1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/h264idct_template.c
Oskar Arvidsson 19a0729b4c Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
This patch lets e.g. dsputil_init chose dsp functions with respect to
the bit depth to decode. The naming scheme of bit depth dependent
functions is <base name>_<bit depth>[_<prefix>] (i.e. the old
clear_blocks_c is now named clear_blocks_8_c).

Note: Some of the functions for high bit depth is not dependent on the
bit depth, but only on the pixel size. This leaves some room for
optimizing binary size.

Preparatory patch for high bit depth h264 decoding support.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2011-05-10 07:24:36 -04:00

292 lines
10 KiB
C

/*
* H.264 IDCT
* Copyright (c) 2004-2011 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 IDCT.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "high_bit_depth.h"
#ifndef AVCODEC_H264IDCT_INTERNAL_H
#define AVCODEC_H264IDCT_INTERNAL_H
//FIXME this table is a duplicate from h264data.h, and will be removed once the tables from, h264 have been split
static const uint8_t scan8[16 + 2*4]={
4+1*8, 5+1*8, 4+2*8, 5+2*8,
6+1*8, 7+1*8, 6+2*8, 7+2*8,
4+3*8, 5+3*8, 4+4*8, 5+4*8,
6+3*8, 7+3*8, 6+4*8, 7+4*8,
1+1*8, 2+1*8,
1+2*8, 2+2*8,
1+4*8, 2+4*8,
1+5*8, 2+5*8,
};
#endif
static av_always_inline void FUNCC(idct_internal)(uint8_t *_dst, DCTELEM *_block, int stride, int block_stride, int shift, int add){
int i;
INIT_CLIP
pixel *dst = (pixel*)_dst;
dctcoef *block = (dctcoef*)_block;
stride /= sizeof(pixel);
block[0] += 1<<(shift-1);
for(i=0; i<4; i++){
const int z0= block[i + block_stride*0] + block[i + block_stride*2];
const int z1= block[i + block_stride*0] - block[i + block_stride*2];
const int z2= (block[i + block_stride*1]>>1) - block[i + block_stride*3];
const int z3= block[i + block_stride*1] + (block[i + block_stride*3]>>1);
block[i + block_stride*0]= z0 + z3;
block[i + block_stride*1]= z1 + z2;
block[i + block_stride*2]= z1 - z2;
block[i + block_stride*3]= z0 - z3;
}
for(i=0; i<4; i++){
const int z0= block[0 + block_stride*i] + block[2 + block_stride*i];
const int z1= block[0 + block_stride*i] - block[2 + block_stride*i];
const int z2= (block[1 + block_stride*i]>>1) - block[3 + block_stride*i];
const int z3= block[1 + block_stride*i] + (block[3 + block_stride*i]>>1);
dst[i + 0*stride]= CLIP(add*dst[i + 0*stride] + ((z0 + z3) >> shift));
dst[i + 1*stride]= CLIP(add*dst[i + 1*stride] + ((z1 + z2) >> shift));
dst[i + 2*stride]= CLIP(add*dst[i + 2*stride] + ((z1 - z2) >> shift));
dst[i + 3*stride]= CLIP(add*dst[i + 3*stride] + ((z0 - z3) >> shift));
}
}
void FUNCC(ff_h264_idct_add)(uint8_t *dst, DCTELEM *block, int stride){
FUNCC(idct_internal)(dst, block, stride, 4, 6, 1);
}
void FUNCC(ff_h264_lowres_idct_add)(uint8_t *dst, int stride, DCTELEM *block){
FUNCC(idct_internal)(dst, block, stride, 8, 3, 1);
}
void FUNCC(ff_h264_lowres_idct_put)(uint8_t *dst, int stride, DCTELEM *block){
FUNCC(idct_internal)(dst, block, stride, 8, 3, 0);
}
void FUNCC(ff_h264_idct8_add)(uint8_t *_dst, DCTELEM *_block, int stride){
int i;
INIT_CLIP
pixel *dst = (pixel*)_dst;
dctcoef *block = (dctcoef*)_block;
stride /= sizeof(pixel);
block[0] += 32;
for( i = 0; i < 8; i++ )
{
const int a0 = block[i+0*8] + block[i+4*8];
const int a2 = block[i+0*8] - block[i+4*8];
const int a4 = (block[i+2*8]>>1) - block[i+6*8];
const int a6 = (block[i+6*8]>>1) + block[i+2*8];
const int b0 = a0 + a6;
const int b2 = a2 + a4;
const int b4 = a2 - a4;
const int b6 = a0 - a6;
const int a1 = -block[i+3*8] + block[i+5*8] - block[i+7*8] - (block[i+7*8]>>1);
const int a3 = block[i+1*8] + block[i+7*8] - block[i+3*8] - (block[i+3*8]>>1);
const int a5 = -block[i+1*8] + block[i+7*8] + block[i+5*8] + (block[i+5*8]>>1);
const int a7 = block[i+3*8] + block[i+5*8] + block[i+1*8] + (block[i+1*8]>>1);
const int b1 = (a7>>2) + a1;
const int b3 = a3 + (a5>>2);
const int b5 = (a3>>2) - a5;
const int b7 = a7 - (a1>>2);
block[i+0*8] = b0 + b7;
block[i+7*8] = b0 - b7;
block[i+1*8] = b2 + b5;
block[i+6*8] = b2 - b5;
block[i+2*8] = b4 + b3;
block[i+5*8] = b4 - b3;
block[i+3*8] = b6 + b1;
block[i+4*8] = b6 - b1;
}
for( i = 0; i < 8; i++ )
{
const int a0 = block[0+i*8] + block[4+i*8];
const int a2 = block[0+i*8] - block[4+i*8];
const int a4 = (block[2+i*8]>>1) - block[6+i*8];
const int a6 = (block[6+i*8]>>1) + block[2+i*8];
const int b0 = a0 + a6;
const int b2 = a2 + a4;
const int b4 = a2 - a4;
const int b6 = a0 - a6;
const int a1 = -block[3+i*8] + block[5+i*8] - block[7+i*8] - (block[7+i*8]>>1);
const int a3 = block[1+i*8] + block[7+i*8] - block[3+i*8] - (block[3+i*8]>>1);
const int a5 = -block[1+i*8] + block[7+i*8] + block[5+i*8] + (block[5+i*8]>>1);
const int a7 = block[3+i*8] + block[5+i*8] + block[1+i*8] + (block[1+i*8]>>1);
const int b1 = (a7>>2) + a1;
const int b3 = a3 + (a5>>2);
const int b5 = (a3>>2) - a5;
const int b7 = a7 - (a1>>2);
dst[i + 0*stride] = CLIP( dst[i + 0*stride] + ((b0 + b7) >> 6) );
dst[i + 1*stride] = CLIP( dst[i + 1*stride] + ((b2 + b5) >> 6) );
dst[i + 2*stride] = CLIP( dst[i + 2*stride] + ((b4 + b3) >> 6) );
dst[i + 3*stride] = CLIP( dst[i + 3*stride] + ((b6 + b1) >> 6) );
dst[i + 4*stride] = CLIP( dst[i + 4*stride] + ((b6 - b1) >> 6) );
dst[i + 5*stride] = CLIP( dst[i + 5*stride] + ((b4 - b3) >> 6) );
dst[i + 6*stride] = CLIP( dst[i + 6*stride] + ((b2 - b5) >> 6) );
dst[i + 7*stride] = CLIP( dst[i + 7*stride] + ((b0 - b7) >> 6) );
}
}
// assumes all AC coefs are 0
void FUNCC(ff_h264_idct_dc_add)(uint8_t *_dst, DCTELEM *block, int stride){
int i, j;
int dc = (((dctcoef*)block)[0] + 32) >> 6;
INIT_CLIP
pixel *dst = (pixel*)_dst;
stride /= sizeof(pixel);
for( j = 0; j < 4; j++ )
{
for( i = 0; i < 4; i++ )
dst[i] = CLIP( dst[i] + dc );
dst += stride;
}
}
void FUNCC(ff_h264_idct8_dc_add)(uint8_t *_dst, DCTELEM *block, int stride){
int i, j;
int dc = (((dctcoef*)block)[0] + 32) >> 6;
INIT_CLIP
pixel *dst = (pixel*)_dst;
stride /= sizeof(pixel);
for( j = 0; j < 8; j++ )
{
for( i = 0; i < 8; i++ )
dst[i] = CLIP( dst[i] + dc );
dst += stride;
}
}
void FUNCC(ff_h264_idct_add16)(uint8_t *dst, const int *block_offset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]){
int i;
for(i=0; i<16; i++){
int nnz = nnzc[ scan8[i] ];
if(nnz){
if(nnz==1 && ((dctcoef*)block)[i*16]) FUNCC(ff_h264_idct_dc_add)(dst + block_offset[i], block + i*16*sizeof(pixel), stride);
else FUNCC(idct_internal )(dst + block_offset[i], block + i*16*sizeof(pixel), stride, 4, 6, 1);
}
}
}
void FUNCC(ff_h264_idct_add16intra)(uint8_t *dst, const int *block_offset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]){
int i;
for(i=0; i<16; i++){
if(nnzc[ scan8[i] ]) FUNCC(idct_internal )(dst + block_offset[i], block + i*16*sizeof(pixel), stride, 4, 6, 1);
else if(((dctcoef*)block)[i*16]) FUNCC(ff_h264_idct_dc_add)(dst + block_offset[i], block + i*16*sizeof(pixel), stride);
}
}
void FUNCC(ff_h264_idct8_add4)(uint8_t *dst, const int *block_offset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]){
int i;
for(i=0; i<16; i+=4){
int nnz = nnzc[ scan8[i] ];
if(nnz){
if(nnz==1 && ((dctcoef*)block)[i*16]) FUNCC(ff_h264_idct8_dc_add)(dst + block_offset[i], block + i*16*sizeof(pixel), stride);
else FUNCC(ff_h264_idct8_add )(dst + block_offset[i], block + i*16*sizeof(pixel), stride);
}
}
}
void FUNCC(ff_h264_idct_add8)(uint8_t **dest, const int *block_offset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]){
int i;
for(i=16; i<16+8; i++){
if(nnzc[ scan8[i] ])
FUNCC(ff_h264_idct_add )(dest[(i&4)>>2] + block_offset[i], block + i*16*sizeof(pixel), stride);
else if(((dctcoef*)block)[i*16])
FUNCC(ff_h264_idct_dc_add)(dest[(i&4)>>2] + block_offset[i], block + i*16*sizeof(pixel), stride);
}
}
/**
* IDCT transforms the 16 dc values and dequantizes them.
* @param qp quantization parameter
*/
void FUNCC(ff_h264_luma_dc_dequant_idct)(DCTELEM *_output, DCTELEM *_input, int qmul){
#define stride 16
int i;
int temp[16];
static const uint8_t x_offset[4]={0, 2*stride, 8*stride, 10*stride};
dctcoef *input = (dctcoef*)_input;
dctcoef *output = (dctcoef*)_output;
for(i=0; i<4; i++){
const int z0= input[4*i+0] + input[4*i+1];
const int z1= input[4*i+0] - input[4*i+1];
const int z2= input[4*i+2] - input[4*i+3];
const int z3= input[4*i+2] + input[4*i+3];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z0-z3;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z1+z2;
}
for(i=0; i<4; i++){
const int offset= x_offset[i];
const int z0= temp[4*0+i] + temp[4*2+i];
const int z1= temp[4*0+i] - temp[4*2+i];
const int z2= temp[4*1+i] - temp[4*3+i];
const int z3= temp[4*1+i] + temp[4*3+i];
output[stride* 0+offset]= ((((z0 + z3)*qmul + 128 ) >> 8));
output[stride* 1+offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
output[stride* 4+offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
output[stride* 5+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
}
#undef stride
}
void FUNCC(ff_h264_chroma_dc_dequant_idct)(DCTELEM *_block, int qmul){
const int stride= 16*2;
const int xStride= 16;
int a,b,c,d,e;
dctcoef *block = (dctcoef*)_block;
a= block[stride*0 + xStride*0];
b= block[stride*0 + xStride*1];
c= block[stride*1 + xStride*0];
d= block[stride*1 + xStride*1];
e= a-b;
a= a+b;
b= c-d;
c= c+d;
block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
}