1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavutil/tx_template.c
Michael Niedermayer 907743239d
avutil/tx_template: fix integer ovberflwo in fft3()
Fixes: signed integer overflow: -1028966111 + -1314089526 cannot be represented in type 'int'
Fixes: 63174/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_AAC_FIXED_fuzzer-5853273711837184

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2023-10-27 18:10:47 +02:00

2215 lines
89 KiB
C

/*
* Copyright (c) Lynne
*
* Power of two FFT:
* Copyright (c) Lynne
* Copyright (c) 2008 Loren Merritt
* Copyright (c) 2002 Fabrice Bellard
* Partly based on libdjbfft by D. J. Bernstein
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define TABLE_DEF(name, size) \
DECLARE_ALIGNED(32, TXSample, TX_TAB(ff_tx_tab_ ##name))[size]
#define SR_POW2_TABLES \
SR_TABLE(8) \
SR_TABLE(16) \
SR_TABLE(32) \
SR_TABLE(64) \
SR_TABLE(128) \
SR_TABLE(256) \
SR_TABLE(512) \
SR_TABLE(1024) \
SR_TABLE(2048) \
SR_TABLE(4096) \
SR_TABLE(8192) \
SR_TABLE(16384) \
SR_TABLE(32768) \
SR_TABLE(65536) \
SR_TABLE(131072) \
SR_TABLE(262144) \
SR_TABLE(524288) \
SR_TABLE(1048576) \
SR_TABLE(2097152) \
#define SR_TABLE(len) \
TABLE_DEF(len, len/4 + 1);
/* Power of two tables */
SR_POW2_TABLES
#undef SR_TABLE
/* Other factors' tables */
TABLE_DEF(53, 12);
TABLE_DEF( 7, 6);
TABLE_DEF( 9, 8);
typedef struct FFTabInitData {
void (*func)(void);
int factors[TX_MAX_SUB]; /* Must be sorted high -> low */
} FFTabInitData;
#define SR_TABLE(len) \
static av_cold void TX_TAB(ff_tx_init_tab_ ##len)(void) \
{ \
double freq = 2*M_PI/len; \
TXSample *tab = TX_TAB(ff_tx_tab_ ##len); \
\
for (int i = 0; i < len/4; i++) \
*tab++ = RESCALE(cos(i*freq)); \
\
*tab = 0; \
}
SR_POW2_TABLES
#undef SR_TABLE
static void (*const sr_tabs_init_funcs[])(void) = {
#define SR_TABLE(len) TX_TAB(ff_tx_init_tab_ ##len),
SR_POW2_TABLES
#undef SR_TABLE
};
static AVOnce sr_tabs_init_once[] = {
#define SR_TABLE(len) AV_ONCE_INIT,
SR_POW2_TABLES
#undef SR_TABLE
};
static av_cold void TX_TAB(ff_tx_init_tab_53)(void)
{
/* 5pt, doubled to eliminate AVX lane shuffles */
TX_TAB(ff_tx_tab_53)[0] = RESCALE(cos(2 * M_PI / 5));
TX_TAB(ff_tx_tab_53)[1] = RESCALE(cos(2 * M_PI / 5));
TX_TAB(ff_tx_tab_53)[2] = RESCALE(cos(2 * M_PI / 10));
TX_TAB(ff_tx_tab_53)[3] = RESCALE(cos(2 * M_PI / 10));
TX_TAB(ff_tx_tab_53)[4] = RESCALE(sin(2 * M_PI / 5));
TX_TAB(ff_tx_tab_53)[5] = RESCALE(sin(2 * M_PI / 5));
TX_TAB(ff_tx_tab_53)[6] = RESCALE(sin(2 * M_PI / 10));
TX_TAB(ff_tx_tab_53)[7] = RESCALE(sin(2 * M_PI / 10));
/* 3pt */
TX_TAB(ff_tx_tab_53)[ 8] = RESCALE(cos(2 * M_PI / 12));
TX_TAB(ff_tx_tab_53)[ 9] = RESCALE(cos(2 * M_PI / 12));
TX_TAB(ff_tx_tab_53)[10] = RESCALE(cos(2 * M_PI / 6));
TX_TAB(ff_tx_tab_53)[11] = RESCALE(cos(8 * M_PI / 6));
}
static av_cold void TX_TAB(ff_tx_init_tab_7)(void)
{
TX_TAB(ff_tx_tab_7)[0] = RESCALE(cos(2 * M_PI / 7));
TX_TAB(ff_tx_tab_7)[1] = RESCALE(sin(2 * M_PI / 7));
TX_TAB(ff_tx_tab_7)[2] = RESCALE(sin(2 * M_PI / 28));
TX_TAB(ff_tx_tab_7)[3] = RESCALE(cos(2 * M_PI / 28));
TX_TAB(ff_tx_tab_7)[4] = RESCALE(cos(2 * M_PI / 14));
TX_TAB(ff_tx_tab_7)[5] = RESCALE(sin(2 * M_PI / 14));
}
static av_cold void TX_TAB(ff_tx_init_tab_9)(void)
{
TX_TAB(ff_tx_tab_9)[0] = RESCALE(cos(2 * M_PI / 3));
TX_TAB(ff_tx_tab_9)[1] = RESCALE(sin(2 * M_PI / 3));
TX_TAB(ff_tx_tab_9)[2] = RESCALE(cos(2 * M_PI / 9));
TX_TAB(ff_tx_tab_9)[3] = RESCALE(sin(2 * M_PI / 9));
TX_TAB(ff_tx_tab_9)[4] = RESCALE(cos(2 * M_PI / 36));
TX_TAB(ff_tx_tab_9)[5] = RESCALE(sin(2 * M_PI / 36));
TX_TAB(ff_tx_tab_9)[6] = TX_TAB(ff_tx_tab_9)[2] + TX_TAB(ff_tx_tab_9)[5];
TX_TAB(ff_tx_tab_9)[7] = TX_TAB(ff_tx_tab_9)[3] - TX_TAB(ff_tx_tab_9)[4];
}
static const FFTabInitData nptwo_tabs_init_data[] = {
{ TX_TAB(ff_tx_init_tab_53), { 15, 5, 3 } },
{ TX_TAB(ff_tx_init_tab_9), { 9 } },
{ TX_TAB(ff_tx_init_tab_7), { 7 } },
};
static AVOnce nptwo_tabs_init_once[] = {
AV_ONCE_INIT,
AV_ONCE_INIT,
AV_ONCE_INIT,
};
av_cold void TX_TAB(ff_tx_init_tabs)(int len)
{
int factor_2 = ff_ctz(len);
if (factor_2) {
int idx = factor_2 - 3;
for (int i = 0; i <= idx; i++)
ff_thread_once(&sr_tabs_init_once[i],
sr_tabs_init_funcs[i]);
len >>= factor_2;
}
for (int i = 0; i < FF_ARRAY_ELEMS(nptwo_tabs_init_data); i++) {
int f, f_idx = 0;
if (len <= 1)
return;
while ((f = nptwo_tabs_init_data[i].factors[f_idx++])) {
if (f % len)
continue;
ff_thread_once(&nptwo_tabs_init_once[i],
nptwo_tabs_init_data[i].func);
len /= f;
break;
}
}
}
static av_always_inline void fft3(TXComplex *out, TXComplex *in,
ptrdiff_t stride)
{
TXComplex tmp[3];
const TXSample *tab = TX_TAB(ff_tx_tab_53);
#ifdef TX_INT32
int64_t mtmp[4];
#endif
tmp[0] = in[0];
BF(tmp[1].re, tmp[2].im, in[1].im, in[2].im);
BF(tmp[1].im, tmp[2].re, in[1].re, in[2].re);
#ifdef TX_INT32
out[0*stride].re = (int64_t)tmp[0].re + tmp[2].re;
out[0*stride].im = (int64_t)tmp[0].im + tmp[2].im;
mtmp[0] = (int64_t)tab[ 8] * tmp[1].re;
mtmp[1] = (int64_t)tab[ 9] * tmp[1].im;
mtmp[2] = (int64_t)tab[10] * tmp[2].re;
mtmp[3] = (int64_t)tab[10] * tmp[2].im;
out[1*stride].re = tmp[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31);
out[1*stride].im = tmp[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31);
out[2*stride].re = tmp[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31);
out[2*stride].im = tmp[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31);
#else
out[0*stride].re = tmp[0].re + tmp[2].re;
out[0*stride].im = tmp[0].im + tmp[2].im;
tmp[1].re = tab[ 8] * tmp[1].re;
tmp[1].im = tab[ 9] * tmp[1].im;
tmp[2].re = tab[10] * tmp[2].re;
tmp[2].im = tab[10] * tmp[2].im;
out[1*stride].re = tmp[0].re - tmp[2].re + tmp[1].re;
out[1*stride].im = tmp[0].im - tmp[2].im - tmp[1].im;
out[2*stride].re = tmp[0].re - tmp[2].re - tmp[1].re;
out[2*stride].im = tmp[0].im - tmp[2].im + tmp[1].im;
#endif
}
#define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \
static av_always_inline void NAME(TXComplex *out, TXComplex *in, \
ptrdiff_t stride) \
{ \
TXComplex dc, z0[4], t[6]; \
const TXSample *tab = TX_TAB(ff_tx_tab_53); \
\
dc = in[0]; \
BF(t[1].im, t[0].re, in[1].re, in[4].re); \
BF(t[1].re, t[0].im, in[1].im, in[4].im); \
BF(t[3].im, t[2].re, in[2].re, in[3].re); \
BF(t[3].re, t[2].im, in[2].im, in[3].im); \
\
out[D0*stride].re = dc.re + (TXUSample)t[0].re + t[2].re; \
out[D0*stride].im = dc.im + (TXUSample)t[0].im + t[2].im; \
\
SMUL(t[4].re, t[0].re, tab[0], tab[2], t[2].re, t[0].re); \
SMUL(t[4].im, t[0].im, tab[0], tab[2], t[2].im, t[0].im); \
CMUL(t[5].re, t[1].re, tab[4], tab[6], t[3].re, t[1].re); \
CMUL(t[5].im, t[1].im, tab[4], tab[6], t[3].im, t[1].im); \
\
BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \
BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \
BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \
BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \
\
out[D1*stride].re = dc.re + (TXUSample)z0[3].re; \
out[D1*stride].im = dc.im + (TXUSample)z0[0].im; \
out[D2*stride].re = dc.re + (TXUSample)z0[2].re; \
out[D2*stride].im = dc.im + (TXUSample)z0[1].im; \
out[D3*stride].re = dc.re + (TXUSample)z0[1].re; \
out[D3*stride].im = dc.im + (TXUSample)z0[2].im; \
out[D4*stride].re = dc.re + (TXUSample)z0[0].re; \
out[D4*stride].im = dc.im + (TXUSample)z0[3].im; \
}
DECL_FFT5(fft5, 0, 1, 2, 3, 4)
DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9)
DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4)
DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14)
static av_always_inline void fft7(TXComplex *out, TXComplex *in,
ptrdiff_t stride)
{
TXComplex dc, t[6], z[3];
const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_7);
#ifdef TX_INT32
int64_t mtmp[12];
#endif
dc = in[0];
BF(t[1].re, t[0].re, in[1].re, in[6].re);
BF(t[1].im, t[0].im, in[1].im, in[6].im);
BF(t[3].re, t[2].re, in[2].re, in[5].re);
BF(t[3].im, t[2].im, in[2].im, in[5].im);
BF(t[5].re, t[4].re, in[3].re, in[4].re);
BF(t[5].im, t[4].im, in[3].im, in[4].im);
out[0*stride].re = dc.re + t[0].re + t[2].re + t[4].re;
out[0*stride].im = dc.im + t[0].im + t[2].im + t[4].im;
#ifdef TX_INT32 /* NOTE: it's possible to do this with 16 mults but 72 adds */
mtmp[ 0] = ((int64_t)tab[0].re)*t[0].re - ((int64_t)tab[2].re)*t[4].re;
mtmp[ 1] = ((int64_t)tab[0].re)*t[4].re - ((int64_t)tab[1].re)*t[0].re;
mtmp[ 2] = ((int64_t)tab[0].re)*t[2].re - ((int64_t)tab[2].re)*t[0].re;
mtmp[ 3] = ((int64_t)tab[0].re)*t[0].im - ((int64_t)tab[1].re)*t[2].im;
mtmp[ 4] = ((int64_t)tab[0].re)*t[4].im - ((int64_t)tab[1].re)*t[0].im;
mtmp[ 5] = ((int64_t)tab[0].re)*t[2].im - ((int64_t)tab[2].re)*t[0].im;
mtmp[ 6] = ((int64_t)tab[2].im)*t[1].im + ((int64_t)tab[1].im)*t[5].im;
mtmp[ 7] = ((int64_t)tab[0].im)*t[5].im + ((int64_t)tab[2].im)*t[3].im;
mtmp[ 8] = ((int64_t)tab[2].im)*t[5].im + ((int64_t)tab[1].im)*t[3].im;
mtmp[ 9] = ((int64_t)tab[0].im)*t[1].re + ((int64_t)tab[1].im)*t[3].re;
mtmp[10] = ((int64_t)tab[2].im)*t[3].re + ((int64_t)tab[0].im)*t[5].re;
mtmp[11] = ((int64_t)tab[2].im)*t[1].re + ((int64_t)tab[1].im)*t[5].re;
z[0].re = (int32_t)(mtmp[ 0] - ((int64_t)tab[1].re)*t[2].re + 0x40000000 >> 31);
z[1].re = (int32_t)(mtmp[ 1] - ((int64_t)tab[2].re)*t[2].re + 0x40000000 >> 31);
z[2].re = (int32_t)(mtmp[ 2] - ((int64_t)tab[1].re)*t[4].re + 0x40000000 >> 31);
z[0].im = (int32_t)(mtmp[ 3] - ((int64_t)tab[2].re)*t[4].im + 0x40000000 >> 31);
z[1].im = (int32_t)(mtmp[ 4] - ((int64_t)tab[2].re)*t[2].im + 0x40000000 >> 31);
z[2].im = (int32_t)(mtmp[ 5] - ((int64_t)tab[1].re)*t[4].im + 0x40000000 >> 31);
t[0].re = (int32_t)(mtmp[ 6] - ((int64_t)tab[0].im)*t[3].im + 0x40000000 >> 31);
t[2].re = (int32_t)(mtmp[ 7] - ((int64_t)tab[1].im)*t[1].im + 0x40000000 >> 31);
t[4].re = (int32_t)(mtmp[ 8] + ((int64_t)tab[0].im)*t[1].im + 0x40000000 >> 31);
t[0].im = (int32_t)(mtmp[ 9] + ((int64_t)tab[2].im)*t[5].re + 0x40000000 >> 31);
t[2].im = (int32_t)(mtmp[10] - ((int64_t)tab[1].im)*t[1].re + 0x40000000 >> 31);
t[4].im = (int32_t)(mtmp[11] - ((int64_t)tab[0].im)*t[3].re + 0x40000000 >> 31);
#else
z[0].re = tab[0].re*t[0].re - tab[2].re*t[4].re - tab[1].re*t[2].re;
z[1].re = tab[0].re*t[4].re - tab[1].re*t[0].re - tab[2].re*t[2].re;
z[2].re = tab[0].re*t[2].re - tab[2].re*t[0].re - tab[1].re*t[4].re;
z[0].im = tab[0].re*t[0].im - tab[1].re*t[2].im - tab[2].re*t[4].im;
z[1].im = tab[0].re*t[4].im - tab[1].re*t[0].im - tab[2].re*t[2].im;
z[2].im = tab[0].re*t[2].im - tab[2].re*t[0].im - tab[1].re*t[4].im;
/* It's possible to do t[4].re and t[0].im with 2 multiplies only by
* multiplying the sum of all with the average of the twiddles */
t[0].re = tab[2].im*t[1].im + tab[1].im*t[5].im - tab[0].im*t[3].im;
t[2].re = tab[0].im*t[5].im + tab[2].im*t[3].im - tab[1].im*t[1].im;
t[4].re = tab[2].im*t[5].im + tab[1].im*t[3].im + tab[0].im*t[1].im;
t[0].im = tab[0].im*t[1].re + tab[1].im*t[3].re + tab[2].im*t[5].re;
t[2].im = tab[2].im*t[3].re + tab[0].im*t[5].re - tab[1].im*t[1].re;
t[4].im = tab[2].im*t[1].re + tab[1].im*t[5].re - tab[0].im*t[3].re;
#endif
BF(t[1].re, z[0].re, z[0].re, t[4].re);
BF(t[3].re, z[1].re, z[1].re, t[2].re);
BF(t[5].re, z[2].re, z[2].re, t[0].re);
BF(t[1].im, z[0].im, z[0].im, t[0].im);
BF(t[3].im, z[1].im, z[1].im, t[2].im);
BF(t[5].im, z[2].im, z[2].im, t[4].im);
out[1*stride].re = dc.re + z[0].re;
out[1*stride].im = dc.im + t[1].im;
out[2*stride].re = dc.re + t[3].re;
out[2*stride].im = dc.im + z[1].im;
out[3*stride].re = dc.re + z[2].re;
out[3*stride].im = dc.im + t[5].im;
out[4*stride].re = dc.re + t[5].re;
out[4*stride].im = dc.im + z[2].im;
out[5*stride].re = dc.re + z[1].re;
out[5*stride].im = dc.im + t[3].im;
out[6*stride].re = dc.re + t[1].re;
out[6*stride].im = dc.im + z[0].im;
}
static av_always_inline void fft9(TXComplex *out, TXComplex *in,
ptrdiff_t stride)
{
const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_9);
TXComplex dc, t[16], w[4], x[5], y[5], z[2];
#ifdef TX_INT32
int64_t mtmp[12];
#endif
dc = in[0];
BF(t[1].re, t[0].re, in[1].re, in[8].re);
BF(t[1].im, t[0].im, in[1].im, in[8].im);
BF(t[3].re, t[2].re, in[2].re, in[7].re);
BF(t[3].im, t[2].im, in[2].im, in[7].im);
BF(t[5].re, t[4].re, in[3].re, in[6].re);
BF(t[5].im, t[4].im, in[3].im, in[6].im);
BF(t[7].re, t[6].re, in[4].re, in[5].re);
BF(t[7].im, t[6].im, in[4].im, in[5].im);
w[0].re = t[0].re - t[6].re;
w[0].im = t[0].im - t[6].im;
w[1].re = t[2].re - t[6].re;
w[1].im = t[2].im - t[6].im;
w[2].re = t[1].re - t[7].re;
w[2].im = t[1].im - t[7].im;
w[3].re = t[3].re + t[7].re;
w[3].im = t[3].im + t[7].im;
z[0].re = dc.re + t[4].re;
z[0].im = dc.im + t[4].im;
z[1].re = t[0].re + t[2].re + t[6].re;
z[1].im = t[0].im + t[2].im + t[6].im;
out[0*stride].re = z[0].re + z[1].re;
out[0*stride].im = z[0].im + z[1].im;
#ifdef TX_INT32
mtmp[0] = t[1].re - t[3].re + t[7].re;
mtmp[1] = t[1].im - t[3].im + t[7].im;
y[3].re = (int32_t)(((int64_t)tab[0].im)*mtmp[0] + 0x40000000 >> 31);
y[3].im = (int32_t)(((int64_t)tab[0].im)*mtmp[1] + 0x40000000 >> 31);
mtmp[0] = (int32_t)(((int64_t)tab[0].re)*z[1].re + 0x40000000 >> 31);
mtmp[1] = (int32_t)(((int64_t)tab[0].re)*z[1].im + 0x40000000 >> 31);
mtmp[2] = (int32_t)(((int64_t)tab[0].re)*t[4].re + 0x40000000 >> 31);
mtmp[3] = (int32_t)(((int64_t)tab[0].re)*t[4].im + 0x40000000 >> 31);
x[3].re = z[0].re + (int32_t)mtmp[0];
x[3].im = z[0].im + (int32_t)mtmp[1];
z[0].re = in[0].re + (int32_t)mtmp[2];
z[0].im = in[0].im + (int32_t)mtmp[3];
mtmp[0] = ((int64_t)tab[1].re)*w[0].re;
mtmp[1] = ((int64_t)tab[1].re)*w[0].im;
mtmp[2] = ((int64_t)tab[2].im)*w[0].re;
mtmp[3] = ((int64_t)tab[2].im)*w[0].im;
mtmp[4] = ((int64_t)tab[1].im)*w[2].re;
mtmp[5] = ((int64_t)tab[1].im)*w[2].im;
mtmp[6] = ((int64_t)tab[2].re)*w[2].re;
mtmp[7] = ((int64_t)tab[2].re)*w[2].im;
x[1].re = (int32_t)(mtmp[0] + ((int64_t)tab[2].im)*w[1].re + 0x40000000 >> 31);
x[1].im = (int32_t)(mtmp[1] + ((int64_t)tab[2].im)*w[1].im + 0x40000000 >> 31);
x[2].re = (int32_t)(mtmp[2] - ((int64_t)tab[3].re)*w[1].re + 0x40000000 >> 31);
x[2].im = (int32_t)(mtmp[3] - ((int64_t)tab[3].re)*w[1].im + 0x40000000 >> 31);
y[1].re = (int32_t)(mtmp[4] + ((int64_t)tab[2].re)*w[3].re + 0x40000000 >> 31);
y[1].im = (int32_t)(mtmp[5] + ((int64_t)tab[2].re)*w[3].im + 0x40000000 >> 31);
y[2].re = (int32_t)(mtmp[6] - ((int64_t)tab[3].im)*w[3].re + 0x40000000 >> 31);
y[2].im = (int32_t)(mtmp[7] - ((int64_t)tab[3].im)*w[3].im + 0x40000000 >> 31);
y[0].re = (int32_t)(((int64_t)tab[0].im)*t[5].re + 0x40000000 >> 31);
y[0].im = (int32_t)(((int64_t)tab[0].im)*t[5].im + 0x40000000 >> 31);
#else
y[3].re = tab[0].im*(t[1].re - t[3].re + t[7].re);
y[3].im = tab[0].im*(t[1].im - t[3].im + t[7].im);
x[3].re = z[0].re + tab[0].re*z[1].re;
x[3].im = z[0].im + tab[0].re*z[1].im;
z[0].re = dc.re + tab[0].re*t[4].re;
z[0].im = dc.im + tab[0].re*t[4].im;
x[1].re = tab[1].re*w[0].re + tab[2].im*w[1].re;
x[1].im = tab[1].re*w[0].im + tab[2].im*w[1].im;
x[2].re = tab[2].im*w[0].re - tab[3].re*w[1].re;
x[2].im = tab[2].im*w[0].im - tab[3].re*w[1].im;
y[1].re = tab[1].im*w[2].re + tab[2].re*w[3].re;
y[1].im = tab[1].im*w[2].im + tab[2].re*w[3].im;
y[2].re = tab[2].re*w[2].re - tab[3].im*w[3].re;
y[2].im = tab[2].re*w[2].im - tab[3].im*w[3].im;
y[0].re = tab[0].im*t[5].re;
y[0].im = tab[0].im*t[5].im;
#endif
x[4].re = x[1].re + x[2].re;
x[4].im = x[1].im + x[2].im;
y[4].re = y[1].re - y[2].re;
y[4].im = y[1].im - y[2].im;
x[1].re = z[0].re + x[1].re;
x[1].im = z[0].im + x[1].im;
y[1].re = y[0].re + y[1].re;
y[1].im = y[0].im + y[1].im;
x[2].re = z[0].re + x[2].re;
x[2].im = z[0].im + x[2].im;
y[2].re = y[2].re - y[0].re;
y[2].im = y[2].im - y[0].im;
x[4].re = z[0].re - x[4].re;
x[4].im = z[0].im - x[4].im;
y[4].re = y[0].re - y[4].re;
y[4].im = y[0].im - y[4].im;
out[1*stride] = (TXComplex){ x[1].re + y[1].im, x[1].im - y[1].re };
out[2*stride] = (TXComplex){ x[2].re + y[2].im, x[2].im - y[2].re };
out[3*stride] = (TXComplex){ x[3].re + y[3].im, x[3].im - y[3].re };
out[4*stride] = (TXComplex){ x[4].re + y[4].im, x[4].im - y[4].re };
out[5*stride] = (TXComplex){ x[4].re - y[4].im, x[4].im + y[4].re };
out[6*stride] = (TXComplex){ x[3].re - y[3].im, x[3].im + y[3].re };
out[7*stride] = (TXComplex){ x[2].re - y[2].im, x[2].im + y[2].re };
out[8*stride] = (TXComplex){ x[1].re - y[1].im, x[1].im + y[1].re };
}
static av_always_inline void fft15(TXComplex *out, TXComplex *in,
ptrdiff_t stride)
{
TXComplex tmp[15];
for (int i = 0; i < 5; i++)
fft3(tmp + i, in + i*3, 5);
fft5_m1(out, tmp + 0, stride);
fft5_m2(out, tmp + 5, stride);
fft5_m3(out, tmp + 10, stride);
}
static av_cold int TX_NAME(ff_tx_fft_factor_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret = 0;
TX_TAB(ff_tx_init_tabs)(len);
if (len == 15)
ret = ff_tx_gen_pfa_input_map(s, opts, 3, 5);
else if (flags & FF_TX_PRESHUFFLE)
ret = ff_tx_gen_default_map(s, opts);
return ret;
}
#define DECL_FACTOR_S(n) \
static void TX_NAME(ff_tx_fft##n)(AVTXContext *s, void *dst, \
void *src, ptrdiff_t stride) \
{ \
fft##n((TXComplex *)dst, (TXComplex *)src, stride / sizeof(TXComplex)); \
} \
static const FFTXCodelet TX_NAME(ff_tx_fft##n##_ns_def) = { \
.name = TX_NAME_STR("fft" #n "_ns"), \
.function = TX_NAME(ff_tx_fft##n), \
.type = TX_TYPE(FFT), \
.flags = AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \
AV_TX_UNALIGNED | FF_TX_PRESHUFFLE, \
.factors[0] = n, \
.nb_factors = 1, \
.min_len = n, \
.max_len = n, \
.init = TX_NAME(ff_tx_fft_factor_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
#define DECL_FACTOR_F(n) \
DECL_FACTOR_S(n) \
static const FFTXCodelet TX_NAME(ff_tx_fft##n##_fwd_def) = { \
.name = TX_NAME_STR("fft" #n "_fwd"), \
.function = TX_NAME(ff_tx_fft##n), \
.type = TX_TYPE(FFT), \
.flags = AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \
AV_TX_UNALIGNED | FF_TX_FORWARD_ONLY, \
.factors[0] = n, \
.nb_factors = 1, \
.min_len = n, \
.max_len = n, \
.init = TX_NAME(ff_tx_fft_factor_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
DECL_FACTOR_F(3)
DECL_FACTOR_F(5)
DECL_FACTOR_F(7)
DECL_FACTOR_F(9)
DECL_FACTOR_S(15)
#define BUTTERFLIES(a0, a1, a2, a3) \
do { \
r0=a0.re; \
i0=a0.im; \
r1=a1.re; \
i1=a1.im; \
BF(t3, t5, t5, t1); \
BF(a2.re, a0.re, r0, t5); \
BF(a3.im, a1.im, i1, t3); \
BF(t4, t6, t2, t6); \
BF(a3.re, a1.re, r1, t4); \
BF(a2.im, a0.im, i0, t6); \
} while (0)
#define TRANSFORM(a0, a1, a2, a3, wre, wim) \
do { \
CMUL(t1, t2, a2.re, a2.im, wre, -wim); \
CMUL(t5, t6, a3.re, a3.im, wre, wim); \
BUTTERFLIES(a0, a1, a2, a3); \
} while (0)
/* z[0...8n-1], w[1...2n-1] */
static inline void TX_NAME(ff_tx_fft_sr_combine)(TXComplex *z,
const TXSample *cos, int len)
{
int o1 = 2*len;
int o2 = 4*len;
int o3 = 6*len;
const TXSample *wim = cos + o1 - 7;
TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1;
for (int i = 0; i < len; i += 4) {
TRANSFORM(z[0], z[o1 + 0], z[o2 + 0], z[o3 + 0], cos[0], wim[7]);
TRANSFORM(z[2], z[o1 + 2], z[o2 + 2], z[o3 + 2], cos[2], wim[5]);
TRANSFORM(z[4], z[o1 + 4], z[o2 + 4], z[o3 + 4], cos[4], wim[3]);
TRANSFORM(z[6], z[o1 + 6], z[o2 + 6], z[o3 + 6], cos[6], wim[1]);
TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], cos[1], wim[6]);
TRANSFORM(z[3], z[o1 + 3], z[o2 + 3], z[o3 + 3], cos[3], wim[4]);
TRANSFORM(z[5], z[o1 + 5], z[o2 + 5], z[o3 + 5], cos[5], wim[2]);
TRANSFORM(z[7], z[o1 + 7], z[o2 + 7], z[o3 + 7], cos[7], wim[0]);
z += 2*4;
cos += 2*4;
wim -= 2*4;
}
}
static av_cold int TX_NAME(ff_tx_fft_sr_codelet_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
TX_TAB(ff_tx_init_tabs)(len);
return ff_tx_gen_ptwo_revtab(s, opts);
}
#define DECL_SR_CODELET_DEF(n) \
static const FFTXCodelet TX_NAME(ff_tx_fft##n##_ns_def) = { \
.name = TX_NAME_STR("fft" #n "_ns"), \
.function = TX_NAME(ff_tx_fft##n##_ns), \
.type = TX_TYPE(FFT), \
.flags = FF_TX_OUT_OF_PLACE | AV_TX_INPLACE | \
AV_TX_UNALIGNED | FF_TX_PRESHUFFLE, \
.factors[0] = 2, \
.nb_factors = 1, \
.min_len = n, \
.max_len = n, \
.init = TX_NAME(ff_tx_fft_sr_codelet_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
#define DECL_SR_CODELET(n, n2, n4) \
static void TX_NAME(ff_tx_fft##n##_ns)(AVTXContext *s, void *_dst, \
void *_src, ptrdiff_t stride) \
{ \
TXComplex *src = _src; \
TXComplex *dst = _dst; \
const TXSample *cos = TX_TAB(ff_tx_tab_##n); \
\
TX_NAME(ff_tx_fft##n2##_ns)(s, dst, src, stride); \
TX_NAME(ff_tx_fft##n4##_ns)(s, dst + n4*2, src + n4*2, stride); \
TX_NAME(ff_tx_fft##n4##_ns)(s, dst + n4*3, src + n4*3, stride); \
TX_NAME(ff_tx_fft_sr_combine)(dst, cos, n4 >> 1); \
} \
\
DECL_SR_CODELET_DEF(n)
static void TX_NAME(ff_tx_fft2_ns)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
TXComplex tmp;
BF(tmp.re, dst[0].re, src[0].re, src[1].re);
BF(tmp.im, dst[0].im, src[0].im, src[1].im);
dst[1] = tmp;
}
static void TX_NAME(ff_tx_fft4_ns)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
TXSample t1, t2, t3, t4, t5, t6, t7, t8;
BF(t3, t1, src[0].re, src[1].re);
BF(t8, t6, src[3].re, src[2].re);
BF(dst[2].re, dst[0].re, t1, t6);
BF(t4, t2, src[0].im, src[1].im);
BF(t7, t5, src[2].im, src[3].im);
BF(dst[3].im, dst[1].im, t4, t8);
BF(dst[3].re, dst[1].re, t3, t7);
BF(dst[2].im, dst[0].im, t2, t5);
}
static void TX_NAME(ff_tx_fft8_ns)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1;
const TXSample cos = TX_TAB(ff_tx_tab_8)[1];
TX_NAME(ff_tx_fft4_ns)(s, dst, src, stride);
BF(t1, dst[5].re, src[4].re, -src[5].re);
BF(t2, dst[5].im, src[4].im, -src[5].im);
BF(t5, dst[7].re, src[6].re, -src[7].re);
BF(t6, dst[7].im, src[6].im, -src[7].im);
BUTTERFLIES(dst[0], dst[2], dst[4], dst[6]);
TRANSFORM(dst[1], dst[3], dst[5], dst[7], cos, cos);
}
static void TX_NAME(ff_tx_fft16_ns)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
const TXSample *cos = TX_TAB(ff_tx_tab_16);
TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1;
TXSample cos_16_1 = cos[1];
TXSample cos_16_2 = cos[2];
TXSample cos_16_3 = cos[3];
TX_NAME(ff_tx_fft8_ns)(s, dst + 0, src + 0, stride);
TX_NAME(ff_tx_fft4_ns)(s, dst + 8, src + 8, stride);
TX_NAME(ff_tx_fft4_ns)(s, dst + 12, src + 12, stride);
t1 = dst[ 8].re;
t2 = dst[ 8].im;
t5 = dst[12].re;
t6 = dst[12].im;
BUTTERFLIES(dst[0], dst[4], dst[8], dst[12]);
TRANSFORM(dst[ 2], dst[ 6], dst[10], dst[14], cos_16_2, cos_16_2);
TRANSFORM(dst[ 1], dst[ 5], dst[ 9], dst[13], cos_16_1, cos_16_3);
TRANSFORM(dst[ 3], dst[ 7], dst[11], dst[15], cos_16_3, cos_16_1);
}
DECL_SR_CODELET_DEF(2)
DECL_SR_CODELET_DEF(4)
DECL_SR_CODELET_DEF(8)
DECL_SR_CODELET_DEF(16)
DECL_SR_CODELET(32,16,8)
DECL_SR_CODELET(64,32,16)
DECL_SR_CODELET(128,64,32)
DECL_SR_CODELET(256,128,64)
DECL_SR_CODELET(512,256,128)
DECL_SR_CODELET(1024,512,256)
DECL_SR_CODELET(2048,1024,512)
DECL_SR_CODELET(4096,2048,1024)
DECL_SR_CODELET(8192,4096,2048)
DECL_SR_CODELET(16384,8192,4096)
DECL_SR_CODELET(32768,16384,8192)
DECL_SR_CODELET(65536,32768,16384)
DECL_SR_CODELET(131072,65536,32768)
DECL_SR_CODELET(262144,131072,65536)
DECL_SR_CODELET(524288,262144,131072)
DECL_SR_CODELET(1048576,524288,262144)
DECL_SR_CODELET(2097152,1048576,524288)
static av_cold int TX_NAME(ff_tx_fft_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
int is_inplace = !!(flags & AV_TX_INPLACE);
FFTXCodeletOptions sub_opts = {
.map_dir = is_inplace ? FF_TX_MAP_SCATTER : FF_TX_MAP_GATHER,
};
flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */
flags |= AV_TX_INPLACE; /* in-place */
flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */
if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len, inv, scale)))
return ret;
if (is_inplace && (ret = ff_tx_gen_inplace_map(s, len)))
return ret;
return 0;
}
static av_cold int TX_NAME(ff_tx_fft_inplace_small_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
if (!(s->tmp = av_malloc(len*sizeof(*s->tmp))))
return AVERROR(ENOMEM);
flags &= ~AV_TX_INPLACE;
return TX_NAME(ff_tx_fft_init)(s, cd, flags, opts, len, inv, scale);
}
static void TX_NAME(ff_tx_fft)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst1 = s->flags & AV_TX_INPLACE ? s->tmp : _dst;
TXComplex *dst2 = _dst;
int *map = s->sub[0].map;
int len = s->len;
/* Compilers can't vectorize this anyway without assuming AVX2, which they
* generally don't, at least without -march=native -mtune=native */
for (int i = 0; i < len; i++)
dst1[i] = src[map[i]];
s->fn[0](&s->sub[0], dst2, dst1, stride);
}
static void TX_NAME(ff_tx_fft_inplace)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
TXComplex tmp;
const int *map = s->sub->map;
const int *inplace_idx = s->map;
int src_idx, dst_idx;
src_idx = *inplace_idx++;
do {
tmp = src[src_idx];
dst_idx = map[src_idx];
do {
FFSWAP(TXComplex, tmp, src[dst_idx]);
dst_idx = map[dst_idx];
} while (dst_idx != src_idx); /* Can be > as well, but was less predictable */
src[dst_idx] = tmp;
} while ((src_idx = *inplace_idx++));
s->fn[0](&s->sub[0], dst, src, stride);
}
static const FFTXCodelet TX_NAME(ff_tx_fft_def) = {
.name = TX_NAME_STR("fft"),
.function = TX_NAME(ff_tx_fft),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE,
.factors[0] = TX_FACTOR_ANY,
.nb_factors = 1,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_fft_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static const FFTXCodelet TX_NAME(ff_tx_fft_inplace_small_def) = {
.name = TX_NAME_STR("fft_inplace_small"),
.function = TX_NAME(ff_tx_fft),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
.factors[0] = TX_FACTOR_ANY,
.nb_factors = 1,
.min_len = 2,
.max_len = 65536,
.init = TX_NAME(ff_tx_fft_inplace_small_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE - 256,
};
static const FFTXCodelet TX_NAME(ff_tx_fft_inplace_def) = {
.name = TX_NAME_STR("fft_inplace"),
.function = TX_NAME(ff_tx_fft_inplace),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
.factors[0] = TX_FACTOR_ANY,
.nb_factors = 1,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_fft_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE - 512,
};
static av_cold int TX_NAME(ff_tx_fft_init_naive_small)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
const double phase = s->inv ? 2.0*M_PI/len : -2.0*M_PI/len;
if (!(s->exp = av_malloc(len*len*sizeof(*s->exp))))
return AVERROR(ENOMEM);
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
const double factor = phase*i*j;
s->exp[i*j] = (TXComplex){
RESCALE(cos(factor)),
RESCALE(sin(factor)),
};
}
}
return 0;
}
static void TX_NAME(ff_tx_fft_naive)(AVTXContext *s, void *_dst, void *_src,
ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
const int n = s->len;
double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n;
stride /= sizeof(*dst);
for (int i = 0; i < n; i++) {
TXComplex tmp = { 0 };
for (int j = 0; j < n; j++) {
const double factor = phase*i*j;
const TXComplex mult = {
RESCALE(cos(factor)),
RESCALE(sin(factor)),
};
TXComplex res;
CMUL3(res, src[j], mult);
tmp.re += res.re;
tmp.im += res.im;
}
dst[i*stride] = tmp;
}
}
static void TX_NAME(ff_tx_fft_naive_small)(AVTXContext *s, void *_dst, void *_src,
ptrdiff_t stride)
{
TXComplex *src = _src;
TXComplex *dst = _dst;
const int n = s->len;
stride /= sizeof(*dst);
for (int i = 0; i < n; i++) {
TXComplex tmp = { 0 };
for (int j = 0; j < n; j++) {
TXComplex res;
const TXComplex mult = s->exp[i*j];
CMUL3(res, src[j], mult);
tmp.re += res.re;
tmp.im += res.im;
}
dst[i*stride] = tmp;
}
}
static const FFTXCodelet TX_NAME(ff_tx_fft_naive_small_def) = {
.name = TX_NAME_STR("fft_naive_small"),
.function = TX_NAME(ff_tx_fft_naive_small),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE,
.factors[0] = TX_FACTOR_ANY,
.nb_factors = 1,
.min_len = 2,
.max_len = 1024,
.init = TX_NAME(ff_tx_fft_init_naive_small),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MIN/2,
};
static const FFTXCodelet TX_NAME(ff_tx_fft_naive_def) = {
.name = TX_NAME_STR("fft_naive"),
.function = TX_NAME(ff_tx_fft_naive),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE,
.factors[0] = TX_FACTOR_ANY,
.nb_factors = 1,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = NULL,
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MIN,
};
static av_cold int TX_NAME(ff_tx_fft_pfa_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret, *tmp, ps = flags & FF_TX_PRESHUFFLE;
FFTXCodeletOptions sub_opts = { .map_dir = FF_TX_MAP_GATHER };
size_t extra_tmp_len = 0;
int len_list[TX_MAX_DECOMPOSITIONS];
if ((ret = ff_tx_decompose_length(len_list, TX_TYPE(FFT), len, inv)) < 0)
return ret;
/* Two iterations to test both orderings. */
for (int i = 0; i < ret; i++) {
int len1 = len_list[i];
int len2 = len / len1;
/* Our ptwo transforms don't support striding the output. */
if (len2 & (len2 - 1))
FFSWAP(int, len1, len2);
ff_tx_clear_ctx(s);
/* First transform */
sub_opts.map_dir = FF_TX_MAP_GATHER;
flags &= ~AV_TX_INPLACE;
flags |= FF_TX_OUT_OF_PLACE;
flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */
ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts,
len1, inv, scale);
if (ret == AVERROR(ENOMEM)) {
return ret;
} else if (ret < 0) { /* Try again without a preshuffle flag */
flags &= ~FF_TX_PRESHUFFLE;
ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts,
len1, inv, scale);
if (ret == AVERROR(ENOMEM))
return ret;
else if (ret < 0)
continue;
}
/* Second transform. */
sub_opts.map_dir = FF_TX_MAP_SCATTER;
flags |= FF_TX_PRESHUFFLE;
retry:
flags &= ~FF_TX_OUT_OF_PLACE;
flags |= AV_TX_INPLACE;
ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts,
len2, inv, scale);
if (ret == AVERROR(ENOMEM)) {
return ret;
} else if (ret < 0) { /* Try again with an out-of-place transform */
flags |= FF_TX_OUT_OF_PLACE;
flags &= ~AV_TX_INPLACE;
ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts,
len2, inv, scale);
if (ret == AVERROR(ENOMEM)) {
return ret;
} else if (ret < 0) {
if (flags & FF_TX_PRESHUFFLE) { /* Retry again without a preshuf flag */
flags &= ~FF_TX_PRESHUFFLE;
goto retry;
} else {
continue;
}
}
}
/* Success */
break;
}
/* If nothing was sucessful, error out */
if (ret < 0)
return ret;
/* Generate PFA map */
if ((ret = ff_tx_gen_compound_mapping(s, opts, 0,
s->sub[0].len, s->sub[1].len)))
return ret;
if (!(s->tmp = av_malloc(len*sizeof(*s->tmp))))
return AVERROR(ENOMEM);
/* Flatten input map */
tmp = (int *)s->tmp;
for (int k = 0; k < len; k += s->sub[0].len) {
memcpy(tmp, &s->map[k], s->sub[0].len*sizeof(*tmp));
for (int i = 0; i < s->sub[0].len; i++)
s->map[k + i] = tmp[s->sub[0].map[i]];
}
/* Only allocate extra temporary memory if we need it */
if (!(s->sub[1].flags & AV_TX_INPLACE))
extra_tmp_len = len;
else if (!ps)
extra_tmp_len = s->sub[0].len;
if (extra_tmp_len && !(s->exp = av_malloc(extra_tmp_len*sizeof(*s->exp))))
return AVERROR(ENOMEM);
return 0;
}
static void TX_NAME(ff_tx_fft_pfa)(AVTXContext *s, void *_out,
void *_in, ptrdiff_t stride)
{
const int n = s->sub[0].len, m = s->sub[1].len, l = s->len;
const int *in_map = s->map, *out_map = in_map + l;
const int *sub_map = s->sub[1].map;
TXComplex *tmp1 = s->sub[1].flags & AV_TX_INPLACE ? s->tmp : s->exp;
TXComplex *in = _in, *out = _out;
stride /= sizeof(*out);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++)
s->exp[j] = in[in_map[i*n + j]];
s->fn[0](&s->sub[0], &s->tmp[sub_map[i]], s->exp, m*sizeof(TXComplex));
}
for (int i = 0; i < n; i++)
s->fn[1](&s->sub[1], &tmp1[m*i], &s->tmp[m*i], sizeof(TXComplex));
for (int i = 0; i < l; i++)
out[i*stride] = tmp1[out_map[i]];
}
static void TX_NAME(ff_tx_fft_pfa_ns)(AVTXContext *s, void *_out,
void *_in, ptrdiff_t stride)
{
const int n = s->sub[0].len, m = s->sub[1].len, l = s->len;
const int *in_map = s->map, *out_map = in_map + l;
const int *sub_map = s->sub[1].map;
TXComplex *tmp1 = s->sub[1].flags & AV_TX_INPLACE ? s->tmp : s->exp;
TXComplex *in = _in, *out = _out;
stride /= sizeof(*out);
for (int i = 0; i < m; i++)
s->fn[0](&s->sub[0], &s->tmp[sub_map[i]], &in[i*n], m*sizeof(TXComplex));
for (int i = 0; i < n; i++)
s->fn[1](&s->sub[1], &tmp1[m*i], &s->tmp[m*i], sizeof(TXComplex));
for (int i = 0; i < l; i++)
out[i*stride] = tmp1[out_map[i]];
}
static const FFTXCodelet TX_NAME(ff_tx_fft_pfa_def) = {
.name = TX_NAME_STR("fft_pfa"),
.function = TX_NAME(ff_tx_fft_pfa),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE,
.factors = { 7, 5, 3, 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2*3,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_fft_pfa_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static const FFTXCodelet TX_NAME(ff_tx_fft_pfa_ns_def) = {
.name = TX_NAME_STR("fft_pfa_ns"),
.function = TX_NAME(ff_tx_fft_pfa_ns),
.type = TX_TYPE(FFT),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE |
FF_TX_PRESHUFFLE,
.factors = { 7, 5, 3, 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2*3,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_fft_pfa_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static av_cold int TX_NAME(ff_tx_mdct_naive_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
s->scale_d = *((SCALE_TYPE *)scale);
s->scale_f = s->scale_d;
return 0;
}
static void TX_NAME(ff_tx_mdct_naive_fwd)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *src = _src;
TXSample *dst = _dst;
double scale = s->scale_d;
int len = s->len;
const double phase = M_PI/(4.0*len);
stride /= sizeof(*dst);
for (int i = 0; i < len; i++) {
double sum = 0.0;
for (int j = 0; j < len*2; j++) {
int a = (2*j + 1 + len) * (2*i + 1);
sum += UNSCALE(src[j]) * cos(a * phase);
}
dst[i*stride] = RESCALE(sum*scale);
}
}
static void TX_NAME(ff_tx_mdct_naive_inv)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *src = _src;
TXSample *dst = _dst;
double scale = s->scale_d;
int len = s->len >> 1;
int len2 = len*2;
const double phase = M_PI/(4.0*len2);
stride /= sizeof(*src);
for (int i = 0; i < len; i++) {
double sum_d = 0.0;
double sum_u = 0.0;
double i_d = phase * (4*len - 2*i - 1);
double i_u = phase * (3*len2 + 2*i + 1);
for (int j = 0; j < len2; j++) {
double a = (2 * j + 1);
double a_d = cos(a * i_d);
double a_u = cos(a * i_u);
double val = UNSCALE(src[j*stride]);
sum_d += a_d * val;
sum_u += a_u * val;
}
dst[i + 0] = RESCALE( sum_d*scale);
dst[i + len] = RESCALE(-sum_u*scale);
}
}
static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_fwd_def) = {
.name = TX_NAME_STR("mdct_naive_fwd"),
.function = TX_NAME(ff_tx_mdct_naive_fwd),
.type = TX_TYPE(MDCT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY,
.factors = { 2, TX_FACTOR_ANY }, /* MDCTs need an even length */
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_mdct_naive_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MIN,
};
static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_inv_def) = {
.name = TX_NAME_STR("mdct_naive_inv"),
.function = TX_NAME(ff_tx_mdct_naive_inv),
.type = TX_TYPE(MDCT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_mdct_naive_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MIN,
};
static av_cold int TX_NAME(ff_tx_mdct_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
FFTXCodeletOptions sub_opts = {
.map_dir = !inv ? FF_TX_MAP_SCATTER : FF_TX_MAP_GATHER,
};
s->scale_d = *((SCALE_TYPE *)scale);
s->scale_f = s->scale_d;
flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */
flags |= AV_TX_INPLACE; /* in-place */
flags |= FF_TX_PRESHUFFLE; /* First try with an in-place transform */
if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len >> 1,
inv, scale))) {
flags &= ~FF_TX_PRESHUFFLE; /* Now try with a generic FFT */
if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len >> 1,
inv, scale)))
return ret;
}
s->map = av_malloc((len >> 1)*sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
/* If we need to preshuffle copy the map from the subcontext */
if (s->sub[0].flags & FF_TX_PRESHUFFLE) {
memcpy(s->map, s->sub->map, (len >> 1)*sizeof(*s->map));
} else {
for (int i = 0; i < len >> 1; i++)
s->map[i] = i;
}
if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s, inv ? s->map : NULL)))
return ret;
/* Saves a multiply in a hot path. */
if (inv)
for (int i = 0; i < (s->len >> 1); i++)
s->map[i] <<= 1;
return 0;
}
static void TX_NAME(ff_tx_mdct_fwd)(AVTXContext *s, void *_dst, void *_src,
ptrdiff_t stride)
{
TXSample *src = _src, *dst = _dst;
TXComplex *exp = s->exp, tmp, *z = _dst;
const int len2 = s->len >> 1;
const int len4 = s->len >> 2;
const int len3 = len2 * 3;
const int *sub_map = s->map;
stride /= sizeof(*dst);
for (int i = 0; i < len2; i++) { /* Folding and pre-reindexing */
const int k = 2*i;
const int idx = sub_map[i];
if (k < len2) {
tmp.re = FOLD(-src[ len2 + k], src[1*len2 - 1 - k]);
tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]);
} else {
tmp.re = FOLD(-src[ len2 + k], -src[5*len2 - 1 - k]);
tmp.im = FOLD( src[-len2 + k], -src[1*len3 - 1 - k]);
}
CMUL(z[idx].im, z[idx].re, tmp.re, tmp.im, exp[i].re, exp[i].im);
}
s->fn[0](&s->sub[0], z, z, sizeof(TXComplex));
for (int i = 0; i < len4; i++) {
const int i0 = len4 + i, i1 = len4 - i - 1;
TXComplex src1 = { z[i1].re, z[i1].im };
TXComplex src0 = { z[i0].re, z[i0].im };
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im,
exp[i0].im, exp[i0].re);
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im,
exp[i1].im, exp[i1].re);
}
}
static void TX_NAME(ff_tx_mdct_inv)(AVTXContext *s, void *_dst, void *_src,
ptrdiff_t stride)
{
TXComplex *z = _dst, *exp = s->exp;
const TXSample *src = _src, *in1, *in2;
const int len2 = s->len >> 1;
const int len4 = s->len >> 2;
const int *sub_map = s->map;
stride /= sizeof(*src);
in1 = src;
in2 = src + ((len2*2) - 1) * stride;
for (int i = 0; i < len2; i++) {
int k = sub_map[i];
TXComplex tmp = { in2[-k*stride], in1[k*stride] };
CMUL3(z[i], tmp, exp[i]);
}
s->fn[0](&s->sub[0], z, z, sizeof(TXComplex));
exp += len2;
for (int i = 0; i < len4; i++) {
const int i0 = len4 + i, i1 = len4 - i - 1;
TXComplex src1 = { z[i1].im, z[i1].re };
TXComplex src0 = { z[i0].im, z[i0].re };
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re);
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re);
}
}
static const FFTXCodelet TX_NAME(ff_tx_mdct_fwd_def) = {
.name = TX_NAME_STR("mdct_fwd"),
.function = TX_NAME(ff_tx_mdct_fwd),
.type = TX_TYPE(MDCT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_mdct_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static const FFTXCodelet TX_NAME(ff_tx_mdct_inv_def) = {
.name = TX_NAME_STR("mdct_inv"),
.function = TX_NAME(ff_tx_mdct_inv),
.type = TX_TYPE(MDCT),
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_mdct_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static av_cold int TX_NAME(ff_tx_mdct_inv_full_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
s->scale_d = *((SCALE_TYPE *)scale);
s->scale_f = s->scale_d;
flags &= ~AV_TX_FULL_IMDCT;
if ((ret = ff_tx_init_subtx(s, TX_TYPE(MDCT), flags, NULL, len, 1, scale)))
return ret;
return 0;
}
static void TX_NAME(ff_tx_mdct_inv_full)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
int len = s->len << 1;
int len2 = len >> 1;
int len4 = len >> 2;
TXSample *dst = _dst;
s->fn[0](&s->sub[0], dst + len4, _src, stride);
stride /= sizeof(*dst);
for (int i = 0; i < len4; i++) {
dst[ i*stride] = -dst[(len2 - i - 1)*stride];
dst[(len - i - 1)*stride] = dst[(len2 + i + 0)*stride];
}
}
static const FFTXCodelet TX_NAME(ff_tx_mdct_inv_full_def) = {
.name = TX_NAME_STR("mdct_inv_full"),
.function = TX_NAME(ff_tx_mdct_inv_full),
.type = TX_TYPE(MDCT),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE |
FF_TX_OUT_OF_PLACE | AV_TX_FULL_IMDCT,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_mdct_inv_full_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static av_cold int TX_NAME(ff_tx_mdct_pfa_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret, sub_len;
FFTXCodeletOptions sub_opts = { .map_dir = FF_TX_MAP_SCATTER };
len >>= 1;
sub_len = len / cd->factors[0];
s->scale_d = *((SCALE_TYPE *)scale);
s->scale_f = s->scale_d;
flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */
flags |= AV_TX_INPLACE; /* in-place */
flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */
if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts,
sub_len, inv, scale)))
return ret;
if ((ret = ff_tx_gen_compound_mapping(s, opts, s->inv, cd->factors[0], sub_len)))
return ret;
/* Our 15-point transform is also a compound one, so embed its input map */
if (cd->factors[0] == 15)
TX_EMBED_INPUT_PFA_MAP(s->map, len, 3, 5);
if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s, inv ? s->map : NULL)))
return ret;
/* Saves multiplies in loops. */
for (int i = 0; i < len; i++)
s->map[i] <<= 1;
if (!(s->tmp = av_malloc(len*sizeof(*s->tmp))))
return AVERROR(ENOMEM);
TX_TAB(ff_tx_init_tabs)(len / sub_len);
return 0;
}
#define DECL_COMP_IMDCT(N) \
static void TX_NAME(ff_tx_mdct_pfa_##N##xM_inv)(AVTXContext *s, void *_dst, \
void *_src, ptrdiff_t stride) \
{ \
TXComplex fft##N##in[N]; \
TXComplex *z = _dst, *exp = s->exp; \
const TXSample *src = _src, *in1, *in2; \
const int len4 = s->len >> 2; \
const int len2 = s->len >> 1; \
const int m = s->sub->len; \
const int *in_map = s->map, *out_map = in_map + N*m; \
const int *sub_map = s->sub->map; \
\
stride /= sizeof(*src); /* To convert it from bytes */ \
in1 = src; \
in2 = src + ((N*m*2) - 1) * stride; \
\
for (int i = 0; i < len2; i += N) { \
for (int j = 0; j < N; j++) { \
const int k = in_map[j]; \
TXComplex tmp = { in2[-k*stride], in1[k*stride] }; \
CMUL3(fft##N##in[j], tmp, exp[j]); \
} \
fft##N(s->tmp + *(sub_map++), fft##N##in, m); \
exp += N; \
in_map += N; \
} \
\
for (int i = 0; i < N; i++) \
s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \
\
for (int i = 0; i < len4; i++) { \
const int i0 = len4 + i, i1 = len4 - i - 1; \
const int s0 = out_map[i0], s1 = out_map[i1]; \
TXComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \
TXComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \
\
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \
} \
} \
\
static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_inv_def) = { \
.name = TX_NAME_STR("mdct_pfa_" #N "xM_inv"), \
.function = TX_NAME(ff_tx_mdct_pfa_##N##xM_inv), \
.type = TX_TYPE(MDCT), \
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, \
.factors = { N, TX_FACTOR_ANY }, \
.nb_factors = 2, \
.min_len = N*2, \
.max_len = TX_LEN_UNLIMITED, \
.init = TX_NAME(ff_tx_mdct_pfa_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
DECL_COMP_IMDCT(3)
DECL_COMP_IMDCT(5)
DECL_COMP_IMDCT(7)
DECL_COMP_IMDCT(9)
DECL_COMP_IMDCT(15)
#define DECL_COMP_MDCT(N) \
static void TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd)(AVTXContext *s, void *_dst, \
void *_src, ptrdiff_t stride) \
{ \
TXComplex fft##N##in[N]; \
TXSample *src = _src, *dst = _dst; \
TXComplex *exp = s->exp, tmp; \
const int m = s->sub->len; \
const int len4 = N*m; \
const int len3 = len4 * 3; \
const int len8 = s->len >> 2; \
const int *in_map = s->map, *out_map = in_map + N*m; \
const int *sub_map = s->sub->map; \
\
stride /= sizeof(*dst); \
\
for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \
for (int j = 0; j < N; j++) { \
const int k = in_map[i*N + j]; \
if (k < len4) { \
tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \
tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \
} else { \
tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \
tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \
} \
CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \
exp[k >> 1].re, exp[k >> 1].im); \
} \
fft##N(s->tmp + sub_map[i], fft##N##in, m); \
} \
\
for (int i = 0; i < N; i++) \
s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \
\
for (int i = 0; i < len8; i++) { \
const int i0 = len8 + i, i1 = len8 - i - 1; \
const int s0 = out_map[i0], s1 = out_map[i1]; \
TXComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \
TXComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \
\
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \
exp[i0].im, exp[i0].re); \
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \
exp[i1].im, exp[i1].re); \
} \
} \
\
static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd_def) = { \
.name = TX_NAME_STR("mdct_pfa_" #N "xM_fwd"), \
.function = TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd), \
.type = TX_TYPE(MDCT), \
.flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, \
.factors = { N, TX_FACTOR_ANY }, \
.nb_factors = 2, \
.min_len = N*2, \
.max_len = TX_LEN_UNLIMITED, \
.init = TX_NAME(ff_tx_mdct_pfa_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
DECL_COMP_MDCT(3)
DECL_COMP_MDCT(5)
DECL_COMP_MDCT(7)
DECL_COMP_MDCT(9)
DECL_COMP_MDCT(15)
static av_cold int TX_NAME(ff_tx_rdft_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
double f, m;
TXSample *tab;
uint64_t r2r = flags & AV_TX_REAL_TO_REAL;
int len4 = FFALIGN(len, 4) / 4;
s->scale_d = *((SCALE_TYPE *)scale);
s->scale_f = s->scale_d;
flags &= ~(AV_TX_REAL_TO_REAL | AV_TX_REAL_TO_IMAGINARY);
if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, NULL, len >> 1, inv, scale)))
return ret;
if (!(s->exp = av_mallocz((8 + 2*len4)*sizeof(*s->exp))))
return AVERROR(ENOMEM);
tab = (TXSample *)s->exp;
f = 2*M_PI/len;
m = (inv ? 2*s->scale_d : s->scale_d);
*tab++ = RESCALE((inv ? 0.5 : 1.0) * m);
*tab++ = RESCALE(inv ? 0.5*m : 1.0*m);
*tab++ = RESCALE( m);
*tab++ = RESCALE(-m);
*tab++ = RESCALE( (0.5 - 0.0) * m);
if (r2r)
*tab++ = 1 / s->scale_f;
else
*tab++ = RESCALE( (0.0 - 0.5) * m);
*tab++ = RESCALE( (0.5 - inv) * m);
*tab++ = RESCALE(-(0.5 - inv) * m);
for (int i = 0; i < len4; i++)
*tab++ = RESCALE(cos(i*f));
tab = ((TXSample *)s->exp) + len4 + 8;
for (int i = 0; i < len4; i++)
*tab++ = RESCALE(cos(((len - i*4)/4.0)*f)) * (inv ? 1 : -1);
return 0;
}
#define DECL_RDFT(n, inv) \
static void TX_NAME(ff_tx_rdft_ ##n)(AVTXContext *s, void *_dst, \
void *_src, ptrdiff_t stride) \
{ \
const int len2 = s->len >> 1; \
const int len4 = s->len >> 2; \
const TXSample *fact = (void *)s->exp; \
const TXSample *tcos = fact + 8; \
const TXSample *tsin = tcos + len4; \
TXComplex *data = inv ? _src : _dst; \
TXComplex t[3]; \
\
if (!inv) \
s->fn[0](&s->sub[0], data, _src, sizeof(TXComplex)); \
else \
data[0].im = data[len2].re; \
\
/* The DC value's both components are real, but we need to change them \
* into complex values. Also, the middle of the array is special-cased. \
* These operations can be done before or after the loop. */ \
t[0].re = data[0].re; \
data[0].re = t[0].re + data[0].im; \
data[0].im = t[0].re - data[0].im; \
data[ 0].re = MULT(fact[0], data[ 0].re); \
data[ 0].im = MULT(fact[1], data[ 0].im); \
data[len4].re = MULT(fact[2], data[len4].re); \
data[len4].im = MULT(fact[3], data[len4].im); \
\
for (int i = 1; i < len4; i++) { \
/* Separate even and odd FFTs */ \
t[0].re = MULT(fact[4], (data[i].re + data[len2 - i].re)); \
t[0].im = MULT(fact[5], (data[i].im - data[len2 - i].im)); \
t[1].re = MULT(fact[6], (data[i].im + data[len2 - i].im)); \
t[1].im = MULT(fact[7], (data[i].re - data[len2 - i].re)); \
\
/* Apply twiddle factors to the odd FFT and add to the even FFT */ \
CMUL(t[2].re, t[2].im, t[1].re, t[1].im, tcos[i], tsin[i]); \
\
data[ i].re = t[0].re + t[2].re; \
data[ i].im = t[2].im - t[0].im; \
data[len2 - i].re = t[0].re - t[2].re; \
data[len2 - i].im = t[2].im + t[0].im; \
} \
\
if (inv) { \
s->fn[0](&s->sub[0], _dst, data, sizeof(TXComplex)); \
} else { \
/* Move [0].im to the last position, as convention requires */ \
data[len2].re = data[0].im; \
data[ 0].im = data[len2].im = 0; \
} \
} \
\
static const FFTXCodelet TX_NAME(ff_tx_rdft_ ##n## _def) = { \
.name = TX_NAME_STR("rdft_" #n), \
.function = TX_NAME(ff_tx_rdft_ ##n), \
.type = TX_TYPE(RDFT), \
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE | \
(inv ? FF_TX_INVERSE_ONLY : FF_TX_FORWARD_ONLY), \
.factors = { 4, TX_FACTOR_ANY }, \
.nb_factors = 2, \
.min_len = 4, \
.max_len = TX_LEN_UNLIMITED, \
.init = TX_NAME(ff_tx_rdft_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
DECL_RDFT(r2c, 0)
DECL_RDFT(c2r, 1)
#define DECL_RDFT_HALF(n, mode, mod2) \
static void TX_NAME(ff_tx_rdft_ ##n)(AVTXContext *s, void *_dst, \
void *_src, ptrdiff_t stride) \
{ \
const int len = s->len; \
const int len2 = len >> 1; \
const int len4 = len >> 2; \
const int aligned_len4 = FFALIGN(len, 4)/4; \
const TXSample *fact = (void *)s->exp; \
const TXSample *tcos = fact + 8; \
const TXSample *tsin = tcos + aligned_len4; \
TXComplex *data = _dst; \
TXSample *out = _dst; /* Half-complex is forward-only */ \
TXSample tmp_dc; \
av_unused TXSample tmp_mid; \
TXSample tmp[4]; \
TXComplex sf, sl; \
\
s->fn[0](&s->sub[0], _dst, _src, sizeof(TXComplex)); \
\
tmp_dc = data[0].re; \
data[ 0].re = tmp_dc + data[0].im; \
tmp_dc = tmp_dc - data[0].im; \
\
data[ 0].re = MULT(fact[0], data[ 0].re); \
tmp_dc = MULT(fact[1], tmp_dc); \
data[len4].re = MULT(fact[2], data[len4].re); \
\
if (!mod2) { \
data[len4].im = MULT(fact[3], data[len4].im); \
} else { \
sf = data[len4]; \
sl = data[len4 + 1]; \
if (mode == AV_TX_REAL_TO_REAL) \
tmp[0] = MULT(fact[4], (sf.re + sl.re)); \
else \
tmp[0] = MULT(fact[5], (sf.im - sl.im)); \
tmp[1] = MULT(fact[6], (sf.im + sl.im)); \
tmp[2] = MULT(fact[7], (sf.re - sl.re)); \
\
if (mode == AV_TX_REAL_TO_REAL) { \
tmp[3] = tmp[1]*tcos[len4] - tmp[2]*tsin[len4]; \
tmp_mid = (tmp[0] - tmp[3]); \
} else { \
tmp[3] = tmp[1]*tsin[len4] + tmp[2]*tcos[len4]; \
tmp_mid = (tmp[0] + tmp[3]); \
} \
} \
\
/* NOTE: unrolling this breaks non-mod8 lengths */ \
for (int i = 1; i <= len4; i++) { \
TXSample tmp[4]; \
TXComplex sf = data[i]; \
TXComplex sl = data[len2 - i]; \
\
if (mode == AV_TX_REAL_TO_REAL) \
tmp[0] = MULT(fact[4], (sf.re + sl.re)); \
else \
tmp[0] = MULT(fact[5], (sf.im - sl.im)); \
\
tmp[1] = MULT(fact[6], (sf.im + sl.im)); \
tmp[2] = MULT(fact[7], (sf.re - sl.re)); \
\
if (mode == AV_TX_REAL_TO_REAL) { \
tmp[3] = tmp[1]*tcos[i] - tmp[2]*tsin[i]; \
out[i] = (tmp[0] + tmp[3]); \
out[len - i] = (tmp[0] - tmp[3]); \
} else { \
tmp[3] = tmp[1]*tsin[i] + tmp[2]*tcos[i]; \
out[i - 1] = (tmp[3] - tmp[0]); \
out[len - i - 1] = (tmp[0] + tmp[3]); \
} \
} \
\
for (int i = 1; i < (len4 + (mode == AV_TX_REAL_TO_IMAGINARY)); i++) \
out[len2 - i] = out[len - i]; \
\
if (mode == AV_TX_REAL_TO_REAL) { \
out[len2] = tmp_dc; \
if (mod2) \
out[len4 + 1] = tmp_mid * fact[5]; \
} else if (mod2) { \
out[len4] = tmp_mid; \
} \
} \
\
static const FFTXCodelet TX_NAME(ff_tx_rdft_ ##n## _def) = { \
.name = TX_NAME_STR("rdft_" #n), \
.function = TX_NAME(ff_tx_rdft_ ##n), \
.type = TX_TYPE(RDFT), \
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | mode | \
FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, \
.factors = { 2 + 2*(!mod2), TX_FACTOR_ANY }, \
.nb_factors = 2, \
.min_len = 2 + 2*(!mod2), \
.max_len = TX_LEN_UNLIMITED, \
.init = TX_NAME(ff_tx_rdft_init), \
.cpu_flags = FF_TX_CPU_FLAGS_ALL, \
.prio = FF_TX_PRIO_BASE, \
};
DECL_RDFT_HALF(r2r, AV_TX_REAL_TO_REAL, 0)
DECL_RDFT_HALF(r2r_mod2, AV_TX_REAL_TO_REAL, 1)
DECL_RDFT_HALF(r2i, AV_TX_REAL_TO_IMAGINARY, 0)
DECL_RDFT_HALF(r2i_mod2, AV_TX_REAL_TO_IMAGINARY, 1)
static av_cold int TX_NAME(ff_tx_dct_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
double freq;
TXSample *tab;
SCALE_TYPE rsc = *((SCALE_TYPE *)scale);
if (inv) {
len *= 2;
s->len *= 2;
rsc *= 0.5;
}
if ((ret = ff_tx_init_subtx(s, TX_TYPE(RDFT), flags, NULL, len, inv, &rsc)))
return ret;
s->exp = av_malloc((len/2)*3*sizeof(TXSample));
if (!s->exp)
return AVERROR(ENOMEM);
tab = (TXSample *)s->exp;
freq = M_PI/(len*2);
for (int i = 0; i < len; i++)
tab[i] = RESCALE(cos(i*freq)*(!inv + 1));
if (inv) {
for (int i = 0; i < len/2; i++)
tab[len + i] = RESCALE(0.5 / sin((2*i + 1)*freq));
} else {
for (int i = 0; i < len/2; i++)
tab[len + i] = RESCALE(cos((len - 2*i - 1)*freq));
}
return 0;
}
static void TX_NAME(ff_tx_dctII)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *dst = _dst;
TXSample *src = _src;
const int len = s->len;
const int len2 = len >> 1;
const TXSample *exp = (void *)s->exp;
TXSample next;
#ifdef TX_INT32
int64_t tmp1, tmp2;
#else
TXSample tmp1, tmp2;
#endif
for (int i = 0; i < len2; i++) {
TXSample in1 = src[i];
TXSample in2 = src[len - i - 1];
TXSample s = exp[len + i];
#ifdef TX_INT32
tmp1 = in1 + in2;
tmp2 = in1 - in2;
tmp1 >>= 1;
tmp2 *= s;
tmp2 = (tmp2 + 0x40000000) >> 31;
#else
tmp1 = (in1 + in2)*0.5;
tmp2 = (in1 - in2)*s;
#endif
src[i] = tmp1 + tmp2;
src[len - i - 1] = tmp1 - tmp2;
}
s->fn[0](&s->sub[0], dst, src, sizeof(TXComplex));
next = dst[len];
for (int i = len - 2; i > 0; i -= 2) {
TXSample tmp;
CMUL(tmp, dst[i], exp[len - i], exp[i], dst[i + 0], dst[i + 1]);
dst[i + 1] = next;
next += tmp;
}
#ifdef TX_INT32
tmp1 = ((int64_t)exp[0]) * ((int64_t)dst[0]);
dst[0] = (tmp1 + 0x40000000) >> 31;
#else
dst[0] = exp[0] * dst[0];
#endif
dst[1] = next;
}
static void TX_NAME(ff_tx_dctIII)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *dst = _dst;
TXSample *src = _src;
const int len = s->len;
const int len2 = len >> 1;
const TXSample *exp = (void *)s->exp;
#ifdef TX_INT32
int64_t tmp1, tmp2 = src[len - 1];
tmp2 = (2*tmp2 + 0x40000000) >> 31;
#else
TXSample tmp1, tmp2 = 2*src[len - 1];
#endif
src[len] = tmp2;
for (int i = len - 2; i >= 2; i -= 2) {
TXSample val1 = src[i - 0];
TXSample val2 = src[i - 1] - src[i + 1];
CMUL(src[i + 1], src[i], exp[len - i], exp[i], val1, val2);
}
s->fn[0](&s->sub[0], dst, src, sizeof(float));
for (int i = 0; i < len2; i++) {
TXSample in1 = dst[i];
TXSample in2 = dst[len - i - 1];
TXSample c = exp[len + i];
tmp1 = in1 + in2;
tmp2 = in1 - in2;
tmp2 *= c;
#ifdef TX_INT32
tmp2 = (tmp2 + 0x40000000) >> 31;
#endif
dst[i] = tmp1 + tmp2;
dst[len - i - 1] = tmp1 - tmp2;
}
}
static const FFTXCodelet TX_NAME(ff_tx_dctII_def) = {
.name = TX_NAME_STR("dctII"),
.function = TX_NAME(ff_tx_dctII),
.type = TX_TYPE(DCT),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE |
FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY,
.factors = { 2, TX_FACTOR_ANY },
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_dct_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static const FFTXCodelet TX_NAME(ff_tx_dctIII_def) = {
.name = TX_NAME_STR("dctIII"),
.function = TX_NAME(ff_tx_dctIII),
.type = TX_TYPE(DCT),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE |
FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY,
.factors = { 2, TX_FACTOR_ANY },
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_dct_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static av_cold int TX_NAME(ff_tx_dcstI_init)(AVTXContext *s,
const FFTXCodelet *cd,
uint64_t flags,
FFTXCodeletOptions *opts,
int len, int inv,
const void *scale)
{
int ret;
SCALE_TYPE rsc = *((SCALE_TYPE *)scale);
if (inv) {
len *= 2;
s->len *= 2;
rsc *= 0.5;
}
/* We want a half-complex RDFT */
flags |= cd->type == TX_TYPE(DCT_I) ? AV_TX_REAL_TO_REAL :
AV_TX_REAL_TO_IMAGINARY;
if ((ret = ff_tx_init_subtx(s, TX_TYPE(RDFT), flags, NULL,
(len - 1 + 2*(cd->type == TX_TYPE(DST_I)))*2,
0, &rsc)))
return ret;
s->tmp = av_mallocz((len + 1)*2*sizeof(TXSample));
if (!s->tmp)
return AVERROR(ENOMEM);
return 0;
}
static void TX_NAME(ff_tx_dctI)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *dst = _dst;
TXSample *src = _src;
const int len = s->len - 1;
TXSample *tmp = (TXSample *)s->tmp;
stride /= sizeof(TXSample);
for (int i = 0; i < len; i++)
tmp[i] = tmp[2*len - i] = src[i * stride];
tmp[len] = src[len * stride]; /* Middle */
s->fn[0](&s->sub[0], dst, tmp, sizeof(TXSample));
}
static void TX_NAME(ff_tx_dstI)(AVTXContext *s, void *_dst,
void *_src, ptrdiff_t stride)
{
TXSample *dst = _dst;
TXSample *src = _src;
const int len = s->len + 1;
TXSample *tmp = (void *)s->tmp;
stride /= sizeof(TXSample);
tmp[0] = 0;
for (int i = 1; i < len; i++) {
TXSample a = src[(i - 1) * stride];
tmp[i] = -a;
tmp[2*len - i] = a;
}
tmp[len] = 0; /* i == n, Nyquist */
s->fn[0](&s->sub[0], dst, tmp, sizeof(float));
}
static const FFTXCodelet TX_NAME(ff_tx_dctI_def) = {
.name = TX_NAME_STR("dctI"),
.function = TX_NAME(ff_tx_dctI),
.type = TX_TYPE(DCT_I),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_dcstI_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
static const FFTXCodelet TX_NAME(ff_tx_dstI_def) = {
.name = TX_NAME_STR("dstI"),
.function = TX_NAME(ff_tx_dstI),
.type = TX_TYPE(DST_I),
.flags = AV_TX_UNALIGNED | AV_TX_INPLACE | FF_TX_OUT_OF_PLACE,
.factors = { 2, TX_FACTOR_ANY },
.nb_factors = 2,
.min_len = 2,
.max_len = TX_LEN_UNLIMITED,
.init = TX_NAME(ff_tx_dcstI_init),
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_BASE,
};
int TX_TAB(ff_tx_mdct_gen_exp)(AVTXContext *s, int *pre_tab)
{
int off = 0;
int len4 = s->len >> 1;
double scale = s->scale_d;
const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0;
size_t alloc = pre_tab ? 2*len4 : len4;
if (!(s->exp = av_malloc_array(alloc, sizeof(*s->exp))))
return AVERROR(ENOMEM);
scale = sqrt(fabs(scale));
if (pre_tab)
off = len4;
for (int i = 0; i < len4; i++) {
const double alpha = M_PI_2 * (i + theta) / len4;
s->exp[off + i] = (TXComplex){ RESCALE(cos(alpha) * scale),
RESCALE(sin(alpha) * scale) };
}
if (pre_tab)
for (int i = 0; i < len4; i++)
s->exp[i] = s->exp[len4 + pre_tab[i]];
return 0;
}
const FFTXCodelet * const TX_NAME(ff_tx_codelet_list)[] = {
/* Split-Radix codelets */
&TX_NAME(ff_tx_fft2_ns_def),
&TX_NAME(ff_tx_fft4_ns_def),
&TX_NAME(ff_tx_fft8_ns_def),
&TX_NAME(ff_tx_fft16_ns_def),
&TX_NAME(ff_tx_fft32_ns_def),
&TX_NAME(ff_tx_fft64_ns_def),
&TX_NAME(ff_tx_fft128_ns_def),
&TX_NAME(ff_tx_fft256_ns_def),
&TX_NAME(ff_tx_fft512_ns_def),
&TX_NAME(ff_tx_fft1024_ns_def),
&TX_NAME(ff_tx_fft2048_ns_def),
&TX_NAME(ff_tx_fft4096_ns_def),
&TX_NAME(ff_tx_fft8192_ns_def),
&TX_NAME(ff_tx_fft16384_ns_def),
&TX_NAME(ff_tx_fft32768_ns_def),
&TX_NAME(ff_tx_fft65536_ns_def),
&TX_NAME(ff_tx_fft131072_ns_def),
&TX_NAME(ff_tx_fft262144_ns_def),
&TX_NAME(ff_tx_fft524288_ns_def),
&TX_NAME(ff_tx_fft1048576_ns_def),
&TX_NAME(ff_tx_fft2097152_ns_def),
/* Prime factor codelets */
&TX_NAME(ff_tx_fft3_ns_def),
&TX_NAME(ff_tx_fft5_ns_def),
&TX_NAME(ff_tx_fft7_ns_def),
&TX_NAME(ff_tx_fft9_ns_def),
&TX_NAME(ff_tx_fft15_ns_def),
/* We get these for free */
&TX_NAME(ff_tx_fft3_fwd_def),
&TX_NAME(ff_tx_fft5_fwd_def),
&TX_NAME(ff_tx_fft7_fwd_def),
&TX_NAME(ff_tx_fft9_fwd_def),
/* Standalone transforms */
&TX_NAME(ff_tx_fft_def),
&TX_NAME(ff_tx_fft_inplace_def),
&TX_NAME(ff_tx_fft_inplace_small_def),
&TX_NAME(ff_tx_fft_pfa_def),
&TX_NAME(ff_tx_fft_pfa_ns_def),
&TX_NAME(ff_tx_fft_naive_def),
&TX_NAME(ff_tx_fft_naive_small_def),
&TX_NAME(ff_tx_mdct_fwd_def),
&TX_NAME(ff_tx_mdct_inv_def),
&TX_NAME(ff_tx_mdct_pfa_3xM_fwd_def),
&TX_NAME(ff_tx_mdct_pfa_5xM_fwd_def),
&TX_NAME(ff_tx_mdct_pfa_7xM_fwd_def),
&TX_NAME(ff_tx_mdct_pfa_9xM_fwd_def),
&TX_NAME(ff_tx_mdct_pfa_15xM_fwd_def),
&TX_NAME(ff_tx_mdct_pfa_3xM_inv_def),
&TX_NAME(ff_tx_mdct_pfa_5xM_inv_def),
&TX_NAME(ff_tx_mdct_pfa_7xM_inv_def),
&TX_NAME(ff_tx_mdct_pfa_9xM_inv_def),
&TX_NAME(ff_tx_mdct_pfa_15xM_inv_def),
&TX_NAME(ff_tx_mdct_naive_fwd_def),
&TX_NAME(ff_tx_mdct_naive_inv_def),
&TX_NAME(ff_tx_mdct_inv_full_def),
&TX_NAME(ff_tx_rdft_r2c_def),
&TX_NAME(ff_tx_rdft_r2r_def),
&TX_NAME(ff_tx_rdft_r2r_mod2_def),
&TX_NAME(ff_tx_rdft_r2i_def),
&TX_NAME(ff_tx_rdft_r2i_mod2_def),
&TX_NAME(ff_tx_rdft_c2r_def),
&TX_NAME(ff_tx_dctII_def),
&TX_NAME(ff_tx_dctIII_def),
&TX_NAME(ff_tx_dctI_def),
&TX_NAME(ff_tx_dstI_def),
NULL,
};