mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
13f5613e68
It can be tested with the model generated with below python script: import tensorflow as tf import numpy as np import imageio in_img = imageio.imread('input.jpeg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') x1 = tf.atan(x) x2 = tf.divide(x1, 3.1416/4) # pi/4 y = tf.identity(x2, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Guo Yejun <yejun.guo@intel.com> |
||
---|---|---|
.. | ||
convert_from_tensorflow.py | ||
convert_header.py | ||
convert.py |