1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/vc1dsp.c
Jason Garrett-Glaser 4f717c69ed idct_dc for VC-1/WMV3 decoder; ~11% faster decoding overall.
Includes mmx2 asm for the various functions.
Note that the actual idct still does not have an x86 SIMD implemtation.
For wmv3 files using regular idct, the decoder just falls back to simple_idct,
since simple_idct_dc doesn't exist (yet).

Originally committed as revision 19204 to svn://svn.ffmpeg.org/ffmpeg/trunk
2009-06-16 09:00:55 +00:00

667 lines
21 KiB
C

/*
* VC-1 and WMV3 decoder - DSP functions
* Copyright (c) 2006 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/vc1dsp.c
* VC-1 and WMV3 decoder
*
*/
#include "dsputil.h"
/** Apply overlap transform to horizontal edge
*/
static void vc1_v_overlap_c(uint8_t* src, int stride)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd = 1;
for(i = 0; i < 8; i++) {
a = src[-2*stride];
b = src[-stride];
c = src[0];
d = src[stride];
d1 = (a - d + 3 + rnd) >> 3;
d2 = (a - d + b - c + 4 - rnd) >> 3;
src[-2*stride] = a - d1;
src[-stride] = av_clip_uint8(b - d2);
src[0] = av_clip_uint8(c + d2);
src[stride] = d + d1;
src++;
rnd = !rnd;
}
}
/** Apply overlap transform to vertical edge
*/
static void vc1_h_overlap_c(uint8_t* src, int stride)
{
int i;
int a, b, c, d;
int d1, d2;
int rnd = 1;
for(i = 0; i < 8; i++) {
a = src[-2];
b = src[-1];
c = src[0];
d = src[1];
d1 = (a - d + 3 + rnd) >> 3;
d2 = (a - d + b - c + 4 - rnd) >> 3;
src[-2] = a - d1;
src[-1] = av_clip_uint8(b - d2);
src[0] = av_clip_uint8(c + d2);
src[1] = d + d1;
src += stride;
rnd = !rnd;
}
}
/**
* VC-1 in-loop deblocking filter for one line
* @param src source block type
* @param stride block stride
* @param pq block quantizer
* @return whether other 3 pairs should be filtered or not
* @see 8.6
*/
static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
int a0_sign = a0 >> 31; /* Store sign */
a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
if(a0 < pq){
int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
if(a1 < a0 || a2 < a0){
int clip = src[-1*stride] - src[ 0*stride];
int clip_sign = clip >> 31;
clip = ((clip ^ clip_sign) - clip_sign)>>1;
if(clip){
int a3 = FFMIN(a1, a2);
int d = 5 * (a3 - a0);
int d_sign = (d >> 31);
d = ((d ^ d_sign) - d_sign) >> 3;
d_sign ^= a0_sign;
if( d_sign ^ clip_sign )
d = 0;
else{
d = FFMIN(d, clip);
d = (d ^ d_sign) - d_sign; /* Restore sign */
src[-1*stride] = cm[src[-1*stride] - d];
src[ 0*stride] = cm[src[ 0*stride] + d];
}
return 1;
}
}
}
return 0;
}
/**
* VC-1 in-loop deblocking filter
* @param src source block type
* @param step distance between horizontally adjacent elements
* @param stride distance between vertically adjacent elements
* @param len edge length to filter (4 or 8 pixels)
* @param pq block quantizer
* @see 8.6
*/
static inline void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
{
int i;
int filt3;
for(i = 0; i < len; i += 4){
filt3 = vc1_filter_line(src + 2*step, stride, pq);
if(filt3){
vc1_filter_line(src + 0*step, stride, pq);
vc1_filter_line(src + 1*step, stride, pq);
vc1_filter_line(src + 3*step, stride, pq);
}
src += step * 4;
}
}
static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 4, pq);
}
static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 4, pq);
}
static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 8, pq);
}
static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 8, pq);
}
static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, 1, stride, 16, pq);
}
static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
{
vc1_loop_filter(src, stride, 1, 16, pq);
}
/** Do inverse transform on 8x8 block
*/
static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
int dc = block[0];
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
dc = (3 * dc + 1) >> 1;
dc = (3 * dc + 16) >> 5;
for(i = 0; i < 8; i++){
dest[0] = cm[dest[0]+dc];
dest[1] = cm[dest[1]+dc];
dest[2] = cm[dest[2]+dc];
dest[3] = cm[dest[3]+dc];
dest[4] = cm[dest[4]+dc];
dest[5] = cm[dest[5]+dc];
dest[6] = cm[dest[6]+dc];
dest[7] = cm[dest[7]+dc];
dest += linesize;
}
}
static void vc1_inv_trans_8x8_c(DCTELEM block[64])
{
int i;
register int t1,t2,t3,t4,t5,t6,t7,t8;
DCTELEM *src, *dst;
src = block;
dst = block;
for(i = 0; i < 8; i++){
t1 = 12 * (src[0] + src[4]) + 4;
t2 = 12 * (src[0] - src[4]) + 4;
t3 = 16 * src[2] + 6 * src[6];
t4 = 6 * src[2] - 16 * src[6];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
dst[0] = (t5 + t1) >> 3;
dst[1] = (t6 + t2) >> 3;
dst[2] = (t7 + t3) >> 3;
dst[3] = (t8 + t4) >> 3;
dst[4] = (t8 - t4) >> 3;
dst[5] = (t7 - t3) >> 3;
dst[6] = (t6 - t2) >> 3;
dst[7] = (t5 - t1) >> 3;
src += 8;
dst += 8;
}
src = block;
dst = block;
for(i = 0; i < 8; i++){
t1 = 12 * (src[ 0] + src[32]) + 64;
t2 = 12 * (src[ 0] - src[32]) + 64;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dst[ 0] = (t5 + t1) >> 7;
dst[ 8] = (t6 + t2) >> 7;
dst[16] = (t7 + t3) >> 7;
dst[24] = (t8 + t4) >> 7;
dst[32] = (t8 - t4 + 1) >> 7;
dst[40] = (t7 - t3 + 1) >> 7;
dst[48] = (t6 - t2 + 1) >> 7;
dst[56] = (t5 - t1 + 1) >> 7;
src++;
dst++;
}
}
/** Do inverse transform on 8x4 part of block
*/
static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
int dc = block[0];
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
dc = ( 3 * dc + 1) >> 1;
dc = (17 * dc + 64) >> 7;
for(i = 0; i < 4; i++){
dest[0] = cm[dest[0]+dc];
dest[1] = cm[dest[1]+dc];
dest[2] = cm[dest[2]+dc];
dest[3] = cm[dest[3]+dc];
dest[4] = cm[dest[4]+dc];
dest[5] = cm[dest[5]+dc];
dest[6] = cm[dest[6]+dc];
dest[7] = cm[dest[7]+dc];
dest += linesize;
}
}
static void vc1_inv_trans_8x4_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
register int t1,t2,t3,t4,t5,t6,t7,t8;
DCTELEM *src, *dst;
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
src = block;
dst = block;
for(i = 0; i < 4; i++){
t1 = 12 * (src[0] + src[4]) + 4;
t2 = 12 * (src[0] - src[4]) + 4;
t3 = 16 * src[2] + 6 * src[6];
t4 = 6 * src[2] - 16 * src[6];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
dst[0] = (t5 + t1) >> 3;
dst[1] = (t6 + t2) >> 3;
dst[2] = (t7 + t3) >> 3;
dst[3] = (t8 + t4) >> 3;
dst[4] = (t8 - t4) >> 3;
dst[5] = (t7 - t3) >> 3;
dst[6] = (t6 - t2) >> 3;
dst[7] = (t5 - t1) >> 3;
src += 8;
dst += 8;
}
src = block;
for(i = 0; i < 8; i++){
t1 = 17 * (src[ 0] + src[16]) + 64;
t2 = 17 * (src[ 0] - src[16]) + 64;
t3 = 22 * src[ 8] + 10 * src[24];
t4 = 22 * src[24] - 10 * src[ 8];
dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
src ++;
dest++;
}
}
/** Do inverse transform on 4x8 parts of block
*/
static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
int dc = block[0];
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
dc = (17 * dc + 4) >> 3;
dc = (12 * dc + 64) >> 7;
for(i = 0; i < 8; i++){
dest[0] = cm[dest[0]+dc];
dest[1] = cm[dest[1]+dc];
dest[2] = cm[dest[2]+dc];
dest[3] = cm[dest[3]+dc];
dest += linesize;
}
}
static void vc1_inv_trans_4x8_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
register int t1,t2,t3,t4,t5,t6,t7,t8;
DCTELEM *src, *dst;
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
src = block;
dst = block;
for(i = 0; i < 8; i++){
t1 = 17 * (src[0] + src[2]) + 4;
t2 = 17 * (src[0] - src[2]) + 4;
t3 = 22 * src[1] + 10 * src[3];
t4 = 22 * src[3] - 10 * src[1];
dst[0] = (t1 + t3) >> 3;
dst[1] = (t2 - t4) >> 3;
dst[2] = (t2 + t4) >> 3;
dst[3] = (t1 - t3) >> 3;
src += 8;
dst += 8;
}
src = block;
for(i = 0; i < 4; i++){
t1 = 12 * (src[ 0] + src[32]) + 64;
t2 = 12 * (src[ 0] - src[32]) + 64;
t3 = 16 * src[16] + 6 * src[48];
t4 = 6 * src[16] - 16 * src[48];
t5 = t1 + t3;
t6 = t2 + t4;
t7 = t2 - t4;
t8 = t1 - t3;
t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
dest[0*linesize] = cm[dest[0*linesize] + ((t5 + t1) >> 7)];
dest[1*linesize] = cm[dest[1*linesize] + ((t6 + t2) >> 7)];
dest[2*linesize] = cm[dest[2*linesize] + ((t7 + t3) >> 7)];
dest[3*linesize] = cm[dest[3*linesize] + ((t8 + t4) >> 7)];
dest[4*linesize] = cm[dest[4*linesize] + ((t8 - t4 + 1) >> 7)];
dest[5*linesize] = cm[dest[5*linesize] + ((t7 - t3 + 1) >> 7)];
dest[6*linesize] = cm[dest[6*linesize] + ((t6 - t2 + 1) >> 7)];
dest[7*linesize] = cm[dest[7*linesize] + ((t5 - t1 + 1) >> 7)];
src ++;
dest++;
}
}
/** Do inverse transform on 4x4 part of block
*/
static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
int dc = block[0];
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
dc = (17 * dc + 4) >> 3;
dc = (17 * dc + 64) >> 7;
for(i = 0; i < 4; i++){
dest[0] = cm[dest[0]+dc];
dest[1] = cm[dest[1]+dc];
dest[2] = cm[dest[2]+dc];
dest[3] = cm[dest[3]+dc];
dest += linesize;
}
}
static void vc1_inv_trans_4x4_c(uint8_t *dest, int linesize, DCTELEM *block)
{
int i;
register int t1,t2,t3,t4;
DCTELEM *src, *dst;
const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
src = block;
dst = block;
for(i = 0; i < 4; i++){
t1 = 17 * (src[0] + src[2]) + 4;
t2 = 17 * (src[0] - src[2]) + 4;
t3 = 22 * src[1] + 10 * src[3];
t4 = 22 * src[3] - 10 * src[1];
dst[0] = (t1 + t3) >> 3;
dst[1] = (t2 - t4) >> 3;
dst[2] = (t2 + t4) >> 3;
dst[3] = (t1 - t3) >> 3;
src += 8;
dst += 8;
}
src = block;
for(i = 0; i < 4; i++){
t1 = 17 * (src[ 0] + src[16]) + 64;
t2 = 17 * (src[ 0] - src[16]) + 64;
t3 = 22 * src[ 8] + 10 * src[24];
t4 = 22 * src[24] - 10 * src[ 8];
dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
src ++;
dest++;
}
}
/* motion compensation functions */
/** Filter in case of 2 filters */
#define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, int stride, int mode) \
{ \
switch(mode){ \
case 0: /* no shift - should not occur */ \
return 0; \
case 1: /* 1/4 shift */ \
return -4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2]; \
case 2: /* 1/2 shift */ \
return -src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2]; \
case 3: /* 3/4 shift */ \
return -3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2]; \
} \
return 0; /* should not occur */ \
}
VC1_MSPEL_FILTER_16B(ver, uint8_t);
VC1_MSPEL_FILTER_16B(hor, int16_t);
/** Filter used to interpolate fractional pel values
*/
static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r)
{
switch(mode){
case 0: //no shift
return src[0];
case 1: // 1/4 shift
return (-4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2] + 32 - r) >> 6;
case 2: // 1/2 shift
return (-src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2] + 8 - r) >> 4;
case 3: // 3/4 shift
return (-3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2] + 32 - r) >> 6;
}
return 0; //should not occur
}
/** Function used to do motion compensation with bicubic interpolation
*/
#define VC1_MSPEL_MC(OP, OPNAME)\
static void OPNAME ## vc1_mspel_mc(uint8_t *dst, const uint8_t *src, int stride, int hmode, int vmode, int rnd)\
{\
int i, j;\
\
if (vmode) { /* Horizontal filter to apply */\
int r;\
\
if (hmode) { /* Vertical filter to apply, output to tmp */\
static const int shift_value[] = { 0, 5, 1, 5 };\
int shift = (shift_value[hmode]+shift_value[vmode])>>1;\
int16_t tmp[11*8], *tptr = tmp;\
\
r = (1<<(shift-1)) + rnd-1;\
\
src -= 1;\
for(j = 0; j < 8; j++) {\
for(i = 0; i < 11; i++)\
tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode)+r)>>shift;\
src += stride;\
tptr += 11;\
}\
\
r = 64-rnd;\
tptr = tmp+1;\
for(j = 0; j < 8; j++) {\
for(i = 0; i < 8; i++)\
OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode)+r)>>7);\
dst += stride;\
tptr += 11;\
}\
\
return;\
}\
else { /* No horizontal filter, output 8 lines to dst */\
r = 1-rnd;\
\
for(j = 0; j < 8; j++) {\
for(i = 0; i < 8; i++)\
OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r));\
src += stride;\
dst += stride;\
}\
return;\
}\
}\
\
/* Horizontal mode with no vertical mode */\
for(j = 0; j < 8; j++) {\
for(i = 0; i < 8; i++)\
OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd));\
dst += stride;\
src += stride;\
}\
}
#define op_put(a, b) a = av_clip_uint8(b)
#define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1
VC1_MSPEL_MC(op_put, put_)
VC1_MSPEL_MC(op_avg, avg_)
/* pixel functions - really are entry points to vc1_mspel_mc */
/* this one is defined in dsputil.c */
void ff_put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
void ff_avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
#define PUT_VC1_MSPEL(a, b)\
static void put_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
}\
static void avg_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
}
PUT_VC1_MSPEL(1, 0)
PUT_VC1_MSPEL(2, 0)
PUT_VC1_MSPEL(3, 0)
PUT_VC1_MSPEL(0, 1)
PUT_VC1_MSPEL(1, 1)
PUT_VC1_MSPEL(2, 1)
PUT_VC1_MSPEL(3, 1)
PUT_VC1_MSPEL(0, 2)
PUT_VC1_MSPEL(1, 2)
PUT_VC1_MSPEL(2, 2)
PUT_VC1_MSPEL(3, 2)
PUT_VC1_MSPEL(0, 3)
PUT_VC1_MSPEL(1, 3)
PUT_VC1_MSPEL(2, 3)
PUT_VC1_MSPEL(3, 3)
void ff_vc1dsp_init(DSPContext* dsp, AVCodecContext *avctx) {
dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c;
dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c;
dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c;
dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c;
dsp->vc1_h_overlap = vc1_h_overlap_c;
dsp->vc1_v_overlap = vc1_v_overlap_c;
dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c;
dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c;
dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c;
dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c;
dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c;
dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c;
dsp->put_vc1_mspel_pixels_tab[ 0] = ff_put_vc1_mspel_mc00_c;
dsp->put_vc1_mspel_pixels_tab[ 1] = put_vc1_mspel_mc10_c;
dsp->put_vc1_mspel_pixels_tab[ 2] = put_vc1_mspel_mc20_c;
dsp->put_vc1_mspel_pixels_tab[ 3] = put_vc1_mspel_mc30_c;
dsp->put_vc1_mspel_pixels_tab[ 4] = put_vc1_mspel_mc01_c;
dsp->put_vc1_mspel_pixels_tab[ 5] = put_vc1_mspel_mc11_c;
dsp->put_vc1_mspel_pixels_tab[ 6] = put_vc1_mspel_mc21_c;
dsp->put_vc1_mspel_pixels_tab[ 7] = put_vc1_mspel_mc31_c;
dsp->put_vc1_mspel_pixels_tab[ 8] = put_vc1_mspel_mc02_c;
dsp->put_vc1_mspel_pixels_tab[ 9] = put_vc1_mspel_mc12_c;
dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
dsp->avg_vc1_mspel_pixels_tab[ 0] = ff_avg_vc1_mspel_mc00_c;
dsp->avg_vc1_mspel_pixels_tab[ 1] = avg_vc1_mspel_mc10_c;
dsp->avg_vc1_mspel_pixels_tab[ 2] = avg_vc1_mspel_mc20_c;
dsp->avg_vc1_mspel_pixels_tab[ 3] = avg_vc1_mspel_mc30_c;
dsp->avg_vc1_mspel_pixels_tab[ 4] = avg_vc1_mspel_mc01_c;
dsp->avg_vc1_mspel_pixels_tab[ 5] = avg_vc1_mspel_mc11_c;
dsp->avg_vc1_mspel_pixels_tab[ 6] = avg_vc1_mspel_mc21_c;
dsp->avg_vc1_mspel_pixels_tab[ 7] = avg_vc1_mspel_mc31_c;
dsp->avg_vc1_mspel_pixels_tab[ 8] = avg_vc1_mspel_mc02_c;
dsp->avg_vc1_mspel_pixels_tab[ 9] = avg_vc1_mspel_mc12_c;
dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c;
dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c;
dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c;
dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c;
dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c;
dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c;
}