1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/tests/checkasm/sw_scale.c
Anton Khirnov fe490ec165 sws: separate the calls to scaled vs unscaled conversion
Call the scaler function directly rather than through a function
pointer. Drop the now-unused return value from ff_getSwsFunc() and
rename the function to reflect its new role.

This will be useful in the following commits, where it will become
important that the amount of output is different for scaled vs unscaled
case.
2021-07-03 15:57:13 +02:00

237 lines
8.8 KiB
C

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
// This reference function is the same approximate algorithm employed by the
// SIMD functions
static void ref_function(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset)
{
int i, d;
d = ((filterSize - 1) * 8 + dither[0]) >> 4;
for ( i = 0; i < dstW; i++) {
int16_t val = d;
int j;
union {
int val;
int16_t v[2];
} t;
for (j = 0; j < filterSize; j++){
t.val = (int)src[j][i + offset] * (int)filter[j];
val += t.v[1];
}
dest[i]= av_clip_uint8(val>>3);
}
}
static void check_yuv2yuvX(void)
{
struct SwsContext *ctx;
int fsi, osi, isi, i, j;
int dstW;
#define LARGEST_FILTER 16
#define FILTER_SIZES 4
static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16};
#define LARGEST_INPUT_SIZE 512
#define INPUT_SIZES 6
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
int filterSize, const int16_t **src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
const int16_t **src;
LOCAL_ALIGNED_8(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(int16_t, filter_coeff, [LARGEST_FILTER]);
LOCAL_ALIGNED_8(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dither, [LARGEST_INPUT_SIZE]);
union VFilterData{
const int16_t *src;
uint16_t coeff[8];
} *vFilterData;
uint8_t d_val = rnd();
memset(dither, d_val, LARGEST_INPUT_SIZE);
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t));
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for(isi = 0; isi < INPUT_SIZES; ++isi){
dstW = input_sizes[isi];
for(osi = 0; osi < 64; osi += 16){
for(fsi = 0; fsi < FILTER_SIZES; ++fsi){
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
for(i = 0; i < filter_sizes[fsi]; ++i){
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
vFilterData[i].src = src[i];
for(j = 0; j < 4; ++j)
vFilterData[i].coeff[j + 4] = filter_coeff[i];
}
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d", filter_sizes[fsi], osi, dstW)){
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
// The reference function is not the scalar function selected when mmx
// is deactivated as the SIMD functions do not give the same result as
// the scalar ones due to rounding. The SIMD functions are activated by
// the flag SWS_ACCURATE_RND
ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
// There's no point in calling new for the reference function
if(ctx->use_mmx_vfilter){
call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0])))
fail();
if(dstW == LARGEST_INPUT_SIZE)
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
}
}
av_freep(&src);
av_freep(&vFilterData);
}
}
}
sws_freeContext(ctx);
#undef FILTER_SIZES
}
#undef SRC_PIXELS
#define SRC_PIXELS 128
static void check_hscale(void)
{
#define MAX_FILTER_WIDTH 40
#define FILTER_SIZES 5
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 16, 32, 40 };
#define HSCALE_PAIRS 2
static const int hscale_pairs[HSCALE_PAIRS][2] = {
{ 8, 14 },
{ 8, 18 },
};
int i, j, fsi, hpi, width;
struct SwsContext *ctx;
// padded
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
// padded
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
// The dst parameter here is either int16_t or int32_t but we use void* to
// just cover both cases.
declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
width = filter_sizes[fsi];
ctx->srcBpc = hscale_pairs[hpi][0];
ctx->dstBpc = hscale_pairs[hpi][1];
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
for (i = 0; i < SRC_PIXELS; i++) {
filterPos[i] = i;
// These filter cofficients are chosen to try break two corner
// cases, namely:
//
// - Negative filter coefficients. The filters output signed
// values, and it should be possible to end up with negative
// output values.
//
// - Positive clipping. The hscale filter function has clipping
// at (1<<15) - 1
//
// The coefficients sum to the 1.0 point for the hscale
// functions (1 << 14).
for (j = 0; j < width; j++) {
filter[i * width + j] = -((1 << 14) / (width - 1));
}
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
}
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
// These values should be unused in SIMD implementations but
// may still be read, random coefficients here should help show
// issues where they are used in error.
filter[SRC_PIXELS * width + i] = rnd();
}
ff_sws_init_scale(ctx);
if (check_func(ctx->hcScale, "hscale_%d_to_%d_width%d", ctx->srcBpc, ctx->dstBpc + 1, width)) {
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
call_ref(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
call_new(NULL, dst1, SRC_PIXELS, src, filter, filterPos, width);
if (memcmp(dst0, dst1, SRC_PIXELS * sizeof(dst0[0])))
fail();
bench_new(NULL, dst0, SRC_PIXELS, src, filter, filterPos, width);
}
}
}
sws_freeContext(ctx);
}
void checkasm_check_sw_scale(void)
{
check_hscale();
report("hscale");
check_yuv2yuvX();
report("yuv2yuvX");
}