1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavcodec/vp9.c
Ronald S. Bultje acafbb4dd2 vp9: fix crash if segmentation=1, keyframe/intraonly=1 and updatemap=0.
The reference map is never used in such cases, but we accidently copied
it anyway. This could cause crashes if this map has not yet been
allocated. Fixes trac ticket 3188.

Reviewed-by: Clément Bœsch <u@pkh.me>
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-12-24 11:43:53 +01:00

3811 lines
152 KiB
C

/*
* VP9 compatible video decoder
*
* Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
* Copyright (C) 2013 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"
#include "thread.h"
#include "videodsp.h"
#include "vp56.h"
#include "vp9.h"
#include "vp9data.h"
#include "vp9dsp.h"
#include "libavutil/avassert.h"
#define VP9_SYNCCODE 0x498342
enum CompPredMode {
PRED_SINGLEREF,
PRED_COMPREF,
PRED_SWITCHABLE,
};
enum BlockLevel {
BL_64X64,
BL_32X32,
BL_16X16,
BL_8X8,
};
enum BlockSize {
BS_64x64,
BS_64x32,
BS_32x64,
BS_32x32,
BS_32x16,
BS_16x32,
BS_16x16,
BS_16x8,
BS_8x16,
BS_8x8,
BS_8x4,
BS_4x8,
BS_4x4,
N_BS_SIZES,
};
struct VP9mvrefPair {
VP56mv mv[2];
int8_t ref[2];
};
typedef struct VP9Frame {
ThreadFrame tf;
AVBufferRef *extradata;
uint8_t *segmentation_map;
struct VP9mvrefPair *mv;
} VP9Frame;
struct VP9Filter {
uint8_t level[8 * 8];
uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
[8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
};
typedef struct VP9Block {
uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
enum FilterMode filter;
VP56mv mv[4 /* b_idx */][2 /* ref */];
enum BlockSize bs;
enum TxfmMode tx, uvtx;
enum BlockLevel bl;
enum BlockPartition bp;
} VP9Block;
typedef struct VP9Context {
VP9DSPContext dsp;
VideoDSPContext vdsp;
GetBitContext gb;
VP56RangeCoder c;
VP56RangeCoder *c_b;
unsigned c_b_size;
VP9Block *b_base, *b;
int pass, uses_2pass, last_uses_2pass;
int row, row7, col, col7;
uint8_t *dst[3];
ptrdiff_t y_stride, uv_stride;
// bitstream header
uint8_t profile;
uint8_t keyframe, last_keyframe;
uint8_t invisible;
uint8_t use_last_frame_mvs;
uint8_t errorres;
uint8_t colorspace;
uint8_t fullrange;
uint8_t intraonly;
uint8_t resetctx;
uint8_t refreshrefmask;
uint8_t highprecisionmvs;
enum FilterMode filtermode;
uint8_t allowcompinter;
uint8_t fixcompref;
uint8_t refreshctx;
uint8_t parallelmode;
uint8_t framectxid;
uint8_t refidx[3];
uint8_t signbias[3];
uint8_t varcompref[2];
ThreadFrame refs[8], next_refs[8];
#define CUR_FRAME 0
#define LAST_FRAME 1
VP9Frame frames[2];
struct {
uint8_t level;
int8_t sharpness;
uint8_t lim_lut[64];
uint8_t mblim_lut[64];
} filter;
struct {
uint8_t enabled;
int8_t mode[2];
int8_t ref[4];
} lf_delta;
uint8_t yac_qi;
int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
uint8_t lossless;
struct {
uint8_t enabled;
uint8_t temporal;
uint8_t absolute_vals;
uint8_t update_map;
struct {
uint8_t q_enabled;
uint8_t lf_enabled;
uint8_t ref_enabled;
uint8_t skip_enabled;
uint8_t ref_val;
int16_t q_val;
int8_t lf_val;
int16_t qmul[2][2];
uint8_t lflvl[4][2];
} feat[8];
} segmentation;
struct {
unsigned log2_tile_cols, log2_tile_rows;
unsigned tile_cols, tile_rows;
unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
} tiling;
unsigned sb_cols, sb_rows, rows, cols;
struct {
prob_context p;
uint8_t coef[4][2][2][6][6][3];
} prob_ctx[4];
struct {
prob_context p;
uint8_t coef[4][2][2][6][6][11];
uint8_t seg[7];
uint8_t segpred[3];
} prob;
struct {
unsigned y_mode[4][10];
unsigned uv_mode[10][10];
unsigned filter[4][3];
unsigned mv_mode[7][4];
unsigned intra[4][2];
unsigned comp[5][2];
unsigned single_ref[5][2][2];
unsigned comp_ref[5][2];
unsigned tx32p[2][4];
unsigned tx16p[2][3];
unsigned tx8p[2][2];
unsigned skip[3][2];
unsigned mv_joint[4];
struct {
unsigned sign[2];
unsigned classes[11];
unsigned class0[2];
unsigned bits[10][2];
unsigned class0_fp[2][4];
unsigned fp[4];
unsigned class0_hp[2];
unsigned hp[2];
} mv_comp[2];
unsigned partition[4][4][4];
unsigned coef[4][2][2][6][6][3];
unsigned eob[4][2][2][6][6][2];
} counts;
enum TxfmMode txfmmode;
enum CompPredMode comppredmode;
// contextual (left/above) cache
uint8_t left_partition_ctx[8], *above_partition_ctx;
uint8_t left_mode_ctx[16], *above_mode_ctx;
// FIXME maybe merge some of the below in a flags field?
uint8_t left_y_nnz_ctx[16], *above_y_nnz_ctx;
uint8_t left_uv_nnz_ctx[2][8], *above_uv_nnz_ctx[2];
uint8_t left_skip_ctx[8], *above_skip_ctx; // 1bit
uint8_t left_txfm_ctx[8], *above_txfm_ctx; // 2bit
uint8_t left_segpred_ctx[8], *above_segpred_ctx; // 1bit
uint8_t left_intra_ctx[8], *above_intra_ctx; // 1bit
uint8_t left_comp_ctx[8], *above_comp_ctx; // 1bit
uint8_t left_ref_ctx[8], *above_ref_ctx; // 2bit
uint8_t left_filter_ctx[8], *above_filter_ctx;
VP56mv left_mv_ctx[16][2], (*above_mv_ctx)[2];
// whole-frame cache
uint8_t *intra_pred_data[3];
struct VP9Filter *lflvl;
DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[71*80];
// block reconstruction intermediates
int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
VP56mv min_mv, max_mv;
DECLARE_ALIGNED(32, uint8_t, tmp_y)[64*64];
DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][32*32];
} VP9Context;
static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
{
{ 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
{ 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
}, {
{ 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
{ 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
}
};
static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
{
VP9Context *s = ctx->priv_data;
int ret, sz;
if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
return ret;
sz = 64 * s->sb_cols * s->sb_rows;
if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
ff_thread_release_buffer(ctx, &f->tf);
return AVERROR(ENOMEM);
}
f->segmentation_map = f->extradata->data;
f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
// retain segmentation map if it doesn't update
if (s->segmentation.enabled && !s->segmentation.update_map &&
!s->keyframe && !s->intraonly) {
memcpy(f->segmentation_map, s->frames[LAST_FRAME].segmentation_map, sz);
}
return 0;
}
static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
{
ff_thread_release_buffer(ctx, &f->tf);
av_buffer_unref(&f->extradata);
}
static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
{
int res;
if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
return res;
} else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
vp9_unref_frame(ctx, dst);
return AVERROR(ENOMEM);
}
dst->segmentation_map = src->segmentation_map;
dst->mv = src->mv;
return 0;
}
static int update_size(AVCodecContext *ctx, int w, int h)
{
VP9Context *s = ctx->priv_data;
uint8_t *p;
av_assert0(w > 0 && h > 0);
if (s->above_partition_ctx && w == ctx->width && h == ctx->height)
return 0;
ctx->width = w;
ctx->height = h;
s->sb_cols = (w + 63) >> 6;
s->sb_rows = (h + 63) >> 6;
s->cols = (w + 7) >> 3;
s->rows = (h + 7) >> 3;
#define assign(var, type, n) var = (type) p; p += s->sb_cols * n * sizeof(*var)
av_freep(&s->above_partition_ctx);
p = av_malloc(s->sb_cols * (240 + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
if (!p)
return AVERROR(ENOMEM);
assign(s->above_partition_ctx, uint8_t *, 8);
assign(s->above_skip_ctx, uint8_t *, 8);
assign(s->above_txfm_ctx, uint8_t *, 8);
assign(s->above_mode_ctx, uint8_t *, 16);
assign(s->above_y_nnz_ctx, uint8_t *, 16);
assign(s->above_uv_nnz_ctx[0], uint8_t *, 8);
assign(s->above_uv_nnz_ctx[1], uint8_t *, 8);
assign(s->intra_pred_data[0], uint8_t *, 64);
assign(s->intra_pred_data[1], uint8_t *, 32);
assign(s->intra_pred_data[2], uint8_t *, 32);
assign(s->above_segpred_ctx, uint8_t *, 8);
assign(s->above_intra_ctx, uint8_t *, 8);
assign(s->above_comp_ctx, uint8_t *, 8);
assign(s->above_ref_ctx, uint8_t *, 8);
assign(s->above_filter_ctx, uint8_t *, 8);
assign(s->lflvl, struct VP9Filter *, 1);
assign(s->above_mv_ctx, VP56mv(*)[2], 16);
#undef assign
av_free(s->b_base);
av_free(s->block_base);
if (ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode) {
int sbs = s->sb_cols * s->sb_rows;
s->b_base = av_malloc(sizeof(VP9Block) * s->cols * s->rows);
s->block_base = av_mallocz((64 * 64 + 128) * sbs * 3);
if (!s->b_base || !s->block_base)
return AVERROR(ENOMEM);
s->uvblock_base[0] = s->block_base + sbs * 64 * 64;
s->uvblock_base[1] = s->uvblock_base[0] + sbs * 32 * 32;
s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * 32 * 32);
s->uveob_base[0] = s->eob_base + 256 * sbs;
s->uveob_base[1] = s->uveob_base[0] + 64 * sbs;
} else {
s->b_base = av_malloc(sizeof(VP9Block));
s->block_base = av_mallocz((64 * 64 + 128) * 3);
if (!s->b_base || !s->block_base)
return AVERROR(ENOMEM);
s->uvblock_base[0] = s->block_base + 64 * 64;
s->uvblock_base[1] = s->uvblock_base[0] + 32 * 32;
s->eob_base = (uint8_t *) (s->uvblock_base[1] + 32 * 32);
s->uveob_base[0] = s->eob_base + 256;
s->uveob_base[1] = s->uveob_base[0] + 64;
}
return 0;
}
// for some reason the sign bit is at the end, not the start, of a bit sequence
static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
{
int v = get_bits(gb, n);
return get_bits1(gb) ? -v : v;
}
static av_always_inline int inv_recenter_nonneg(int v, int m)
{
return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
}
// differential forward probability updates
static int update_prob(VP56RangeCoder *c, int p)
{
static const int inv_map_table[254] = {
7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253,
};
int d;
/* This code is trying to do a differential probability update. For a
* current probability A in the range [1, 255], the difference to a new
* probability of any value can be expressed differentially as 1-A,255-A
* where some part of this (absolute range) exists both in positive as
* well as the negative part, whereas another part only exists in one
* half. We're trying to code this shared part differentially, i.e.
* times two where the value of the lowest bit specifies the sign, and
* the single part is then coded on top of this. This absolute difference
* then again has a value of [0,254], but a bigger value in this range
* indicates that we're further away from the original value A, so we
* can code this as a VLC code, since higher values are increasingly
* unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
* updates vs. the 'fine, exact' updates further down the range, which
* adds one extra dimension to this differential update model. */
if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 0;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 4) + 16;
} else if (!vp8_rac_get(c)) {
d = vp8_rac_get_uint(c, 5) + 32;
} else {
d = vp8_rac_get_uint(c, 7);
if (d >= 65)
d = (d << 1) - 65 + vp8_rac_get(c);
d += 64;
}
return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
}
static int decode_frame_header(AVCodecContext *ctx,
const uint8_t *data, int size, int *ref)
{
VP9Context *s = ctx->priv_data;
int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
int last_invisible;
const uint8_t *data2;
/* general header */
if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
return res;
}
if (get_bits(&s->gb, 2) != 0x2) { // frame marker
av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
return AVERROR_INVALIDDATA;
}
s->profile = get_bits1(&s->gb);
if (get_bits1(&s->gb)) { // reserved bit
av_log(ctx, AV_LOG_ERROR, "Reserved bit should be zero\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
*ref = get_bits(&s->gb, 3);
return 0;
}
s->last_uses_2pass = s->uses_2pass;
s->last_keyframe = s->keyframe;
s->keyframe = !get_bits1(&s->gb);
last_invisible = s->invisible;
s->invisible = !get_bits1(&s->gb);
s->errorres = get_bits1(&s->gb);
// FIXME disable this upon resolution change
s->use_last_frame_mvs = !s->errorres && !last_invisible;
if (s->keyframe) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
s->colorspace = get_bits(&s->gb, 3);
if (s->colorspace == 7) { // RGB = profile 1
av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile 0\n");
return AVERROR_INVALIDDATA;
}
s->fullrange = get_bits1(&s->gb);
// for profile 1, here follows the subsampling bits
s->refreshrefmask = 0xff;
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
if (s->intraonly) {
if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
return AVERROR_INVALIDDATA;
}
s->refreshrefmask = get_bits(&s->gb, 8);
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
} else {
s->refreshrefmask = get_bits(&s->gb, 8);
s->refidx[0] = get_bits(&s->gb, 3);
s->signbias[0] = get_bits1(&s->gb);
s->refidx[1] = get_bits(&s->gb, 3);
s->signbias[1] = get_bits1(&s->gb);
s->refidx[2] = get_bits(&s->gb, 3);
s->signbias[2] = get_bits1(&s->gb);
if (!s->refs[s->refidx[0]].f->data[0] ||
!s->refs[s->refidx[1]].f->data[0] ||
!s->refs[s->refidx[2]].f->data[0]) {
av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
return AVERROR_INVALIDDATA;
}
if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[0]].f->width;
h = s->refs[s->refidx[0]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[1]].f->width;
h = s->refs[s->refidx[1]].f->height;
} else if (get_bits1(&s->gb)) {
w = s->refs[s->refidx[2]].f->width;
h = s->refs[s->refidx[2]].f->height;
} else {
w = get_bits(&s->gb, 16) + 1;
h = get_bits(&s->gb, 16) + 1;
}
if (get_bits1(&s->gb)) // display size
skip_bits(&s->gb, 32);
s->highprecisionmvs = get_bits1(&s->gb);
s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
get_bits(&s->gb, 2);
s->allowcompinter = s->signbias[0] != s->signbias[1] ||
s->signbias[0] != s->signbias[2];
if (s->allowcompinter) {
if (s->signbias[0] == s->signbias[1]) {
s->fixcompref = 2;
s->varcompref[0] = 0;
s->varcompref[1] = 1;
} else if (s->signbias[0] == s->signbias[2]) {
s->fixcompref = 1;
s->varcompref[0] = 0;
s->varcompref[1] = 2;
} else {
s->fixcompref = 0;
s->varcompref[0] = 1;
s->varcompref[1] = 2;
}
}
}
}
s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
s->framectxid = c = get_bits(&s->gb, 2);
/* loopfilter header data */
s->filter.level = get_bits(&s->gb, 6);
sharp = get_bits(&s->gb, 3);
// if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
// the old cache values since they are still valid
if (s->filter.sharpness != sharp)
memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
s->filter.sharpness = sharp;
if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
if (get_bits1(&s->gb)) {
for (i = 0; i < 4; i++)
if (get_bits1(&s->gb))
s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
for (i = 0; i < 2; i++)
if (get_bits1(&s->gb))
s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
}
} else {
memset(&s->lf_delta, 0, sizeof(s->lf_delta));
}
/* quantization header data */
s->yac_qi = get_bits(&s->gb, 8);
s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
/* segmentation header info */
if ((s->segmentation.enabled = get_bits1(&s->gb))) {
if ((s->segmentation.update_map = get_bits1(&s->gb))) {
for (i = 0; i < 7; i++)
s->prob.seg[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
if ((s->segmentation.temporal = get_bits1(&s->gb)))
for (i = 0; i < 3; i++)
s->prob.segpred[i] = get_bits1(&s->gb) ?
get_bits(&s->gb, 8) : 255;
}
if (get_bits1(&s->gb)) {
s->segmentation.absolute_vals = get_bits1(&s->gb);
for (i = 0; i < 8; i++) {
if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
}
}
} else {
s->segmentation.feat[0].q_enabled = 0;
s->segmentation.feat[0].lf_enabled = 0;
s->segmentation.feat[0].skip_enabled = 0;
s->segmentation.feat[0].ref_enabled = 0;
}
// set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
int qyac, qydc, quvac, quvdc, lflvl, sh;
if (s->segmentation.feat[i].q_enabled) {
if (s->segmentation.absolute_vals)
qyac = s->segmentation.feat[i].q_val;
else
qyac = s->yac_qi + s->segmentation.feat[i].q_val;
} else {
qyac = s->yac_qi;
}
qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
qyac = av_clip_uintp2(qyac, 8);
s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[qydc];
s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[qyac];
s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[quvdc];
s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[quvac];
sh = s->filter.level >= 32;
if (s->segmentation.feat[i].lf_enabled) {
if (s->segmentation.absolute_vals)
lflvl = s->segmentation.feat[i].lf_val;
else
lflvl = s->filter.level + s->segmentation.feat[i].lf_val;
} else {
lflvl = s->filter.level;
}
s->segmentation.feat[i].lflvl[0][0] =
s->segmentation.feat[i].lflvl[0][1] =
av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
for (j = 1; j < 4; j++) {
s->segmentation.feat[i].lflvl[j][0] =
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
s->lf_delta.mode[0]) << sh), 6);
s->segmentation.feat[i].lflvl[j][1] =
av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
s->lf_delta.mode[1]) << sh), 6);
}
}
/* tiling info */
if ((res = update_size(ctx, w, h)) < 0) {
av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d\n", w, h);
return res;
}
for (s->tiling.log2_tile_cols = 0;
(s->sb_cols >> s->tiling.log2_tile_cols) > 64;
s->tiling.log2_tile_cols++) ;
for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
max = FFMAX(0, max - 1);
while (max > s->tiling.log2_tile_cols) {
if (get_bits1(&s->gb))
s->tiling.log2_tile_cols++;
else
break;
}
s->tiling.log2_tile_rows = decode012(&s->gb);
s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
sizeof(VP56RangeCoder) * s->tiling.tile_cols);
if (!s->c_b) {
av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
return AVERROR(ENOMEM);
}
}
if (s->keyframe || s->errorres || s->intraonly) {
s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
s->prob_ctx[3].p = vp9_default_probs;
memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
sizeof(vp9_default_coef_probs));
memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
sizeof(vp9_default_coef_probs));
memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
sizeof(vp9_default_coef_probs));
memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
sizeof(vp9_default_coef_probs));
}
// next 16 bits is size of the rest of the header (arith-coded)
size2 = get_bits(&s->gb, 16);
data2 = align_get_bits(&s->gb);
if (size2 > size - (data2 - data)) {
av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
return AVERROR_INVALIDDATA;
}
ff_vp56_init_range_decoder(&s->c, data2, size2);
if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
return AVERROR_INVALIDDATA;
}
if (s->keyframe || s->intraonly) {
memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob));
} else {
memset(&s->counts, 0, sizeof(s->counts));
}
// FIXME is it faster to not copy here, but do it down in the fw updates
// as explicit copies if the fw update is missing (and skip the copy upon
// fw update)?
s->prob.p = s->prob_ctx[c].p;
// txfm updates
if (s->lossless) {
s->txfmmode = TX_4X4;
} else {
s->txfmmode = vp8_rac_get_uint(&s->c, 2);
if (s->txfmmode == 3)
s->txfmmode += vp8_rac_get(&s->c);
if (s->txfmmode == TX_SWITCHABLE) {
for (i = 0; i < 2; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx16p[i][j] =
update_prob(&s->c, s->prob.p.tx16p[i][j]);
for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.tx32p[i][j] =
update_prob(&s->c, s->prob.p.tx32p[i][j]);
}
}
// coef updates
for (i = 0; i < 4; i++) {
uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
if (vp8_rac_get(&s->c)) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m >= 3 && l == 0) // dc only has 3 pt
break;
for (n = 0; n < 3; n++) {
if (vp56_rac_get_prob_branchy(&s->c, 252)) {
p[n] = update_prob(&s->c, r[n]);
} else {
p[n] = r[n];
}
}
p[3] = 0;
}
} else {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *p = s->prob.coef[i][j][k][l][m];
uint8_t *r = ref[j][k][l][m];
if (m > 3 && l == 0) // dc only has 3 pt
break;
memcpy(p, r, 3);
p[3] = 0;
}
}
if (s->txfmmode == i)
break;
}
// mode updates
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
if (!s->keyframe && !s->intraonly) {
for (i = 0; i < 7; i++)
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_mode[i][j] =
update_prob(&s->c, s->prob.p.mv_mode[i][j]);
if (s->filtermode == FILTER_SWITCHABLE)
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.filter[i][j] =
update_prob(&s->c, s->prob.p.filter[i][j]);
for (i = 0; i < 4; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
if (s->allowcompinter) {
s->comppredmode = vp8_rac_get(&s->c);
if (s->comppredmode)
s->comppredmode += vp8_rac_get(&s->c);
if (s->comppredmode == PRED_SWITCHABLE)
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp[i] =
update_prob(&s->c, s->prob.p.comp[i]);
} else {
s->comppredmode = PRED_SINGLEREF;
}
if (s->comppredmode != PRED_COMPREF) {
for (i = 0; i < 5; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][0] =
update_prob(&s->c, s->prob.p.single_ref[i][0]);
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.single_ref[i][1] =
update_prob(&s->c, s->prob.p.single_ref[i][1]);
}
}
if (s->comppredmode != PRED_SINGLEREF) {
for (i = 0; i < 5; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.comp_ref[i] =
update_prob(&s->c, s->prob.p.comp_ref[i]);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 9; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.y_mode[i][j] =
update_prob(&s->c, s->prob.p.y_mode[i][j]);
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.partition[3 - i][j][k] =
update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
// mv fields don't use the update_prob subexp model for some reason
for (i = 0; i < 3; i++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].classes[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 10; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].bits[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 3; k++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_fp[j][k] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
for (j = 0; j < 3; j++)
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].fp[j] =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
if (s->highprecisionmvs) {
for (i = 0; i < 2; i++) {
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].class0_hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
if (vp56_rac_get_prob_branchy(&s->c, 252))
s->prob.p.mv_comp[i].hp =
(vp8_rac_get_uint(&s->c, 7) << 1) | 1;
}
}
}
return (data2 - data) + size2;
}
static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
VP9Context *s)
{
dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
}
static void find_ref_mvs(VP9Context *s,
VP56mv *pmv, int ref, int z, int idx, int sb)
{
static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
[BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
{ -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
[BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
[BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
{ -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
[BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
[BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
{ -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
[BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
{ 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
[BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
{ -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
[BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
{ 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
[BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
{ -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
[BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
[BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
[BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
[BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
{ -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
};
VP9Block *b = s->b;
int row = s->row, col = s->col, row7 = s->row7;
const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
#define INVALID_MV 0x80008000U
uint32_t mem = INVALID_MV;
int i;
#define RETURN_DIRECT_MV(mv) \
do { \
uint32_t m = AV_RN32A(&mv); \
if (!idx) { \
AV_WN32A(pmv, m); \
return; \
} else if (mem == INVALID_MV) { \
mem = m; \
} else if (m != mem) { \
AV_WN32A(pmv, m); \
return; \
} \
} while (0)
if (sb >= 0) {
if (sb == 2 || sb == 1) {
RETURN_DIRECT_MV(b->mv[0][z]);
} else if (sb == 3) {
RETURN_DIRECT_MV(b->mv[2][z]);
RETURN_DIRECT_MV(b->mv[1][z]);
RETURN_DIRECT_MV(b->mv[0][z]);
}
#define RETURN_MV(mv) \
do { \
if (sb > 0) { \
VP56mv tmp; \
uint32_t m; \
clamp_mv(&tmp, &mv, s); \
m = AV_RN32A(&tmp); \
if (!idx) { \
AV_WN32A(pmv, m); \
return; \
} else if (mem == INVALID_MV) { \
mem = m; \
} else if (m != mem) { \
AV_WN32A(pmv, m); \
return; \
} \
} else { \
uint32_t m = AV_RN32A(&mv); \
if (!idx) { \
clamp_mv(pmv, &mv, s); \
return; \
} else if (mem == INVALID_MV) { \
mem = m; \
} else if (m != mem) { \
clamp_mv(pmv, &mv, s); \
return; \
} \
} \
} while (0)
if (row > 0) {
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
if (mv->ref[0] == ref) {
RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
} else if (mv->ref[1] == ref) {
RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
}
}
if (col > s->tiling.tile_col_start) {
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
if (mv->ref[0] == ref) {
RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
} else if (mv->ref[1] == ref) {
RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
}
}
i = 2;
} else {
i = 0;
}
// previously coded MVs in this neighbourhood, using same reference frame
for (; i < 8; i++) {
int c = p[i][0] + col, r = p[i][1] + row;
if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
if (mv->ref[0] == ref) {
RETURN_MV(mv->mv[0]);
} else if (mv->ref[1] == ref) {
RETURN_MV(mv->mv[1]);
}
}
}
// MV at this position in previous frame, using same reference frame
if (s->use_last_frame_mvs) {
struct VP9mvrefPair *mv = &s->frames[LAST_FRAME].mv[row * s->sb_cols * 8 + col];
if (!s->last_uses_2pass)
ff_thread_await_progress(&s->frames[LAST_FRAME].tf, row >> 3, 0);
if (mv->ref[0] == ref) {
RETURN_MV(mv->mv[0]);
} else if (mv->ref[1] == ref) {
RETURN_MV(mv->mv[1]);
}
}
#define RETURN_SCALE_MV(mv, scale) \
do { \
if (scale) { \
VP56mv mv_temp = { -mv.x, -mv.y }; \
RETURN_MV(mv_temp); \
} else { \
RETURN_MV(mv); \
} \
} while (0)
// previously coded MVs in this neighbourhood, using different reference frame
for (i = 0; i < 8; i++) {
int c = p[i][0] + col, r = p[i][1] + row;
if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
if (mv->ref[0] != ref && mv->ref[0] >= 0) {
RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
}
if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
// BUG - libvpx has this condition regardless of whether
// we used the first ref MV and pre-scaling
AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
}
}
}
// MV at this position in previous frame, using different reference frame
if (s->use_last_frame_mvs) {
struct VP9mvrefPair *mv = &s->frames[LAST_FRAME].mv[row * s->sb_cols * 8 + col];
// no need to await_progress, because we already did that above
if (mv->ref[0] != ref && mv->ref[0] >= 0) {
RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
}
if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
// BUG - libvpx has this condition regardless of whether
// we used the first ref MV and pre-scaling
AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
}
}
AV_ZERO32(pmv);
#undef INVALID_MV
#undef RETURN_MV
#undef RETURN_SCALE_MV
}
static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
{
int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
s->prob.p.mv_comp[idx].classes);
s->counts.mv_comp[idx].sign[sign]++;
s->counts.mv_comp[idx].classes[c]++;
if (c) {
int m;
for (n = 0, m = 0; m < c; m++) {
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
n |= bit << m;
s->counts.mv_comp[idx].bits[m][bit]++;
}
n <<= 3;
bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
n |= bit << 1;
s->counts.mv_comp[idx].fp[bit]++;
if (hp) {
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
s->counts.mv_comp[idx].hp[bit]++;
n |= bit;
} else {
n |= 1;
// bug in libvpx - we count for bw entropy purposes even if the
// bit wasn't coded
s->counts.mv_comp[idx].hp[1]++;
}
n += 8 << c;
} else {
n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
s->counts.mv_comp[idx].class0[n]++;
bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
s->prob.p.mv_comp[idx].class0_fp[n]);
s->counts.mv_comp[idx].class0_fp[n][bit]++;
n = (n << 3) | (bit << 1);
if (hp) {
bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
s->counts.mv_comp[idx].class0_hp[bit]++;
n |= bit;
} else {
n |= 1;
// bug in libvpx - we count for bw entropy purposes even if the
// bit wasn't coded
s->counts.mv_comp[idx].class0_hp[1]++;
}
}
return sign ? -(n + 1) : (n + 1);
}
static void fill_mv(VP9Context *s,
VP56mv *mv, int mode, int sb)
{
VP9Block *b = s->b;
if (mode == ZEROMV) {
memset(mv, 0, sizeof(*mv) * 2);
} else {
int hp;
// FIXME cache this value and reuse for other subblocks
find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
mode == NEWMV ? -1 : sb);
// FIXME maybe move this code into find_ref_mvs()
if ((mode == NEWMV || sb == -1) &&
!(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
if (mv[0].y & 1) {
if (mv[0].y < 0)
mv[0].y++;
else
mv[0].y--;
}
if (mv[0].x & 1) {
if (mv[0].x < 0)
mv[0].x++;
else
mv[0].x--;
}
}
if (mode == NEWMV) {
enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
s->prob.p.mv_joint);
s->counts.mv_joint[j]++;
if (j >= MV_JOINT_V)
mv[0].y += read_mv_component(s, 0, hp);
if (j & 1)
mv[0].x += read_mv_component(s, 1, hp);
}
if (b->comp) {
// FIXME cache this value and reuse for other subblocks
find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
mode == NEWMV ? -1 : sb);
if ((mode == NEWMV || sb == -1) &&
!(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
if (mv[1].y & 1) {
if (mv[1].y < 0)
mv[1].y++;
else
mv[1].y--;
}
if (mv[1].x & 1) {
if (mv[1].x < 0)
mv[1].x++;
else
mv[1].x--;
}
}
if (mode == NEWMV) {
enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
s->prob.p.mv_joint);
s->counts.mv_joint[j]++;
if (j >= MV_JOINT_V)
mv[1].y += read_mv_component(s, 0, hp);
if (j & 1)
mv[1].x += read_mv_component(s, 1, hp);
}
}
}
}
static void decode_mode(AVCodecContext *ctx)
{
static const uint8_t left_ctx[N_BS_SIZES] = {
0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
};
static const uint8_t above_ctx[N_BS_SIZES] = {
0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
};
static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
};
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col, row7 = s->row7;
enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
int w4 = FFMIN(s->cols - col, bwh_tab[1][b->bs][0]);
int h4 = FFMIN(s->rows - row, bwh_tab[1][b->bs][1]), y;
int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
if (!s->segmentation.enabled) {
b->seg_id = 0;
} else if (s->keyframe || s->intraonly) {
b->seg_id = s->segmentation.update_map ?
vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg) : 0;
} else if (!s->segmentation.update_map ||
(s->segmentation.temporal &&
vp56_rac_get_prob_branchy(&s->c,
s->prob.segpred[s->above_segpred_ctx[col] +
s->left_segpred_ctx[row7]]))) {
int pred = 8, x;
uint8_t *refsegmap = s->frames[LAST_FRAME].segmentation_map;
if (!s->last_uses_2pass)
ff_thread_await_progress(&s->frames[LAST_FRAME].tf, row >> 3, 0);
for (y = 0; y < h4; y++)
for (x = 0; x < w4; x++)
pred = FFMIN(pred, refsegmap[(y + row) * 8 * s->sb_cols + x + col]);
av_assert1(pred < 8);
b->seg_id = pred;
memset(&s->above_segpred_ctx[col], 1, w4);
memset(&s->left_segpred_ctx[row7], 1, h4);
} else {
b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
s->prob.seg);
memset(&s->above_segpred_ctx[col], 0, w4);
memset(&s->left_segpred_ctx[row7], 0, h4);
}
if ((s->segmentation.enabled && s->segmentation.update_map) || s->keyframe) {
uint8_t *segmap = s->frames[CUR_FRAME].segmentation_map;
for (y = 0; y < h4; y++)
memset(&segmap[(y + row) * 8 * s->sb_cols + col], b->seg_id, w4);
}
b->skip = s->segmentation.enabled &&
s->segmentation.feat[b->seg_id].skip_enabled;
if (!b->skip) {
int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
s->counts.skip[c][b->skip]++;
}
if (s->keyframe || s->intraonly) {
b->intra = 1;
} else if (s->segmentation.feat[b->seg_id].ref_enabled) {
b->intra = !s->segmentation.feat[b->seg_id].ref_val;
} else {
int c, bit;
if (have_a && have_l) {
c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
c += (c == 2);
} else {
c = have_a ? 2 * s->above_intra_ctx[col] :
have_l ? 2 * s->left_intra_ctx[row7] : 0;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
s->counts.intra[c][bit]++;
b->intra = !bit;
}
if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
int c;
if (have_a) {
if (have_l) {
c = (s->above_skip_ctx[col] ? max_tx :
s->above_txfm_ctx[col]) +
(s->left_skip_ctx[row7] ? max_tx :
s->left_txfm_ctx[row7]) > max_tx;
} else {
c = s->above_skip_ctx[col] ? 1 :
(s->above_txfm_ctx[col] * 2 > max_tx);
}
} else if (have_l) {
c = s->left_skip_ctx[row7] ? 1 :
(s->left_txfm_ctx[row7] * 2 > max_tx);
} else {
c = 1;
}
switch (max_tx) {
case TX_32X32:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
if (b->tx) {
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
if (b->tx == 2)
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
}
s->counts.tx32p[c][b->tx]++;
break;
case TX_16X16:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
if (b->tx)
b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
s->counts.tx16p[c][b->tx]++;
break;
case TX_8X8:
b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
s->counts.tx8p[c][b->tx]++;
break;
case TX_4X4:
b->tx = TX_4X4;
break;
}
} else {
b->tx = FFMIN(max_tx, s->txfmmode);
}
if (s->keyframe || s->intraonly) {
uint8_t *a = &s->above_mode_ctx[col * 2];
uint8_t *l = &s->left_mode_ctx[(row7) << 1];
b->comp = 0;
if (b->bs > BS_8x8) {
// FIXME the memory storage intermediates here aren't really
// necessary, they're just there to make the code slightly
// simpler for now
b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_ymode_probs[a[0]][l[0]]);
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
l[0] = a[1] = b->mode[1];
} else {
l[0] = a[1] = b->mode[1] = b->mode[0];
}
if (b->bs != BS_4x8) {
b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_ymode_probs[a[0]][l[1]]);
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
l[1] = a[1] = b->mode[3];
} else {
l[1] = a[1] = b->mode[3] = b->mode[2];
}
} else {
b->mode[2] = b->mode[0];
l[1] = a[1] = b->mode[3] = b->mode[1];
}
} else {
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_ymode_probs[*a][*l]);
b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
// FIXME this can probably be optimized
memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
}
b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
vp9_default_kf_uvmode_probs[b->mode[3]]);
} else if (b->intra) {
b->comp = 0;
if (b->bs > BS_8x8) {
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[0]]++;
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[1]]++;
} else {
b->mode[1] = b->mode[0];
}
if (b->bs != BS_4x8) {
b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[2]]++;
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.y_mode[0]);
s->counts.y_mode[0][b->mode[3]]++;
} else {
b->mode[3] = b->mode[2];
}
} else {
b->mode[2] = b->mode[0];
b->mode[3] = b->mode[1];
}
} else {
static const uint8_t size_group[10] = {
3, 3, 3, 3, 2, 2, 2, 1, 1, 1
};
int sz = size_group[b->bs];
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.y_mode[sz]);
b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
s->counts.y_mode[sz][b->mode[3]]++;
}
b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
s->prob.p.uv_mode[b->mode[3]]);
s->counts.uv_mode[b->mode[3]][b->uvmode]++;
} else {
static const uint8_t inter_mode_ctx_lut[14][14] = {
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
};
if (s->segmentation.feat[b->seg_id].ref_enabled) {
av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
b->comp = 0;
b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
} else {
// read comp_pred flag
if (s->comppredmode != PRED_SWITCHABLE) {
b->comp = s->comppredmode == PRED_COMPREF;
} else {
int c;
// FIXME add intra as ref=0xff (or -1) to make these easier?
if (have_a) {
if (have_l) {
if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
c = 4;
} else if (s->above_comp_ctx[col]) {
c = 2 + (s->left_intra_ctx[row7] ||
s->left_ref_ctx[row7] == s->fixcompref);
} else if (s->left_comp_ctx[row7]) {
c = 2 + (s->above_intra_ctx[col] ||
s->above_ref_ctx[col] == s->fixcompref);
} else {
c = (!s->above_intra_ctx[col] &&
s->above_ref_ctx[col] == s->fixcompref) ^
(!s->left_intra_ctx[row7] &&
s->left_ref_ctx[row & 7] == s->fixcompref);
}
} else {
c = s->above_comp_ctx[col] ? 3 :
(!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
}
} else if (have_l) {
c = s->left_comp_ctx[row7] ? 3 :
(!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
} else {
c = 1;
}
b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
s->counts.comp[c][b->comp]++;
}
// read actual references
// FIXME probably cache a few variables here to prevent repetitive
// memory accesses below
if (b->comp) /* two references */ {
int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
b->ref[fix_idx] = s->fixcompref;
// FIXME can this codeblob be replaced by some sort of LUT?
if (have_a) {
if (have_l) {
if (s->above_intra_ctx[col]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else {
c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
}
} else if (s->left_intra_ctx[row7]) {
c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
} else {
int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
if (refl == refa && refa == s->varcompref[1]) {
c = 0;
} else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
(refl == s->fixcompref && refa == s->varcompref[0])) {
c = 4;
} else {
c = (refa == refl) ? 3 : 1;
}
} else if (!s->left_comp_ctx[row7]) {
if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
c = 1;
} else {
c = (refl == s->varcompref[1] &&
refa != s->varcompref[1]) ? 2 : 4;
}
} else if (!s->above_comp_ctx[col]) {
if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
c = 1;
} else {
c = (refa == s->varcompref[1] &&
refl != s->varcompref[1]) ? 2 : 4;
}
} else {
c = (refl == refa) ? 4 : 2;
}
}
} else {
if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
} else {
c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
}
}
} else if (have_l) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
} else {
c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
b->ref[var_idx] = s->varcompref[bit];
s->counts.comp_ref[c][bit]++;
} else /* single reference */ {
int bit, c;
if (have_a && !s->above_intra_ctx[col]) {
if (have_l && !s->left_intra_ctx[row7]) {
if (s->left_comp_ctx[row7]) {
if (s->above_comp_ctx[col]) {
c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
!s->above_ref_ctx[col]);
} else {
c = (3 * !s->above_ref_ctx[col]) +
(!s->fixcompref || !s->left_ref_ctx[row7]);
}
} else if (s->above_comp_ctx[col]) {
c = (3 * !s->left_ref_ctx[row7]) +
(!s->fixcompref || !s->above_ref_ctx[col]);
} else {
c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
}
} else if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
} else {
c = 4 * (!s->above_ref_ctx[col]);
}
} else if (have_l && !s->left_intra_ctx[row7]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
} else {
c = 4 * (!s->left_ref_ctx[row7]);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
s->counts.single_ref[c][0][bit]++;
if (!bit) {
b->ref[0] = 0;
} else {
// FIXME can this codeblob be replaced by some sort of LUT?
if (have_a) {
if (have_l) {
if (s->left_intra_ctx[row7]) {
if (s->above_intra_ctx[col]) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 1 + 2 * (s->fixcompref == 1 ||
s->above_ref_ctx[col] == 1);
} else if (!s->above_ref_ctx[col]) {
c = 3;
} else {
c = 4 * (s->above_ref_ctx[col] == 1);
}
} else if (s->above_intra_ctx[col]) {
if (s->left_intra_ctx[row7]) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 1 + 2 * (s->fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else if (!s->left_ref_ctx[row7]) {
c = 3;
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else if (s->above_comp_ctx[col]) {
if (s->left_comp_ctx[row7]) {
if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
c = 3 * (s->fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else {
c = 2;
}
} else if (!s->left_ref_ctx[row7]) {
c = 1 + 2 * (s->fixcompref == 1 ||
s->above_ref_ctx[col] == 1);
} else {
c = 3 * (s->left_ref_ctx[row7] == 1) +
(s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
}
} else if (s->left_comp_ctx[row7]) {
if (!s->above_ref_ctx[col]) {
c = 1 + 2 * (s->fixcompref == 1 ||
s->left_ref_ctx[row7] == 1);
} else {
c = 3 * (s->above_ref_ctx[col] == 1) +
(s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
}
} else if (!s->above_ref_ctx[col]) {
if (!s->left_ref_ctx[row7]) {
c = 3;
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else if (!s->left_ref_ctx[row7]) {
c = 4 * (s->above_ref_ctx[col] == 1);
} else {
c = 2 * (s->left_ref_ctx[row7] == 1) +
2 * (s->above_ref_ctx[col] == 1);
}
} else {
if (s->above_intra_ctx[col] ||
(!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
c = 2;
} else if (s->above_comp_ctx[col]) {
c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
} else {
c = 4 * (s->above_ref_ctx[col] == 1);
}
}
} else if (have_l) {
if (s->left_intra_ctx[row7] ||
(!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
c = 2;
} else if (s->left_comp_ctx[row7]) {
c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
} else {
c = 4 * (s->left_ref_ctx[row7] == 1);
}
} else {
c = 2;
}
bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
s->counts.single_ref[c][1][bit]++;
b->ref[0] = 1 + bit;
}
}
}
if (b->bs <= BS_8x8) {
if (s->segmentation.feat[b->seg_id].skip_enabled) {
b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
} else {
static const uint8_t off[10] = {
3, 0, 0, 1, 0, 0, 0, 0, 0, 0
};
// FIXME this needs to use the LUT tables from find_ref_mvs
// because not all are -1,0/0,-1
int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
[s->left_mode_ctx[row7 + off[b->bs]]];
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
s->counts.mv_mode[c][b->mode[0] - 10]++;
}
}
if (s->filtermode == FILTER_SWITCHABLE) {
int c;
if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
s->left_filter_ctx[row7] : 3;
} else {
c = s->above_filter_ctx[col];
}
} else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
c = s->left_filter_ctx[row7];
} else {
c = 3;
}
b->filter = vp8_rac_get_tree(&s->c, vp9_filter_tree,
s->prob.p.filter[c]);
s->counts.filter[c][b->filter]++;
} else {
b->filter = s->filtermode;
}
if (b->bs > BS_8x8) {
int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[0] - 10]++;
fill_mv(s, b->mv[0], b->mode[0], 0);
if (b->bs != BS_8x4) {
b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[1] - 10]++;
fill_mv(s, b->mv[1], b->mode[1], 1);
} else {
b->mode[1] = b->mode[0];
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
}
if (b->bs != BS_4x8) {
b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[2] - 10]++;
fill_mv(s, b->mv[2], b->mode[2], 2);
if (b->bs != BS_8x4) {
b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
s->prob.p.mv_mode[c]);
s->counts.mv_mode[c][b->mode[3] - 10]++;
fill_mv(s, b->mv[3], b->mode[3], 3);
} else {
b->mode[3] = b->mode[2];
AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
}
} else {
b->mode[2] = b->mode[0];
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
b->mode[3] = b->mode[1];
AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
}
} else {
fill_mv(s, b->mv[0], b->mode[0], -1);
AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
}
}
// FIXME this can probably be optimized
memset(&s->above_skip_ctx[col], b->skip, w4);
memset(&s->left_skip_ctx[row7], b->skip, h4);
memset(&s->above_txfm_ctx[col], b->tx, w4);
memset(&s->left_txfm_ctx[row7], b->tx, h4);
memset(&s->above_partition_ctx[col], above_ctx[b->bs], w4);
memset(&s->left_partition_ctx[row7], left_ctx[b->bs], h4);
if (!s->keyframe && !s->intraonly) {
memset(&s->above_intra_ctx[col], b->intra, w4);
memset(&s->left_intra_ctx[row7], b->intra, h4);
memset(&s->above_comp_ctx[col], b->comp, w4);
memset(&s->left_comp_ctx[row7], b->comp, h4);
memset(&s->above_mode_ctx[col], b->mode[3], w4);
memset(&s->left_mode_ctx[row7], b->mode[3], h4);
if (s->filtermode == FILTER_SWITCHABLE && !b->intra ) {
memset(&s->above_filter_ctx[col], b->filter, w4);
memset(&s->left_filter_ctx[row7], b->filter, h4);
b->filter = vp9_filter_lut[b->filter];
}
if (b->bs > BS_8x8) {
int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
} else {
int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
for (n = 0; n < w4 * 2; n++) {
AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
}
for (n = 0; n < h4 * 2; n++) {
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
}
}
if (!b->intra) { // FIXME write 0xff or -1 if intra, so we can use this
// as a direct check in above branches
int vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
memset(&s->above_ref_ctx[col], vref, w4);
memset(&s->left_ref_ctx[row7], vref, h4);
}
}
// FIXME kinda ugly
for (y = 0; y < h4; y++) {
int x, o = (row + y) * s->sb_cols * 8 + col;
struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
if (b->intra) {
for (x = 0; x < w4; x++) {
mv[x].ref[0] =
mv[x].ref[1] = -1;
}
} else if (b->comp) {
for (x = 0; x < w4; x++) {
mv[x].ref[0] = b->ref[0];
mv[x].ref[1] = b->ref[1];
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
}
} else {
for (x = 0; x < w4; x++) {
mv[x].ref[0] = b->ref[0];
mv[x].ref[1] = -1;
AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
}
}
}
}
// FIXME remove tx argument, and merge cnt/eob arguments?
static int decode_coeffs_b(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
enum TxfmMode tx, unsigned (*cnt)[6][3],
unsigned (*eob)[6][2], uint8_t (*p)[6][11],
int nnz, const int16_t *scan, const int16_t (*nb)[2],
const int16_t *band_counts, const int16_t *qmul)
{
int i = 0, band = 0, band_left = band_counts[band];
uint8_t *tp = p[0][nnz];
uint8_t cache[1024];
do {
int val, rc;
val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
eob[band][nnz][val]++;
if (!val)
break;
skip_eob:
if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
cnt[band][nnz][0]++;
if (!--band_left)
band_left = band_counts[++band];
cache[scan[i]] = 0;
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
tp = p[band][nnz];
if (++i == n_coeffs)
break; //invalid input; blocks should end with EOB
goto skip_eob;
}
rc = scan[i];
if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
cnt[band][nnz][1]++;
val = 1;
cache[rc] = 1;
} else {
// fill in p[3-10] (model fill) - only once per frame for each pos
if (!tp[3])
memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
cnt[band][nnz][2]++;
if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
if (!vp56_rac_get_prob_branchy(c, tp[4])) {
cache[rc] = val = 2;
} else {
val = 3 + vp56_rac_get_prob(c, tp[5]);
cache[rc] = 3;
}
} else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
cache[rc] = 4;
if (!vp56_rac_get_prob_branchy(c, tp[7])) {
val = 5 + vp56_rac_get_prob(c, 159);
} else {
val = 7 + (vp56_rac_get_prob(c, 165) << 1);
val += vp56_rac_get_prob(c, 145);
}
} else { // cat 3-6
cache[rc] = 5;
if (!vp56_rac_get_prob_branchy(c, tp[8])) {
if (!vp56_rac_get_prob_branchy(c, tp[9])) {
val = 11 + (vp56_rac_get_prob(c, 173) << 2);
val += (vp56_rac_get_prob(c, 148) << 1);
val += vp56_rac_get_prob(c, 140);
} else {
val = 19 + (vp56_rac_get_prob(c, 176) << 3);
val += (vp56_rac_get_prob(c, 155) << 2);
val += (vp56_rac_get_prob(c, 140) << 1);
val += vp56_rac_get_prob(c, 135);
}
} else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
val = 35 + (vp56_rac_get_prob(c, 180) << 4);
val += (vp56_rac_get_prob(c, 157) << 3);
val += (vp56_rac_get_prob(c, 141) << 2);
val += (vp56_rac_get_prob(c, 134) << 1);
val += vp56_rac_get_prob(c, 130);
} else {
val = 67 + (vp56_rac_get_prob(c, 254) << 13);
val += (vp56_rac_get_prob(c, 254) << 12);
val += (vp56_rac_get_prob(c, 254) << 11);
val += (vp56_rac_get_prob(c, 252) << 10);
val += (vp56_rac_get_prob(c, 249) << 9);
val += (vp56_rac_get_prob(c, 243) << 8);
val += (vp56_rac_get_prob(c, 230) << 7);
val += (vp56_rac_get_prob(c, 196) << 6);
val += (vp56_rac_get_prob(c, 177) << 5);
val += (vp56_rac_get_prob(c, 153) << 4);
val += (vp56_rac_get_prob(c, 140) << 3);
val += (vp56_rac_get_prob(c, 133) << 2);
val += (vp56_rac_get_prob(c, 130) << 1);
val += vp56_rac_get_prob(c, 129);
}
}
}
if (!--band_left)
band_left = band_counts[++band];
if (tx == TX_32X32) // FIXME slow
coef[rc] = ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2;
else
coef[rc] = (vp8_rac_get(c) ? -val : val) * qmul[!!i];
nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
tp = p[band][nnz];
} while (++i < n_coeffs);
return i;
}
static void decode_coeffs(AVCodecContext *ctx)
{
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col;
uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int n, pl, x, y, step1d = 1 << b->tx, step = 1 << (b->tx * 2);
int uvstep1d = 1 << b->uvtx, uvstep = 1 << (b->uvtx * 2), res;
int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
int tx = 4 * s->lossless + b->tx;
const int16_t * const *yscans = vp9_scans[tx];
const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
uint8_t *a = &s->above_y_nnz_ctx[col * 2];
uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
static const int16_t band_counts[4][8] = {
{ 1, 2, 3, 4, 3, 16 - 13 },
{ 1, 2, 3, 4, 11, 64 - 21 },
{ 1, 2, 3, 4, 11, 256 - 21 },
{ 1, 2, 3, 4, 11, 1024 - 21 },
};
const int16_t *y_band_counts = band_counts[b->tx];
const int16_t *uv_band_counts = band_counts[b->uvtx];
/* y tokens */
if (b->tx > TX_4X4) { // FIXME slow
for (y = 0; y < end_y; y += step1d)
for (x = 1; x < step1d; x++)
l[y] |= l[y + x];
for (x = 0; x < end_x; x += step1d)
for (y = 1; y < step1d; y++)
a[x] |= a[x + y];
}
for (n = 0, y = 0; y < end_y; y += step1d) {
for (x = 0; x < end_x; x += step1d, n += step) {
enum TxfmType txtp = vp9_intra_txfm_type[b->mode[b->tx == TX_4X4 &&
b->bs > BS_8x8 ?
n : 0]];
int nnz = a[x] + l[y];
res = decode_coeffs_b(&s->c, s->block + 16 * n, 16 * step,
b->tx, c, e, p, nnz, yscans[txtp],
ynbs[txtp], y_band_counts, qmul[0]);
a[x] = l[y] = !!res;
if (b->tx > TX_8X8) {
AV_WN16A(&s->eob[n], res);
} else {
s->eob[n] = res;
}
}
}
if (b->tx > TX_4X4) { // FIXME slow
for (y = 0; y < end_y; y += step1d)
memset(&l[y + 1], l[y], FFMIN(end_y - y - 1, step1d - 1));
for (x = 0; x < end_x; x += step1d)
memset(&a[x + 1], a[x], FFMIN(end_x - x - 1, step1d - 1));
}
p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
w4 >>= 1;
h4 >>= 1;
end_x >>= 1;
end_y >>= 1;
for (pl = 0; pl < 2; pl++) {
a = &s->above_uv_nnz_ctx[pl][col];
l = &s->left_uv_nnz_ctx[pl][row & 7];
if (b->uvtx > TX_4X4) { // FIXME slow
for (y = 0; y < end_y; y += uvstep1d)
for (x = 1; x < uvstep1d; x++)
l[y] |= l[y + x];
for (x = 0; x < end_x; x += uvstep1d)
for (y = 1; y < uvstep1d; y++)
a[x] |= a[x + y];
}
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
for (x = 0; x < end_x; x += uvstep1d, n += uvstep) {
int nnz = a[x] + l[y];
res = decode_coeffs_b(&s->c, s->uvblock[pl] + 16 * n,
16 * uvstep, b->uvtx, c, e, p, nnz,
uvscan, uvnb, uv_band_counts, qmul[1]);
a[x] = l[y] = !!res;
if (b->uvtx > TX_8X8) {
AV_WN16A(&s->uveob[pl][n], res);
} else {
s->uveob[pl][n] = res;
}
}
}
if (b->uvtx > TX_4X4) { // FIXME slow
for (y = 0; y < end_y; y += uvstep1d)
memset(&l[y + 1], l[y], FFMIN(end_y - y - 1, uvstep1d - 1));
for (x = 0; x < end_x; x += uvstep1d)
memset(&a[x + 1], a[x], FFMIN(end_x - x - 1, uvstep1d - 1));
}
}
}
static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
uint8_t *dst_edge, ptrdiff_t stride_edge,
uint8_t *dst_inner, ptrdiff_t stride_inner,
uint8_t *l, int col, int x, int w,
int row, int y, enum TxfmMode tx,
int p)
{
int have_top = row > 0 || y > 0;
int have_left = col > s->tiling.tile_col_start || x > 0;
int have_right = x < w - 1;
static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
[VERT_PRED] = { { DC_127_PRED, VERT_PRED },
{ DC_127_PRED, VERT_PRED } },
[HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
{ HOR_PRED, HOR_PRED } },
[DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
{ LEFT_DC_PRED, DC_PRED } },
[DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
{ DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
[DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
{ DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
[VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
{ VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
[HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
{ HOR_DOWN_PRED, HOR_DOWN_PRED } },
[VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
{ DC_127_PRED, VERT_LEFT_PRED } },
[HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
{ HOR_UP_PRED, HOR_UP_PRED } },
[TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
{ HOR_PRED, TM_VP8_PRED } },
};
static const struct {
uint8_t needs_left:1;
uint8_t needs_top:1;
uint8_t needs_topleft:1;
uint8_t needs_topright:1;
} edges[N_INTRA_PRED_MODES] = {
[VERT_PRED] = { .needs_top = 1 },
[HOR_PRED] = { .needs_left = 1 },
[DC_PRED] = { .needs_top = 1, .needs_left = 1 },
[DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
[DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
[VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
[HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
[VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
[HOR_UP_PRED] = { .needs_left = 1 },
[TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
[LEFT_DC_PRED] = { .needs_left = 1 },
[TOP_DC_PRED] = { .needs_top = 1 },
[DC_128_PRED] = { 0 },
[DC_127_PRED] = { 0 },
[DC_129_PRED] = { 0 }
};
av_assert2(mode >= 0 && mode < 10);
mode = mode_conv[mode][have_left][have_top];
if (edges[mode].needs_top) {
uint8_t *top, *topleft;
int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !p) - x) * 4;
int n_px_need_tr = 0;
if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
n_px_need_tr = 4;
// if top of sb64-row, use s->intra_pred_data[] instead of
// dst[-stride] for intra prediction (it contains pre- instead of
// post-loopfilter data)
if (have_top) {
top = !(row & 7) && !y ?
s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 :
y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
if (have_left)
topleft = !(row & 7) && !y ?
s->intra_pred_data[p] + col * (8 >> !!p) + x * 4 :
y == 0 || x == 0 ? &dst_edge[-stride_edge] :
&dst_inner[-stride_inner];
}
if (have_top &&
(!edges[mode].needs_topleft || (have_left && top == topleft)) &&
(tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
n_px_need + n_px_need_tr <= n_px_have) {
*a = top;
} else {
if (have_top) {
if (n_px_need <= n_px_have) {
memcpy(*a, top, n_px_need);
} else {
memcpy(*a, top, n_px_have);
memset(&(*a)[n_px_have], (*a)[n_px_have - 1],
n_px_need - n_px_have);
}
} else {
memset(*a, 127, n_px_need);
}
if (edges[mode].needs_topleft) {
if (have_left && have_top) {
(*a)[-1] = topleft[-1];
} else {
(*a)[-1] = have_top ? 129 : 127;
}
}
if (tx == TX_4X4 && edges[mode].needs_topright) {
if (have_top && have_right &&
n_px_need + n_px_need_tr <= n_px_have) {
memcpy(&(*a)[4], &top[4], 4);
} else {
memset(&(*a)[4], (*a)[3], 4);
}
}
}
}
if (edges[mode].needs_left) {
if (have_left) {
int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !p) - y) * 4;
uint8_t *dst = x == 0 ? dst_edge : dst_inner;
ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
if (n_px_need <= n_px_have) {
for (i = 0; i < n_px_need; i++)
l[i] = dst[i * stride - 1];
} else {
for (i = 0; i < n_px_have; i++)
l[i] = dst[i * stride - 1];
memset(&l[i], l[i - 1], n_px_need - n_px_have);
}
} else {
memset(l, 129, 4 << tx);
}
}
return mode;
}
static void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
{
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col;
int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
int uvstep1d = 1 << b->uvtx, p;
uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
for (n = 0, y = 0; y < end_y; y += step1d) {
uint8_t *ptr = dst, *ptr_r = dst_r;
for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d,
ptr_r += 4 * step1d, n += step) {
int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
y * 2 + x : 0];
LOCAL_ALIGNED_16(uint8_t, a_buf, [48]);
uint8_t *a = &a_buf[16], l[32];
enum TxfmType txtp = vp9_intra_txfm_type[mode];
int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
mode = check_intra_mode(s, mode, &a, ptr_r,
s->frames[CUR_FRAME].tf.f->linesize[0],
ptr, s->y_stride, l,
col, x, w4, row, y, b->tx, 0);
s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
if (eob)
s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
s->block + 16 * n, eob);
}
dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
dst += 4 * step1d * s->y_stride;
}
// U/V
h4 >>= 1;
w4 >>= 1;
end_x >>= 1;
end_y >>= 1;
step = 1 << (b->uvtx * 2);
for (p = 0; p < 2; p++) {
dst = s->dst[1 + p];
dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
uint8_t *ptr = dst, *ptr_r = dst_r;
for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d,
ptr_r += 4 * uvstep1d, n += step) {
int mode = b->uvmode;
LOCAL_ALIGNED_16(uint8_t, a_buf, [48]);
uint8_t *a = &a_buf[16], l[32];
int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
mode = check_intra_mode(s, mode, &a, ptr_r,
s->frames[CUR_FRAME].tf.f->linesize[1],
ptr, s->uv_stride, l,
col, x, w4, row, y, b->uvtx, p + 1);
s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
if (eob)
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
s->uvblock[p] + 16 * n, eob);
}
dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
dst += 4 * uvstep1d * s->uv_stride;
}
}
}
static av_always_inline void mc_luma_dir(VP9Context *s, vp9_mc_func (*mc)[2],
uint8_t *dst, ptrdiff_t dst_stride,
const uint8_t *ref, ptrdiff_t ref_stride,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
int bw, int bh, int w, int h)
{
int mx = mv->x, my = mv->y, th;
y += my >> 3;
x += mx >> 3;
ref += y * ref_stride + x;
mx &= 7;
my &= 7;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + bh + 4 * !!my + 7) >> 6;
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
if (x < !!mx * 3 || y < !!my * 3 ||
x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
ref - !!my * 3 * ref_stride - !!mx * 3,
80, ref_stride,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
ref_stride = 80;
}
mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
}
static av_always_inline void mc_chroma_dir(VP9Context *s, vp9_mc_func (*mc)[2],
uint8_t *dst_u, uint8_t *dst_v,
ptrdiff_t dst_stride,
const uint8_t *ref_u, ptrdiff_t src_stride_u,
const uint8_t *ref_v, ptrdiff_t src_stride_v,
ThreadFrame *ref_frame,
ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
int bw, int bh, int w, int h)
{
int mx = mv->x, my = mv->y, th;
y += my >> 4;
x += mx >> 4;
ref_u += y * src_stride_u + x;
ref_v += y * src_stride_v + x;
mx &= 15;
my &= 15;
// FIXME bilinear filter only needs 0/1 pixels, not 3/4
// we use +7 because the last 7 pixels of each sbrow can be changed in
// the longest loopfilter of the next sbrow
th = (y + bh + 4 * !!my + 7) >> 5;
ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
if (x < !!mx * 3 || y < !!my * 3 ||
x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
ref_u - !!my * 3 * src_stride_u - !!mx * 3,
80, src_stride_u,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref_u = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
mc[!!mx][!!my](dst_u, dst_stride, ref_u, 80, bh, mx, my);
s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
ref_v - !!my * 3 * src_stride_v - !!mx * 3,
80, src_stride_v,
bw + !!mx * 7, bh + !!my * 7,
x - !!mx * 3, y - !!my * 3, w, h);
ref_v = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3;
mc[!!mx][!!my](dst_v, dst_stride, ref_v, 80, bh, mx, my);
} else {
mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
}
}
static void inter_recon(AVCodecContext *ctx)
{
static const uint8_t bwlog_tab[2][N_BS_SIZES] = {
{ 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 },
{ 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4 },
};
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
int row = s->row, col = s->col;
ThreadFrame *tref1 = &s->refs[s->refidx[b->ref[0]]];
AVFrame *ref1 = tref1->f;
ThreadFrame *tref2 = b->comp ? &s->refs[s->refidx[b->ref[1]]] : NULL;
AVFrame *ref2 = b->comp ? tref2->f : NULL;
int w = ctx->width, h = ctx->height;
ptrdiff_t ls_y = s->y_stride, ls_uv = s->uv_stride;
// y inter pred
if (b->bs > BS_8x8) {
if (b->bs == BS_8x4) {
mc_luma_dir(s, s->dsp.mc[3][b->filter][0], s->dst[0], ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, col << 3, &b->mv[0][0], 8, 4, w, h);
mc_luma_dir(s, s->dsp.mc[3][b->filter][0],
s->dst[0] + 4 * ls_y, ls_y,
ref1->data[0], ref1->linesize[0], tref1,
(row << 3) + 4, col << 3, &b->mv[2][0], 8, 4, w, h);
if (b->comp) {
mc_luma_dir(s, s->dsp.mc[3][b->filter][1], s->dst[0], ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, col << 3, &b->mv[0][1], 8, 4, w, h);
mc_luma_dir(s, s->dsp.mc[3][b->filter][1],
s->dst[0] + 4 * ls_y, ls_y,
ref2->data[0], ref2->linesize[0], tref2,
(row << 3) + 4, col << 3, &b->mv[2][1], 8, 4, w, h);
}
} else if (b->bs == BS_4x8) {
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0], ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, col << 3, &b->mv[0][0], 4, 8, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0] + 4, ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, (col << 3) + 4, &b->mv[1][0], 4, 8, w, h);
if (b->comp) {
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0], ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, col << 3, &b->mv[0][1], 4, 8, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0] + 4, ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, (col << 3) + 4, &b->mv[1][1], 4, 8, w, h);
}
} else {
av_assert2(b->bs == BS_4x4);
// FIXME if two horizontally adjacent blocks have the same MV,
// do a w8 instead of a w4 call
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0], ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, col << 3, &b->mv[0][0], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][0], s->dst[0] + 4, ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, (col << 3) + 4, &b->mv[1][0], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][0],
s->dst[0] + 4 * ls_y, ls_y,
ref1->data[0], ref1->linesize[0], tref1,
(row << 3) + 4, col << 3, &b->mv[2][0], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][0],
s->dst[0] + 4 * ls_y + 4, ls_y,
ref1->data[0], ref1->linesize[0], tref1,
(row << 3) + 4, (col << 3) + 4, &b->mv[3][0], 4, 4, w, h);
if (b->comp) {
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0], ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, col << 3, &b->mv[0][1], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][1], s->dst[0] + 4, ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, (col << 3) + 4, &b->mv[1][1], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][1],
s->dst[0] + 4 * ls_y, ls_y,
ref2->data[0], ref2->linesize[0], tref2,
(row << 3) + 4, col << 3, &b->mv[2][1], 4, 4, w, h);
mc_luma_dir(s, s->dsp.mc[4][b->filter][1],
s->dst[0] + 4 * ls_y + 4, ls_y,
ref2->data[0], ref2->linesize[0], tref2,
(row << 3) + 4, (col << 3) + 4, &b->mv[3][1], 4, 4, w, h);
}
}
} else {
int bwl = bwlog_tab[0][b->bs];
int bw = bwh_tab[0][b->bs][0] * 4, bh = bwh_tab[0][b->bs][1] * 4;
mc_luma_dir(s, s->dsp.mc[bwl][b->filter][0], s->dst[0], ls_y,
ref1->data[0], ref1->linesize[0], tref1,
row << 3, col << 3, &b->mv[0][0],bw, bh, w, h);
if (b->comp)
mc_luma_dir(s, s->dsp.mc[bwl][b->filter][1], s->dst[0], ls_y,
ref2->data[0], ref2->linesize[0], tref2,
row << 3, col << 3, &b->mv[0][1], bw, bh, w, h);
}
// uv inter pred
{
int bwl = bwlog_tab[1][b->bs];
int bw = bwh_tab[1][b->bs][0] * 4, bh = bwh_tab[1][b->bs][1] * 4;
VP56mv mvuv;
w = (w + 1) >> 1;
h = (h + 1) >> 1;
if (b->bs > BS_8x8) {
mvuv.x = ROUNDED_DIV(b->mv[0][0].x + b->mv[1][0].x + b->mv[2][0].x + b->mv[3][0].x, 4);
mvuv.y = ROUNDED_DIV(b->mv[0][0].y + b->mv[1][0].y + b->mv[2][0].y + b->mv[3][0].y, 4);
} else {
mvuv = b->mv[0][0];
}
mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][0],
s->dst[1], s->dst[2], ls_uv,
ref1->data[1], ref1->linesize[1],
ref1->data[2], ref1->linesize[2], tref1,
row << 2, col << 2, &mvuv, bw, bh, w, h);
if (b->comp) {
if (b->bs > BS_8x8) {
mvuv.x = ROUNDED_DIV(b->mv[0][1].x + b->mv[1][1].x + b->mv[2][1].x + b->mv[3][1].x, 4);
mvuv.y = ROUNDED_DIV(b->mv[0][1].y + b->mv[1][1].y + b->mv[2][1].y + b->mv[3][1].y, 4);
} else {
mvuv = b->mv[0][1];
}
mc_chroma_dir(s, s->dsp.mc[bwl][b->filter][1],
s->dst[1], s->dst[2], ls_uv,
ref2->data[1], ref2->linesize[1],
ref2->data[2], ref2->linesize[2], tref2,
row << 2, col << 2, &mvuv, bw, bh, w, h);
}
}
if (!b->skip) {
/* mostly copied intra_reconn() */
int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
int end_x = FFMIN(2 * (s->cols - col), w4);
int end_y = FFMIN(2 * (s->rows - row), h4);
int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
int uvstep1d = 1 << b->uvtx, p;
uint8_t *dst = s->dst[0];
// y itxfm add
for (n = 0, y = 0; y < end_y; y += step1d) {
uint8_t *ptr = dst;
for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d, n += step) {
int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
if (eob)
s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
s->block + 16 * n, eob);
}
dst += 4 * s->y_stride * step1d;
}
// uv itxfm add
h4 >>= 1;
w4 >>= 1;
end_x >>= 1;
end_y >>= 1;
step = 1 << (b->uvtx * 2);
for (p = 0; p < 2; p++) {
dst = s->dst[p + 1];
for (n = 0, y = 0; y < end_y; y += uvstep1d) {
uint8_t *ptr = dst;
for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d, n += step) {
int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
if (eob)
s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
s->uvblock[p] + 16 * n, eob);
}
dst += 4 * uvstep1d * s->uv_stride;
}
}
}
}
static av_always_inline void mask_edges(struct VP9Filter *lflvl, int is_uv,
int row_and_7, int col_and_7,
int w, int h, int col_end, int row_end,
enum TxfmMode tx, int skip_inter)
{
// FIXME I'm pretty sure all loops can be replaced by a single LUT if
// we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
// and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
// use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
// the intended behaviour of the vp9 loopfilter is to work on 8-pixel
// edges. This means that for UV, we work on two subsampled blocks at
// a time, and we only use the topleft block's mode information to set
// things like block strength. Thus, for any block size smaller than
// 16x16, ignore the odd portion of the block.
if (tx == TX_4X4 && is_uv) {
if (h == 1) {
if (row_and_7 & 1)
return;
if (!row_end)
h += 1;
}
if (w == 1) {
if (col_and_7 & 1)
return;
if (!col_end)
w += 1;
}
}
if (tx == TX_4X4 && !skip_inter) {
int t = 1 << col_and_7, m_col = (t << w) - t, y;
int m_col_odd = (t << (w - 1)) - t;
// on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
if (is_uv) {
int m_row_8 = m_col & 0x01, m_row_4 = m_col - m_row_8;
for (y = row_and_7; y < h + row_and_7; y++) {
int col_mask_id = 2 - !(y & 7);
lflvl->mask[is_uv][0][y][1] |= m_row_8;
lflvl->mask[is_uv][0][y][2] |= m_row_4;
// for odd lines, if the odd col is not being filtered,
// skip odd row also:
// .---. <-- a
// | |
// |___| <-- b
// ^ ^
// c d
//
// if a/c are even row/col and b/d are odd, and d is skipped,
// e.g. right edge of size-66x66.webm, then skip b also (bug)
if ((col_end & 1) && (y & 1)) {
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col_odd;
} else {
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col;
}
}
} else {
int m_row_8 = m_col & 0x11, m_row_4 = m_col - m_row_8;
for (y = row_and_7; y < h + row_and_7; y++) {
int col_mask_id = 2 - !(y & 3);
lflvl->mask[is_uv][0][y][1] |= m_row_8; // row edge
lflvl->mask[is_uv][0][y][2] |= m_row_4;
lflvl->mask[is_uv][1][y][col_mask_id] |= m_col; // col edge
lflvl->mask[is_uv][0][y][3] |= m_col;
lflvl->mask[is_uv][1][y][3] |= m_col;
}
}
} else {
int y, t = 1 << col_and_7, m_col = (t << w) - t;
if (!skip_inter) {
int mask_id = (tx == TX_8X8);
int l2 = tx + is_uv - 1, step1d = 1 << l2;
static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
int m_row = m_col & masks[l2];
// at odd UV col/row edges tx16/tx32 loopfilter edges, force
// 8wd loopfilter to prevent going off the visible edge.
if (is_uv && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
int m_row_8 = m_row - m_row_16;
for (y = row_and_7; y < h + row_and_7; y++) {
lflvl->mask[is_uv][0][y][0] |= m_row_16;
lflvl->mask[is_uv][0][y][1] |= m_row_8;
}
} else {
for (y = row_and_7; y < h + row_and_7; y++)
lflvl->mask[is_uv][0][y][mask_id] |= m_row;
}
if (is_uv && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
lflvl->mask[is_uv][1][y][0] |= m_col;
if (y - row_and_7 == h - 1)
lflvl->mask[is_uv][1][y][1] |= m_col;
} else {
for (y = row_and_7; y < h + row_and_7; y += step1d)
lflvl->mask[is_uv][1][y][mask_id] |= m_col;
}
} else if (tx != TX_4X4) {
int mask_id;
mask_id = (tx == TX_8X8) || (is_uv && h == 1);
lflvl->mask[is_uv][1][row_and_7][mask_id] |= m_col;
mask_id = (tx == TX_8X8) || (is_uv && w == 1);
for (y = row_and_7; y < h + row_and_7; y++)
lflvl->mask[is_uv][0][y][mask_id] |= t;
} else if (is_uv) {
int t8 = t & 0x01, t4 = t - t8;
for (y = row_and_7; y < h + row_and_7; y++) {
lflvl->mask[is_uv][0][y][2] |= t4;
lflvl->mask[is_uv][0][y][1] |= t8;
}
lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 7)] |= m_col;
} else {
int t8 = t & 0x11, t4 = t - t8;
for (y = row_and_7; y < h + row_and_7; y++) {
lflvl->mask[is_uv][0][y][2] |= t4;
lflvl->mask[is_uv][0][y][1] |= t8;
}
lflvl->mask[is_uv][1][row_and_7][2 - !(row_and_7 & 3)] |= m_col;
}
}
}
static void decode_b(AVCodecContext *ctx, int row, int col,
struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
enum BlockLevel bl, enum BlockPartition bp)
{
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
enum BlockSize bs = bl * 3 + bp;
int y, w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
int emu[2];
AVFrame *f = s->frames[CUR_FRAME].tf.f;
s->row = row;
s->row7 = row & 7;
s->col = col;
s->col7 = col & 7;
s->min_mv.x = -(128 + col * 64);
s->min_mv.y = -(128 + row * 64);
s->max_mv.x = 128 + (s->cols - col - w4) * 64;
s->max_mv.y = 128 + (s->rows - row - h4) * 64;
if (s->pass < 2) {
b->bs = bs;
b->bl = bl;
b->bp = bp;
decode_mode(ctx);
b->uvtx = b->tx - (w4 * 2 == (1 << b->tx) || h4 * 2 == (1 << b->tx));
if (!b->skip) {
decode_coeffs(ctx);
} else {
int pl;
memset(&s->above_y_nnz_ctx[col * 2], 0, w4 * 2);
memset(&s->left_y_nnz_ctx[(row & 7) << 1], 0, h4 * 2);
for (pl = 0; pl < 2; pl++) {
memset(&s->above_uv_nnz_ctx[pl][col], 0, w4);
memset(&s->left_uv_nnz_ctx[pl][row & 7], 0, h4);
}
}
if (s->pass == 1) {
s->b++;
s->block += w4 * h4 * 64;
s->uvblock[0] += w4 * h4 * 16;
s->uvblock[1] += w4 * h4 * 16;
s->eob += 4 * w4 * h4;
s->uveob[0] += w4 * h4;
s->uveob[1] += w4 * h4;
return;
}
}
// emulated overhangs if the stride of the target buffer can't hold. This
// allows to support emu-edge and so on even if we have large block
// overhangs
emu[0] = (col + w4) * 8 > f->linesize[0] ||
(row + h4) > s->rows + 2 * !(ctx->flags & CODEC_FLAG_EMU_EDGE);
emu[1] = (col + w4) * 4 > f->linesize[1] ||
(row + h4) > s->rows + 2 * !(ctx->flags & CODEC_FLAG_EMU_EDGE);
if (emu[0]) {
s->dst[0] = s->tmp_y;
s->y_stride = 64;
} else {
s->dst[0] = f->data[0] + yoff;
s->y_stride = f->linesize[0];
}
if (emu[1]) {
s->dst[1] = s->tmp_uv[0];
s->dst[2] = s->tmp_uv[1];
s->uv_stride = 32;
} else {
s->dst[1] = f->data[1] + uvoff;
s->dst[2] = f->data[2] + uvoff;
s->uv_stride = f->linesize[1];
}
if (b->intra) {
intra_recon(ctx, yoff, uvoff);
} else {
inter_recon(ctx);
}
if (emu[0]) {
int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
for (n = 0; o < w; n++) {
int bw = 64 >> n;
av_assert2(n <= 4);
if (w & bw) {
s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
s->tmp_y + o, 64, h, 0, 0);
o += bw;
}
}
}
if (emu[1]) {
int w = FFMIN(s->cols - col, w4) * 4, h = FFMIN(s->rows - row, h4) * 4, n, o = 0;
for (n = 1; o < w; n++) {
int bw = 64 >> n;
av_assert2(n <= 4);
if (w & bw) {
s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
s->tmp_uv[0] + o, 32, h, 0, 0);
s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
s->tmp_uv[1] + o, 32, h, 0, 0);
o += bw;
}
}
}
// pick filter level and find edges to apply filter to
if (s->filter.level &&
(lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
[b->mode[3] != ZEROMV]) > 0) {
int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
int skip_inter = !b->intra && b->skip;
for (y = 0; y < h4; y++)
memset(&lflvl->level[((row & 7) + y) * 8 + (col & 7)], lvl, w4);
mask_edges(lflvl, 0, row & 7, col & 7, x_end, y_end, 0, 0, b->tx, skip_inter);
mask_edges(lflvl, 1, row & 7, col & 7, x_end, y_end,
s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
b->uvtx, skip_inter);
if (!s->filter.lim_lut[lvl]) {
int sharp = s->filter.sharpness;
int limit = lvl;
if (sharp > 0) {
limit >>= (sharp + 3) >> 2;
limit = FFMIN(limit, 9 - sharp);
}
limit = FFMAX(limit, 1);
s->filter.lim_lut[lvl] = limit;
s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
}
}
if (s->pass == 2) {
s->b++;
s->block += w4 * h4 * 64;
s->uvblock[0] += w4 * h4 * 16;
s->uvblock[1] += w4 * h4 * 16;
s->eob += 4 * w4 * h4;
s->uveob[0] += w4 * h4;
s->uveob[1] += w4 * h4;
}
}
static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
VP9Context *s = ctx->priv_data;
int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
(((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
const uint8_t *p = s->keyframe ? vp9_default_kf_partition_probs[bl][c] :
s->prob.p.partition[bl][c];
enum BlockPartition bp;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
if (bl == BL_8X8) {
bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
} else if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) { // FIXME why not <=?
bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
switch (bp) {
case PARTITION_NONE:
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_H:
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_V:
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
yoff += hbs * 8;
uvoff += hbs * 4;
decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
break;
case PARTITION_SPLIT:
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(ctx, row, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(ctx, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
break;
default:
av_assert0(0);
}
} else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
bp = PARTITION_SPLIT;
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
decode_sb(ctx, row, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
} else {
bp = PARTITION_H;
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else if (row + hbs < s->rows) { // FIXME why not <=?
if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
bp = PARTITION_SPLIT;
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
} else {
bp = PARTITION_V;
decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
}
} else {
bp = PARTITION_SPLIT;
decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
}
s->counts.partition[bl][c][bp]++;
}
static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
{
VP9Context *s = ctx->priv_data;
VP9Block *b = s->b;
ptrdiff_t hbs = 4 >> bl;
AVFrame *f = s->frames[CUR_FRAME].tf.f;
ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
if (bl == BL_8X8) {
av_assert2(b->bl == BL_8X8);
decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (s->b->bl == bl) {
decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
if (b->bp == PARTITION_H && row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
} else if (b->bp == PARTITION_V && col + hbs < s->cols) {
yoff += hbs * 8;
uvoff += hbs * 4;
decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
}
} else {
decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
if (col + hbs < s->cols) { // FIXME why not <=?
if (row + hbs < s->rows) {
decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs,
uvoff + 4 * hbs, bl + 1);
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
yoff + 8 * hbs, uvoff + 4 * hbs, bl + 1);
} else {
yoff += hbs * 8;
uvoff += hbs * 4;
decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
}
} else if (row + hbs < s->rows) {
yoff += hbs * 8 * y_stride;
uvoff += hbs * 4 * uv_stride;
decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
}
}
}
static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
{
VP9Context *s = ctx->priv_data;
AVFrame *f = s->frames[CUR_FRAME].tf.f;
uint8_t *dst = f->data[0] + yoff, *lvl = lflvl->level;
ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
int y, x, p;
// FIXME in how far can we interleave the v/h loopfilter calls? E.g.
// if you think of them as acting on a 8x8 block max, we can interleave
// each v/h within the single x loop, but that only works if we work on
// 8 pixel blocks, and we won't always do that (we want at least 16px
// to use SSE2 optimizations, perhaps 32 for AVX2)
// filter edges between columns, Y plane (e.g. block1 | block2)
for (y = 0; y < 8; y += 2, dst += 16 * ls_y, lvl += 16) {
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[0][0][y];
uint8_t *hmask2 = lflvl->mask[0][0][y + 1];
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
unsigned hm = hm1 | hm2 | hm13 | hm23;
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8, l++) {
if (hm1 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (col || x > 1) {
if (hmask1[0] & x) {
if (hmask2[0] & x) {
av_assert2(l[8] == L);
s->dsp.loop_filter_16[0](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[2][0](ptr, ls_y, E, I, H);
}
} else if (hm2 & x) {
L = l[8];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
[!!(hmask2[1] & x)]
[0](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
[0](ptr, ls_y, E, I, H);
}
}
} else if (hm2 & x) {
int L = l[8], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (col || x > 1) {
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
[0](ptr + 8 * ls_y, ls_y, E, I, H);
}
}
if (hm13 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (hm23 & x) {
L = l[8];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[0][0][0](ptr + 4, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[0][0](ptr + 4, ls_y, E, I, H);
}
} else if (hm23 & x) {
int L = l[8], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[0][0](ptr + 8 * ls_y + 4, ls_y, E, I, H);
}
}
}
// block1
// filter edges between rows, Y plane (e.g. ------)
// block2
dst = f->data[0] + yoff;
lvl = lflvl->level;
for (y = 0; y < 8; y++, dst += 8 * ls_y, lvl += 8) {
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[0][1][y];
unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
for (x = 1; vm & ~(x - 1); x <<= 2, ptr += 16, l += 2) {
if (row || y) {
if (vm & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (vmask[0] & x) {
if (vmask[0] & (x << 1)) {
av_assert2(l[1] == L);
s->dsp.loop_filter_16[1](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[2][1](ptr, ls_y, E, I, H);
}
} else if (vm & (x << 1)) {
L = l[1];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
[!!(vmask[1] & (x << 1))]
[1](ptr, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[!!(vmask[1] & x)]
[1](ptr, ls_y, E, I, H);
}
} else if (vm & (x << 1)) {
int L = l[1], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(vmask[1] & (x << 1))]
[1](ptr + 8, ls_y, E, I, H);
}
}
if (vm3 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (vm3 & (x << 1)) {
L = l[1];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[0][0][1](ptr + ls_y * 4, ls_y, E, I, H);
} else {
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4, ls_y, E, I, H);
}
} else if (vm3 & (x << 1)) {
int L = l[1], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[0][1](ptr + ls_y * 4 + 8, ls_y, E, I, H);
}
}
}
// same principle but for U/V planes
for (p = 0; p < 2; p++) {
lvl = lflvl->level;
dst = f->data[1 + p] + uvoff;
for (y = 0; y < 8; y += 4, dst += 16 * ls_uv, lvl += 32) {
uint8_t *ptr = dst, *l = lvl, *hmask1 = lflvl->mask[1][0][y];
uint8_t *hmask2 = lflvl->mask[1][0][y + 2];
unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2];
unsigned hm2 = hmask2[1] | hmask2[2], hm = hm1 | hm2;
for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 4) {
if (col || x > 1) {
if (hm1 & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (hmask1[0] & x) {
if (hmask2[0] & x) {
av_assert2(l[16] == L);
s->dsp.loop_filter_16[0](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[2][0](ptr, ls_uv, E, I, H);
}
} else if (hm2 & x) {
L = l[16];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
[!!(hmask2[1] & x)]
[0](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[!!(hmask1[1] & x)]
[0](ptr, ls_uv, E, I, H);
}
} else if (hm2 & x) {
int L = l[16], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(hmask2[1] & x)]
[0](ptr + 8 * ls_uv, ls_uv, E, I, H);
}
}
if (x & 0xAA)
l += 2;
}
}
lvl = lflvl->level;
dst = f->data[1 + p] + uvoff;
for (y = 0; y < 8; y++, dst += 4 * ls_uv) {
uint8_t *ptr = dst, *l = lvl, *vmask = lflvl->mask[1][1][y];
unsigned vm = vmask[0] | vmask[1] | vmask[2];
for (x = 1; vm & ~(x - 1); x <<= 4, ptr += 16, l += 4) {
if (row || y) {
if (vm & x) {
int L = *l, H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
if (vmask[0] & x) {
if (vmask[0] & (x << 2)) {
av_assert2(l[2] == L);
s->dsp.loop_filter_16[1](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[2][1](ptr, ls_uv, E, I, H);
}
} else if (vm & (x << 2)) {
L = l[2];
H |= (L >> 4) << 8;
E |= s->filter.mblim_lut[L] << 8;
I |= s->filter.lim_lut[L] << 8;
s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
[!!(vmask[1] & (x << 2))]
[1](ptr, ls_uv, E, I, H);
} else {
s->dsp.loop_filter_8[!!(vmask[1] & x)]
[1](ptr, ls_uv, E, I, H);
}
} else if (vm & (x << 2)) {
int L = l[2], H = L >> 4;
int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
s->dsp.loop_filter_8[!!(vmask[1] & (x << 2))]
[1](ptr + 8, ls_uv, E, I, H);
}
}
}
if (y & 1)
lvl += 16;
}
}
}
static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
{
int sb_start = ( idx * n) >> log2_n;
int sb_end = ((idx + 1) * n) >> log2_n;
*start = FFMIN(sb_start, n) << 3;
*end = FFMIN(sb_end, n) << 3;
}
static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
int max_count, int update_factor)
{
unsigned ct = ct0 + ct1, p2, p1;
if (!ct)
return;
p1 = *p;
p2 = ((ct0 << 8) + (ct >> 1)) / ct;
p2 = av_clip(p2, 1, 255);
ct = FFMIN(ct, max_count);
update_factor = FASTDIV(update_factor * ct, max_count);
// (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
*p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
}
static void adapt_probs(VP9Context *s)
{
int i, j, k, l, m;
prob_context *p = &s->prob_ctx[s->framectxid].p;
int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
// coefficients
for (i = 0; i < 4; i++)
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++) {
uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
unsigned *e = s->counts.eob[i][j][k][l][m];
unsigned *c = s->counts.coef[i][j][k][l][m];
if (l == 0 && m >= 3) // dc only has 3 pt
break;
adapt_prob(&pp[0], e[0], e[1], 24, uf);
adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
adapt_prob(&pp[2], c[1], c[2], 24, uf);
}
if (s->keyframe || s->intraonly) {
memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
return;
}
// skip flag
for (i = 0; i < 3; i++)
adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
// intra/inter flag
for (i = 0; i < 4; i++)
adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
// comppred flag
if (s->comppredmode == PRED_SWITCHABLE) {
for (i = 0; i < 5; i++)
adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
}
// reference frames
if (s->comppredmode != PRED_SINGLEREF) {
for (i = 0; i < 5; i++)
adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
s->counts.comp_ref[i][1], 20, 128);
}
if (s->comppredmode != PRED_COMPREF) {
for (i = 0; i < 5; i++) {
uint8_t *pp = p->single_ref[i];
unsigned (*c)[2] = s->counts.single_ref[i];
adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
}
}
// block partitioning
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++) {
uint8_t *pp = p->partition[i][j];
unsigned *c = s->counts.partition[i][j];
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
adapt_prob(&pp[2], c[2], c[3], 20, 128);
}
// tx size
if (s->txfmmode == TX_SWITCHABLE) {
for (i = 0; i < 2; i++) {
unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
}
}
// interpolation filter
if (s->filtermode == FILTER_SWITCHABLE) {
for (i = 0; i < 4; i++) {
uint8_t *pp = p->filter[i];
unsigned *c = s->counts.filter[i];
adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
adapt_prob(&pp[1], c[1], c[2], 20, 128);
}
}
// inter modes
for (i = 0; i < 7; i++) {
uint8_t *pp = p->mv_mode[i];
unsigned *c = s->counts.mv_mode[i];
adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
adapt_prob(&pp[2], c[1], c[3], 20, 128);
}
// mv joints
{
uint8_t *pp = p->mv_joint;
unsigned *c = s->counts.mv_joint;
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
adapt_prob(&pp[2], c[2], c[3], 20, 128);
}
// mv components
for (i = 0; i < 2; i++) {
uint8_t *pp;
unsigned *c, (*c2)[2], sum;
adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
s->counts.mv_comp[i].sign[1], 20, 128);
pp = p->mv_comp[i].classes;
c = s->counts.mv_comp[i].classes;
sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
adapt_prob(&pp[0], c[0], sum, 20, 128);
sum -= c[1];
adapt_prob(&pp[1], c[1], sum, 20, 128);
sum -= c[2] + c[3];
adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
adapt_prob(&pp[3], c[2], c[3], 20, 128);
sum -= c[4] + c[5];
adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
adapt_prob(&pp[5], c[4], c[5], 20, 128);
sum -= c[6];
adapt_prob(&pp[6], c[6], sum, 20, 128);
adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
adapt_prob(&pp[8], c[7], c[8], 20, 128);
adapt_prob(&pp[9], c[9], c[10], 20, 128);
adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
s->counts.mv_comp[i].class0[1], 20, 128);
pp = p->mv_comp[i].bits;
c2 = s->counts.mv_comp[i].bits;
for (j = 0; j < 10; j++)
adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
for (j = 0; j < 2; j++) {
pp = p->mv_comp[i].class0_fp[j];
c = s->counts.mv_comp[i].class0_fp[j];
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
adapt_prob(&pp[2], c[2], c[3], 20, 128);
}
pp = p->mv_comp[i].fp;
c = s->counts.mv_comp[i].fp;
adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
adapt_prob(&pp[2], c[2], c[3], 20, 128);
if (s->highprecisionmvs) {
adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
s->counts.mv_comp[i].class0_hp[1], 20, 128);
adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
s->counts.mv_comp[i].hp[1], 20, 128);
}
}
// y intra modes
for (i = 0; i < 4; i++) {
uint8_t *pp = p->y_mode[i];
unsigned *c = s->counts.y_mode[i], sum, s2;
sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
sum -= c[TM_VP8_PRED];
adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
sum -= c[VERT_PRED];
adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
sum -= s2;
adapt_prob(&pp[3], s2, sum, 20, 128);
s2 -= c[HOR_PRED];
adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
sum -= c[DIAG_DOWN_LEFT_PRED];
adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
sum -= c[VERT_LEFT_PRED];
adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
}
// uv intra modes
for (i = 0; i < 10; i++) {
uint8_t *pp = p->uv_mode[i];
unsigned *c = s->counts.uv_mode[i], sum, s2;
sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
sum -= c[TM_VP8_PRED];
adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
sum -= c[VERT_PRED];
adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
sum -= s2;
adapt_prob(&pp[3], s2, sum, 20, 128);
s2 -= c[HOR_PRED];
adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
sum -= c[DIAG_DOWN_LEFT_PRED];
adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
sum -= c[VERT_LEFT_PRED];
adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
}
}
static av_cold int vp9_decode_free(AVCodecContext *ctx)
{
VP9Context *s = ctx->priv_data;
int i;
for (i = 0; i < 2; i++) {
if (s->frames[i].tf.f->data[0])
vp9_unref_frame(ctx, &s->frames[i]);
av_frame_free(&s->frames[i].tf.f);
}
for (i = 0; i < 8; i++) {
if (s->refs[i].f->data[0])
ff_thread_release_buffer(ctx, &s->refs[i]);
av_frame_free(&s->refs[i].f);
if (s->next_refs[i].f->data[0])
ff_thread_release_buffer(ctx, &s->next_refs[i]);
av_frame_free(&s->next_refs[i].f);
}
av_freep(&s->above_partition_ctx);
av_freep(&s->c_b);
s->c_b_size = 0;
av_freep(&s->b_base);
av_freep(&s->block_base);
return 0;
}
static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
int *got_frame, AVPacket *pkt)
{
const uint8_t *data = pkt->data;
int size = pkt->size;
VP9Context *s = ctx->priv_data;
int res, tile_row, tile_col, i, ref, row, col;
ptrdiff_t yoff, uvoff, ls_y, ls_uv;
AVFrame *f;
if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
return res;
} else if (res == 0) {
if (!s->refs[ref].f->data[0]) {
av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
return AVERROR_INVALIDDATA;
}
if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
return res;
*got_frame = 1;
return 0;
}
data += res;
size -= res;
if (s->frames[LAST_FRAME].tf.f->data[0])
vp9_unref_frame(ctx, &s->frames[LAST_FRAME]);
if (!s->keyframe && s->frames[CUR_FRAME].tf.f->data[0] &&
(res = vp9_ref_frame(ctx, &s->frames[LAST_FRAME], &s->frames[CUR_FRAME])) < 0)
return res;
if (s->frames[CUR_FRAME].tf.f->data[0])
vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
return res;
f = s->frames[CUR_FRAME].tf.f;
f->key_frame = s->keyframe;
f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
ls_y = f->linesize[0];
ls_uv =f->linesize[1];
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->next_refs[i].f->data[0])
ff_thread_release_buffer(ctx, &s->next_refs[i]);
if (s->refreshrefmask & (1 << i)) {
res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
} else {
res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
}
if (res < 0)
return res;
}
// main tile decode loop
memset(s->above_partition_ctx, 0, s->cols);
memset(s->above_skip_ctx, 0, s->cols);
if (s->keyframe || s->intraonly) {
memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
} else {
memset(s->above_mode_ctx, NEARESTMV, s->cols);
}
memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 8);
memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 8);
memset(s->above_segpred_ctx, 0, s->cols);
s->pass = s->uses_2pass =
ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
if (s->refreshctx && s->parallelmode) {
int j, k, l, m;
for (i = 0; i < 4; i++) {
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 6; l++)
for (m = 0; m < 6; m++)
memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
s->prob.coef[i][j][k][l][m], 3);
if (s->txfmmode == i)
break;
}
s->prob_ctx[s->framectxid].p = s->prob.p;
ff_thread_finish_setup(ctx);
}
do {
yoff = uvoff = 0;
s->b = s->b_base;
s->block = s->block_base;
s->uvblock[0] = s->uvblock_base[0];
s->uvblock[1] = s->uvblock_base[1];
s->eob = s->eob_base;
s->uveob[0] = s->uveob_base[0];
s->uveob[1] = s->uveob_base[1];
for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
tile_row, s->tiling.log2_tile_rows, s->sb_rows);
if (s->pass != 2) {
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
unsigned tile_size;
if (tile_col == s->tiling.tile_cols - 1 &&
tile_row == s->tiling.tile_rows - 1) {
tile_size = size;
} else {
tile_size = AV_RB32(data);
data += 4;
size -= 4;
}
if (tile_size > size)
return AVERROR_INVALIDDATA;
ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) // marker bit
return AVERROR_INVALIDDATA;
data += tile_size;
size -= tile_size;
}
}
for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
row += 8, yoff += ls_y * 64, uvoff += ls_uv * 32) {
struct VP9Filter *lflvl_ptr = s->lflvl;
ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
tile_col, s->tiling.log2_tile_cols, s->sb_cols);
if (s->pass != 2) {
memset(s->left_partition_ctx, 0, 8);
memset(s->left_skip_ctx, 0, 8);
if (s->keyframe || s->intraonly) {
memset(s->left_mode_ctx, DC_PRED, 16);
} else {
memset(s->left_mode_ctx, NEARESTMV, 8);
}
memset(s->left_y_nnz_ctx, 0, 16);
memset(s->left_uv_nnz_ctx, 0, 16);
memset(s->left_segpred_ctx, 0, 8);
memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
}
for (col = s->tiling.tile_col_start;
col < s->tiling.tile_col_end;
col += 8, yoff2 += 64, uvoff2 += 32, lflvl_ptr++) {
// FIXME integrate with lf code (i.e. zero after each
// use, similar to invtxfm coefficients, or similar)
if (s->pass != 1) {
memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
}
if (s->pass == 2) {
decode_sb_mem(ctx, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
} else {
decode_sb(ctx, row, col, lflvl_ptr,
yoff2, uvoff2, BL_64X64);
}
}
if (s->pass != 2) {
memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
}
}
if (s->pass == 1) {
continue;
}
// backup pre-loopfilter reconstruction data for intra
// prediction of next row of sb64s
if (row + 8 < s->rows) {
memcpy(s->intra_pred_data[0],
f->data[0] + yoff + 63 * ls_y,
8 * s->cols);
memcpy(s->intra_pred_data[1],
f->data[1] + uvoff + 31 * ls_uv,
4 * s->cols);
memcpy(s->intra_pred_data[2],
f->data[2] + uvoff + 31 * ls_uv,
4 * s->cols);
}
// loopfilter one row
if (s->filter.level) {
yoff2 = yoff;
uvoff2 = uvoff;
lflvl_ptr = s->lflvl;
for (col = 0; col < s->cols;
col += 8, yoff2 += 64, uvoff2 += 32, lflvl_ptr++) {
loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
}
}
// FIXME maybe we can make this more finegrained by running the
// loopfilter per-block instead of after each sbrow
// In fact that would also make intra pred left preparation easier?
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
}
}
if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
adapt_probs(s);
ff_thread_finish_setup(ctx);
}
} while (s->pass++ == 1);
ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
// ref frame setup
for (i = 0; i < 8; i++) {
if (s->refs[i].f->data[0])
ff_thread_release_buffer(ctx, &s->refs[i]);
ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
}
if (!s->invisible) {
if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
return res;
*got_frame = 1;
}
return 0;
}
static void vp9_decode_flush(AVCodecContext *ctx)
{
VP9Context *s = ctx->priv_data;
int i;
for (i = 0; i < 2; i++)
vp9_unref_frame(ctx, &s->frames[i]);
for (i = 0; i < 8; i++)
ff_thread_release_buffer(ctx, &s->refs[i]);
}
static int init_frames(AVCodecContext *ctx)
{
VP9Context *s = ctx->priv_data;
int i;
for (i = 0; i < 2; i++) {
s->frames[i].tf.f = av_frame_alloc();
if (!s->frames[i].tf.f) {
vp9_decode_free(ctx);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
return AVERROR(ENOMEM);
}
}
for (i = 0; i < 8; i++) {
s->refs[i].f = av_frame_alloc();
s->next_refs[i].f = av_frame_alloc();
if (!s->refs[i].f || !s->next_refs[i].f) {
vp9_decode_free(ctx);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
return AVERROR(ENOMEM);
}
}
return 0;
}
static av_cold int vp9_decode_init(AVCodecContext *ctx)
{
VP9Context *s = ctx->priv_data;
ctx->internal->allocate_progress = 1;
ctx->pix_fmt = AV_PIX_FMT_YUV420P;
ff_vp9dsp_init(&s->dsp);
ff_videodsp_init(&s->vdsp, 8);
s->filter.sharpness = -1;
return init_frames(ctx);
}
static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
{
return init_frames(avctx);
}
static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
{
int i, res;
VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
// FIXME scalability, size, etc.
for (i = 0; i < 2; i++) {
if (s->frames[i].tf.f->data[0])
vp9_unref_frame(dst, &s->frames[i]);
if (ssrc->frames[i].tf.f->data[0]) {
if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
return res;
}
}
for (i = 0; i < 8; i++) {
if (s->refs[i].f->data[0])
ff_thread_release_buffer(dst, &s->refs[i]);
if (ssrc->next_refs[i].f->data[0]) {
if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
return res;
}
}
s->invisible = ssrc->invisible;
s->keyframe = ssrc->keyframe;
s->uses_2pass = ssrc->uses_2pass;
memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
if (ssrc->segmentation.enabled) {
memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
sizeof(s->segmentation.feat));
}
return 0;
}
AVCodec ff_vp9_decoder = {
.name = "vp9",
.long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_VP9,
.priv_data_size = sizeof(VP9Context),
.init = vp9_decode_init,
.close = vp9_decode_free,
.decode = vp9_decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
.flush = vp9_decode_flush,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
};