prev]->pts);
average_srce_pts_delta = s->average_srce_pts_dest_delta;
ff_dlog(ctx, "set_work_frame_pts() initial average srce pts:%"PRId64"\n", average_srce_pts_delta);
set_srce_frame_dest_pts(ctx);
// calculate the PTS delta
if ((pts = (s->srce_pts_dest[s->next] - s->srce_pts_dest[s->crnt]))) {
average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts;
} else if (s->srce[s->prev] && (pts = (s->srce_pts_dest[s->crnt] - s->srce_pts_dest[s->prev]))) {
average_srce_pts_delta = average_srce_pts_delta?((average_srce_pts_delta+pts)>>1):pts;
}
s->average_srce_pts_dest_delta = average_srce_pts_delta;
ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64"\n", average_srce_pts_delta);
ff_dlog(ctx, "set_work_frame_pts() average srce pts:%"PRId64" at dest time base:%u/%u\n",
s->average_srce_pts_dest_delta, s->dest_time_base.num, s->dest_time_base.den);
if (ctx->inputs[0] && !s->average_dest_pts_delta) {
int64_t d = av_q2d(av_inv_q(av_mul_q(s->dest_time_base, s->dest_frame_rate)));
s->average_dest_pts_delta = d;
ff_dlog(ctx, "set_work_frame_pts() average dest pts delta:%"PRId64"\n", s->average_dest_pts_delta);
}
if (!s->dest_frame_num) {
s->pts = s->last_dest_frame_pts = s->srce_pts_dest[s->crnt];
} else {
s->pts = s->last_dest_frame_pts + s->average_dest_pts_delta;
}
ff_dlog(ctx, "set_work_frame_pts() calculated pts:%"PRId64" at dest time base:%u/%u\n",
s->pts, s->dest_time_base.num, s->dest_time_base.den);
}
static av_cold int init(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
s->dest_frame_num = 0;
s->crnt = (N_SRCE)>>1;
s->last = N_SRCE - 1;
s->next = s->crnt - 1;
s->prev = s->crnt + 1;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FrameRateContext *s = ctx->priv;
int i;
for (i = s->frst; i < s->last; i++) {
if (s->srce[i] && (s->srce[i] != s->srce[i + 1]))
av_frame_free(&s->srce[i]);
}
av_frame_free(&s->srce[s->last]);
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
FrameRateContext *s = ctx->priv;
const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
int plane;
for (plane = 0; plane < 4; plane++) {
s->line_size[plane] = av_image_get_linesize(inlink->format, inlink->w,
plane);
}
s->bitdepth = pix_desc->comp[0].depth;
s->vsub = pix_desc->log2_chroma_h;
s->sad = av_pixelutils_get_sad_fn(3, 3, 2, s); // 8x8 both sources aligned
if (!s->sad)
return AVERROR(EINVAL);
s->srce_time_base = inlink->time_base;
if (s->bitdepth == 8)
s->blend_frames = blend_frames8;
else
s->blend_frames = blend_frames16;
s->max = 1 << (s->bitdepth);
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
{
AVFilterContext *ctx = inlink->dst;
FrameRateContext *s = ctx->priv;
// we have one new frame
s->pending_srce_frames++;
if (inpicref->interlaced_frame)
av_log(ctx, AV_LOG_WARNING, "Interlaced frame found - the output will not be correct.\n");
// store the pointer to the new frame
av_frame_free(&s->srce[s->frst]);
s->srce[s->frst] = inpicref;
if (!s->pending_end_frame && s->srce[s->crnt]) {
set_work_frame_pts(ctx);
s->pending_end_frame = 1;
} else {
set_srce_frame_dest_pts(ctx);
}
return process_work_frame(ctx, 1);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FrameRateContext *s = ctx->priv;
int exact;
ff_dlog(ctx, "config_output()\n");
ff_dlog(ctx,
"config_output() input time base:%u/%u (%f)\n",
ctx->inputs[0]->time_base.num,ctx->inputs[0]->time_base.den,
av_q2d(ctx->inputs[0]->time_base));
// make sure timebase is small enough to hold the framerate
exact = av_reduce(&s->dest_time_base.num, &s->dest_time_base.den,
av_gcd((int64_t)s->srce_time_base.num * s->dest_frame_rate.num,
(int64_t)s->srce_time_base.den * s->dest_frame_rate.den ),
(int64_t)s->srce_time_base.den * s->dest_frame_rate.num, INT_MAX);
av_log(ctx, AV_LOG_INFO,
"time base:%u/%u -> %u/%u exact:%d\n",
s->srce_time_base.num, s->srce_time_base.den,
s->dest_time_base.num, s->dest_time_base.den, exact);
if (!exact) {
av_log(ctx, AV_LOG_WARNING, "Timebase conversion is not exact\n");
}
outlink->frame_rate = s->dest_frame_rate;
outlink->time_base = s->dest_time_base;
ff_dlog(ctx,
"config_output() output time base:%u/%u (%f) w:%d h:%d\n",
outlink->time_base.num, outlink->time_base.den,
av_q2d(outlink->time_base),
outlink->w, outlink->h);
av_log(ctx, AV_LOG_INFO, "fps -> fps:%u/%u scene score:%f interpolate start:%d end:%d\n",
s->dest_frame_rate.num, s->dest_frame_rate.den,
s->scene_score, s->interp_start, s->interp_end);
return 0;
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FrameRateContext *s = ctx->priv;
int val, i;
ff_dlog(ctx, "request_frame()\n");
// if there is no "next" frame AND we are not in flush then get one from our input filter
if (!s->srce[s->frst] && !s->flush) {
ff_dlog(ctx, "request_frame() call source's request_frame()\n");
val = ff_request_frame(outlink->src->inputs[0]);
if (val < 0 && (val != AVERROR_EOF)) {
ff_dlog(ctx, "request_frame() source's request_frame() returned error:%d\n", val);
return val;
} else if (val == AVERROR_EOF) {
s->flush = 1;
}
ff_dlog(ctx, "request_frame() source's request_frame() returned:%d\n", val);
return 0;
}
ff_dlog(ctx, "request_frame() REPEAT or FLUSH\n");
if (s->pending_srce_frames <= 0) {
ff_dlog(ctx, "request_frame() nothing else to do, return:EOF\n");
return AVERROR_EOF;
}
// otherwise, make brand-new frame and pass to our output filter
ff_dlog(ctx, "request_frame() FLUSH\n");
// back fill at end of file when source has no more frames
for (i = s->last; i > s->frst; i--) {
if (!s->srce[i - 1] && s->srce[i]) {
ff_dlog(ctx, "request_frame() copy:%d to:%d\n", i, i - 1);
s->srce[i - 1] = s->srce[i];
}
}
set_work_frame_pts(ctx);
return process_work_frame(ctx, 0);
}
static const AVFilterPad framerate_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad framerate_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_framerate = {
.name = "framerate",
.description = NULL_IF_CONFIG_SMALL("Upsamples or downsamples progressive source between specified frame rates."),
.priv_size = sizeof(FrameRateContext),
.priv_class = &framerate_class,
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = framerate_inputs,
.outputs = framerate_outputs,
};