1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/agm.c
Andreas Rheinhardt 20f9727018 avcodec/codec_internal: Add FFCodec, hide internal part of AVCodec
Up until now, codec.h contains both public and private parts
of AVCodec. This exposes the internals of AVCodec to users
and leads them into the temptation of actually using them
and forces us to forward-declare structures and types that
users can't use at all.

This commit changes this by adding a new structure FFCodec to
codec_internal.h that extends AVCodec, i.e. contains the public
AVCodec as first member; the private fields of AVCodec are moved
to this structure, leaving codec.h clean.

Reviewed-by: Anton Khirnov <anton@khirnov.net>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-03-21 01:33:09 +01:00

1304 lines
38 KiB
C

/*
* Amuse Graphics Movie decoder
*
* Copyright (c) 2018 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BITSTREAM_READER_LE
#include "libavutil/mem_internal.h"
#include "avcodec.h"
#include "bytestream.h"
#include "codec_internal.h"
#include "copy_block.h"
#include "get_bits.h"
#include "idctdsp.h"
#include "internal.h"
static const uint8_t unscaled_luma[64] = {
16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19,
26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56,
68,109,103, 77, 24, 35, 55, 64, 81,104,113, 92,
49, 64, 78, 87,103,121,120,101, 72, 92, 95, 98,
112,100,103,99
};
static const uint8_t unscaled_chroma[64] = {
17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66,
99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99
};
typedef struct MotionVector {
int16_t x, y;
} MotionVector;
typedef struct AGMContext {
const AVClass *class;
AVCodecContext *avctx;
GetBitContext gb;
GetByteContext gbyte;
int key_frame;
int bitstream_size;
int compression;
int blocks_w;
int blocks_h;
int size[3];
int plus;
int dct;
int rgb;
unsigned flags;
unsigned fflags;
uint8_t *output;
unsigned padded_output_size;
unsigned output_size;
MotionVector *mvectors;
unsigned mvectors_size;
VLC vlc;
AVFrame *prev_frame;
int luma_quant_matrix[64];
int chroma_quant_matrix[64];
ScanTable scantable;
DECLARE_ALIGNED(32, int16_t, block)[64];
int16_t *wblocks;
unsigned wblocks_size;
int *map;
unsigned map_size;
IDCTDSPContext idsp;
} AGMContext;
static int read_code(GetBitContext *gb, int *oskip, int *level, int *map, int mode)
{
int len = 0, skip = 0, max;
if (get_bits_left(gb) < 2)
return AVERROR_INVALIDDATA;
if (show_bits(gb, 2)) {
switch (show_bits(gb, 4)) {
case 1:
case 9:
len = 1;
skip = 3;
break;
case 2:
len = 3;
skip = 4;
break;
case 3:
len = 7;
skip = 4;
break;
case 5:
case 13:
len = 2;
skip = 3;
break;
case 6:
len = 4;
skip = 4;
break;
case 7:
len = 8;
skip = 4;
break;
case 10:
len = 5;
skip = 4;
break;
case 11:
len = 9;
skip = 4;
break;
case 14:
len = 6;
skip = 4;
break;
case 15:
len = ((show_bits(gb, 5) & 0x10) | 0xA0) >> 4;
skip = 5;
break;
default:
return AVERROR_INVALIDDATA;
}
skip_bits(gb, skip);
*level = get_bits(gb, len);
*map = 1;
*oskip = 0;
max = 1 << (len - 1);
if (*level < max)
*level = -(max + *level);
} else if (show_bits(gb, 3) & 4) {
skip_bits(gb, 3);
if (mode == 1) {
if (show_bits(gb, 4)) {
if (show_bits(gb, 4) == 1) {
skip_bits(gb, 4);
*oskip = get_bits(gb, 16);
} else {
*oskip = get_bits(gb, 4);
}
} else {
skip_bits(gb, 4);
*oskip = get_bits(gb, 10);
}
} else if (mode == 0) {
*oskip = get_bits(gb, 10);
}
*level = 0;
} else {
skip_bits(gb, 3);
if (mode == 0)
*oskip = get_bits(gb, 4);
else if (mode == 1)
*oskip = 0;
*level = 0;
}
return 0;
}
static int decode_intra_blocks(AGMContext *s, GetBitContext *gb,
const int *quant_matrix, int *skip, int *dc_level)
{
const uint8_t *scantable = s->scantable.permutated;
int level, ret, map = 0;
memset(s->wblocks, 0, s->wblocks_size);
for (int i = 0; i < 64; i++) {
int16_t *block = s->wblocks + scantable[i];
for (int j = 0; j < s->blocks_w;) {
if (*skip > 0) {
int rskip;
rskip = FFMIN(*skip, s->blocks_w - j);
j += rskip;
if (i == 0) {
for (int k = 0; k < rskip; k++)
block[64 * k] = *dc_level * quant_matrix[0];
}
block += rskip * 64;
*skip -= rskip;
} else {
ret = read_code(gb, skip, &level, &map, s->flags & 1);
if (ret < 0)
return ret;
if (i == 0)
*dc_level += level;
block[0] = (i == 0 ? *dc_level : level) * quant_matrix[i];
block += 64;
j++;
}
}
}
return 0;
}
static int decode_inter_blocks(AGMContext *s, GetBitContext *gb,
const int *quant_matrix, int *skip,
int *map)
{
const uint8_t *scantable = s->scantable.permutated;
int level, ret;
memset(s->wblocks, 0, s->wblocks_size);
memset(s->map, 0, s->map_size);
for (int i = 0; i < 64; i++) {
int16_t *block = s->wblocks + scantable[i];
for (int j = 0; j < s->blocks_w;) {
if (*skip > 0) {
int rskip;
rskip = FFMIN(*skip, s->blocks_w - j);
j += rskip;
block += rskip * 64;
*skip -= rskip;
} else {
ret = read_code(gb, skip, &level, &map[j], s->flags & 1);
if (ret < 0)
return ret;
block[0] = level * quant_matrix[i];
block += 64;
j++;
}
}
}
return 0;
}
static int decode_intra_block(AGMContext *s, GetBitContext *gb,
const int *quant_matrix, int *skip, int *dc_level)
{
const uint8_t *scantable = s->scantable.permutated;
const int offset = s->plus ? 0 : 1024;
int16_t *block = s->block;
int level, ret, map = 0;
memset(block, 0, sizeof(s->block));
if (*skip > 0) {
(*skip)--;
} else {
ret = read_code(gb, skip, &level, &map, s->flags & 1);
if (ret < 0)
return ret;
*dc_level += level;
}
block[scantable[0]] = offset + *dc_level * quant_matrix[0];
for (int i = 1; i < 64;) {
if (*skip > 0) {
int rskip;
rskip = FFMIN(*skip, 64 - i);
i += rskip;
*skip -= rskip;
} else {
ret = read_code(gb, skip, &level, &map, s->flags & 1);
if (ret < 0)
return ret;
block[scantable[i]] = level * quant_matrix[i];
i++;
}
}
return 0;
}
static int decode_intra_plane(AGMContext *s, GetBitContext *gb, int size,
const int *quant_matrix, AVFrame *frame,
int plane)
{
int ret, skip = 0, dc_level = 0;
const int offset = s->plus ? 0 : 1024;
if ((ret = init_get_bits8(gb, s->gbyte.buffer, size)) < 0)
return ret;
if (s->flags & 1) {
av_fast_padded_malloc(&s->wblocks, &s->wblocks_size,
64 * s->blocks_w * sizeof(*s->wblocks));
if (!s->wblocks)
return AVERROR(ENOMEM);
for (int y = 0; y < s->blocks_h; y++) {
ret = decode_intra_blocks(s, gb, quant_matrix, &skip, &dc_level);
if (ret < 0)
return ret;
for (int x = 0; x < s->blocks_w; x++) {
s->wblocks[64 * x] += offset;
s->idsp.idct_put(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->wblocks + 64 * x);
}
}
} else {
for (int y = 0; y < s->blocks_h; y++) {
for (int x = 0; x < s->blocks_w; x++) {
ret = decode_intra_block(s, gb, quant_matrix, &skip, &dc_level);
if (ret < 0)
return ret;
s->idsp.idct_put(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->block);
}
}
}
align_get_bits(gb);
if (get_bits_left(gb) < 0)
av_log(s->avctx, AV_LOG_WARNING, "overread\n");
if (get_bits_left(gb) > 0)
av_log(s->avctx, AV_LOG_WARNING, "underread: %d\n", get_bits_left(gb));
return 0;
}
static int decode_inter_block(AGMContext *s, GetBitContext *gb,
const int *quant_matrix, int *skip,
int *map)
{
const uint8_t *scantable = s->scantable.permutated;
int16_t *block = s->block;
int level, ret;
memset(block, 0, sizeof(s->block));
for (int i = 0; i < 64;) {
if (*skip > 0) {
int rskip;
rskip = FFMIN(*skip, 64 - i);
i += rskip;
*skip -= rskip;
} else {
ret = read_code(gb, skip, &level, map, s->flags & 1);
if (ret < 0)
return ret;
block[scantable[i]] = level * quant_matrix[i];
i++;
}
}
return 0;
}
static int decode_inter_plane(AGMContext *s, GetBitContext *gb, int size,
const int *quant_matrix, AVFrame *frame,
AVFrame *prev, int plane)
{
int ret, skip = 0;
if ((ret = init_get_bits8(gb, s->gbyte.buffer, size)) < 0)
return ret;
if (s->flags == 3) {
av_fast_padded_malloc(&s->wblocks, &s->wblocks_size,
64 * s->blocks_w * sizeof(*s->wblocks));
if (!s->wblocks)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&s->map, &s->map_size,
s->blocks_w * sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
for (int y = 0; y < s->blocks_h; y++) {
ret = decode_inter_blocks(s, gb, quant_matrix, &skip, s->map);
if (ret < 0)
return ret;
for (int x = 0; x < s->blocks_w; x++) {
int shift = plane == 0;
int mvpos = (y >> shift) * (s->blocks_w >> shift) + (x >> shift);
int orig_mv_x = s->mvectors[mvpos].x;
int mv_x = s->mvectors[mvpos].x / (1 + !shift);
int mv_y = s->mvectors[mvpos].y / (1 + !shift);
int h = s->avctx->coded_height >> !shift;
int w = s->avctx->coded_width >> !shift;
int map = s->map[x];
if (orig_mv_x >= -32) {
if (y * 8 + mv_y < 0 || y * 8 + mv_y + 8 > h ||
x * 8 + mv_x < 0 || x * 8 + mv_x + 8 > w)
return AVERROR_INVALIDDATA;
copy_block8(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
prev->data[plane] + ((s->blocks_h - 1 - y) * 8 - mv_y) * prev->linesize[plane] + (x * 8 + mv_x),
frame->linesize[plane], prev->linesize[plane], 8);
if (map) {
s->idsp.idct(s->wblocks + x * 64);
for (int i = 0; i < 64; i++)
s->wblocks[i + x * 64] = (s->wblocks[i + x * 64] + 1) & 0xFFFC;
s->idsp.add_pixels_clamped(&s->wblocks[x*64], frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane]);
}
} else if (map) {
s->idsp.idct_put(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->wblocks + x * 64);
}
}
}
} else if (s->flags & 2) {
for (int y = 0; y < s->blocks_h; y++) {
for (int x = 0; x < s->blocks_w; x++) {
int shift = plane == 0;
int mvpos = (y >> shift) * (s->blocks_w >> shift) + (x >> shift);
int orig_mv_x = s->mvectors[mvpos].x;
int mv_x = s->mvectors[mvpos].x / (1 + !shift);
int mv_y = s->mvectors[mvpos].y / (1 + !shift);
int h = s->avctx->coded_height >> !shift;
int w = s->avctx->coded_width >> !shift;
int map = 0;
ret = decode_inter_block(s, gb, quant_matrix, &skip, &map);
if (ret < 0)
return ret;
if (orig_mv_x >= -32) {
if (y * 8 + mv_y < 0 || y * 8 + mv_y + 8 > h ||
x * 8 + mv_x < 0 || x * 8 + mv_x + 8 > w)
return AVERROR_INVALIDDATA;
copy_block8(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
prev->data[plane] + ((s->blocks_h - 1 - y) * 8 - mv_y) * prev->linesize[plane] + (x * 8 + mv_x),
frame->linesize[plane], prev->linesize[plane], 8);
if (map) {
s->idsp.idct(s->block);
for (int i = 0; i < 64; i++)
s->block[i] = (s->block[i] + 1) & 0xFFFC;
s->idsp.add_pixels_clamped(s->block, frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane]);
}
} else if (map) {
s->idsp.idct_put(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->block);
}
}
}
} else if (s->flags & 1) {
av_fast_padded_malloc(&s->wblocks, &s->wblocks_size,
64 * s->blocks_w * sizeof(*s->wblocks));
if (!s->wblocks)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&s->map, &s->map_size,
s->blocks_w * sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
for (int y = 0; y < s->blocks_h; y++) {
ret = decode_inter_blocks(s, gb, quant_matrix, &skip, s->map);
if (ret < 0)
return ret;
for (int x = 0; x < s->blocks_w; x++) {
if (!s->map[x])
continue;
s->idsp.idct_add(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->wblocks + 64 * x);
}
}
} else {
for (int y = 0; y < s->blocks_h; y++) {
for (int x = 0; x < s->blocks_w; x++) {
int map = 0;
ret = decode_inter_block(s, gb, quant_matrix, &skip, &map);
if (ret < 0)
return ret;
if (!map)
continue;
s->idsp.idct_add(frame->data[plane] + (s->blocks_h - 1 - y) * 8 * frame->linesize[plane] + x * 8,
frame->linesize[plane], s->block);
}
}
}
align_get_bits(gb);
if (get_bits_left(gb) < 0)
av_log(s->avctx, AV_LOG_WARNING, "overread\n");
if (get_bits_left(gb) > 0)
av_log(s->avctx, AV_LOG_WARNING, "underread: %d\n", get_bits_left(gb));
return 0;
}
static void compute_quant_matrix(AGMContext *s, double qscale)
{
int luma[64], chroma[64];
double f = 1.0 - fabs(qscale);
if (!s->key_frame && (s->flags & 2)) {
if (qscale >= 0.0) {
for (int i = 0; i < 64; i++) {
luma[i] = FFMAX(1, 16 * f);
chroma[i] = FFMAX(1, 16 * f);
}
} else {
for (int i = 0; i < 64; i++) {
luma[i] = FFMAX(1, 16 - qscale * 32);
chroma[i] = FFMAX(1, 16 - qscale * 32);
}
}
} else {
if (qscale >= 0.0) {
for (int i = 0; i < 64; i++) {
luma[i] = FFMAX(1, unscaled_luma [(i & 7) * 8 + (i >> 3)] * f);
chroma[i] = FFMAX(1, unscaled_chroma[(i & 7) * 8 + (i >> 3)] * f);
}
} else {
for (int i = 0; i < 64; i++) {
luma[i] = FFMAX(1, 255.0 - (255 - unscaled_luma [(i & 7) * 8 + (i >> 3)]) * f);
chroma[i] = FFMAX(1, 255.0 - (255 - unscaled_chroma[(i & 7) * 8 + (i >> 3)]) * f);
}
}
}
for (int i = 0; i < 64; i++) {
int pos = ff_zigzag_direct[i];
s->luma_quant_matrix[i] = luma[pos] * ((pos / 8) & 1 ? -1 : 1);
s->chroma_quant_matrix[i] = chroma[pos] * ((pos / 8) & 1 ? -1 : 1);
}
}
static int decode_raw_intra_rgb(AVCodecContext *avctx, GetByteContext *gbyte, AVFrame *frame)
{
uint8_t *dst = frame->data[0] + (avctx->height - 1) * frame->linesize[0];
uint8_t r = 0, g = 0, b = 0;
if (bytestream2_get_bytes_left(gbyte) < 3 * avctx->width * avctx->height)
return AVERROR_INVALIDDATA;
for (int y = 0; y < avctx->height; y++) {
for (int x = 0; x < avctx->width; x++) {
dst[x*3+0] = bytestream2_get_byteu(gbyte) + r;
r = dst[x*3+0];
dst[x*3+1] = bytestream2_get_byteu(gbyte) + g;
g = dst[x*3+1];
dst[x*3+2] = bytestream2_get_byteu(gbyte) + b;
b = dst[x*3+2];
}
dst -= frame->linesize[0];
}
return 0;
}
av_always_inline static int fill_pixels(uint8_t **y0, uint8_t **y1,
uint8_t **u, uint8_t **v,
int ylinesize, int ulinesize, int vlinesize,
uint8_t *fill,
int *nx, int *ny, int *np, int w, int h)
{
uint8_t *y0dst = *y0;
uint8_t *y1dst = *y1;
uint8_t *udst = *u;
uint8_t *vdst = *v;
int x = *nx, y = *ny, pos = *np;
if (pos == 0) {
y0dst[2*x+0] += fill[0];
y0dst[2*x+1] += fill[1];
y1dst[2*x+0] += fill[2];
y1dst[2*x+1] += fill[3];
pos++;
} else if (pos == 1) {
udst[x] += fill[0];
vdst[x] += fill[1];
x++;
if (x >= w) {
x = 0;
y++;
if (y >= h)
return 1;
y0dst -= 2*ylinesize;
y1dst -= 2*ylinesize;
udst -= ulinesize;
vdst -= vlinesize;
}
y0dst[2*x+0] += fill[2];
y0dst[2*x+1] += fill[3];
pos++;
} else if (pos == 2) {
y1dst[2*x+0] += fill[0];
y1dst[2*x+1] += fill[1];
udst[x] += fill[2];
vdst[x] += fill[3];
x++;
if (x >= w) {
x = 0;
y++;
if (y >= h)
return 1;
y0dst -= 2*ylinesize;
y1dst -= 2*ylinesize;
udst -= ulinesize;
vdst -= vlinesize;
}
pos = 0;
}
*y0 = y0dst;
*y1 = y1dst;
*u = udst;
*v = vdst;
*np = pos;
*nx = x;
*ny = y;
return 0;
}
static int decode_runlen_rgb(AVCodecContext *avctx, GetByteContext *gbyte, AVFrame *frame)
{
uint8_t *dst = frame->data[0] + (avctx->height - 1) * frame->linesize[0];
int runlen, y = 0, x = 0;
uint8_t fill[4];
unsigned code;
while (bytestream2_get_bytes_left(gbyte) > 0) {
code = bytestream2_peek_le32(gbyte);
runlen = code & 0xFFFFFF;
if (code >> 24 == 0x77) {
bytestream2_skip(gbyte, 4);
for (int i = 0; i < 4; i++)
fill[i] = bytestream2_get_byte(gbyte);
while (runlen > 0) {
runlen--;
for (int i = 0; i < 4; i++) {
dst[x] += fill[i];
x++;
if (x >= frame->width * 3) {
x = 0;
y++;
dst -= frame->linesize[0];
if (y >= frame->height)
return 0;
}
}
}
} else {
for (int i = 0; i < 4; i++)
fill[i] = bytestream2_get_byte(gbyte);
for (int i = 0; i < 4; i++) {
dst[x] += fill[i];
x++;
if (x >= frame->width * 3) {
x = 0;
y++;
dst -= frame->linesize[0];
if (y >= frame->height)
return 0;
}
}
}
}
return 0;
}
static int decode_runlen(AVCodecContext *avctx, GetByteContext *gbyte, AVFrame *frame)
{
uint8_t *y0dst = frame->data[0] + (avctx->height - 1) * frame->linesize[0];
uint8_t *y1dst = y0dst - frame->linesize[0];
uint8_t *udst = frame->data[1] + ((avctx->height >> 1) - 1) * frame->linesize[1];
uint8_t *vdst = frame->data[2] + ((avctx->height >> 1) - 1) * frame->linesize[2];
int runlen, y = 0, x = 0, pos = 0;
uint8_t fill[4];
unsigned code;
while (bytestream2_get_bytes_left(gbyte) > 0) {
code = bytestream2_peek_le32(gbyte);
runlen = code & 0xFFFFFF;
if (code >> 24 == 0x77) {
bytestream2_skip(gbyte, 4);
for (int i = 0; i < 4; i++)
fill[i] = bytestream2_get_byte(gbyte);
while (runlen > 0) {
runlen--;
if (fill_pixels(&y0dst, &y1dst, &udst, &vdst,
frame->linesize[0],
frame->linesize[1],
frame->linesize[2],
fill, &x, &y, &pos,
avctx->width / 2,
avctx->height / 2))
return 0;
}
} else {
for (int i = 0; i < 4; i++)
fill[i] = bytestream2_get_byte(gbyte);
if (fill_pixels(&y0dst, &y1dst, &udst, &vdst,
frame->linesize[0],
frame->linesize[1],
frame->linesize[2],
fill, &x, &y, &pos,
avctx->width / 2,
avctx->height / 2))
return 0;
}
}
return 0;
}
static int decode_raw_intra(AVCodecContext *avctx, GetByteContext *gbyte, AVFrame *frame)
{
uint8_t *y0dst = frame->data[0] + (avctx->height - 1) * frame->linesize[0];
uint8_t *y1dst = y0dst - frame->linesize[0];
uint8_t *udst = frame->data[1] + ((avctx->height >> 1) - 1) * frame->linesize[1];
uint8_t *vdst = frame->data[2] + ((avctx->height >> 1) - 1) * frame->linesize[2];
uint8_t ly0 = 0, ly1 = 0, ly2 = 0, ly3 = 0, lu = 0, lv = 0;
for (int y = 0; y < avctx->height / 2; y++) {
for (int x = 0; x < avctx->width / 2; x++) {
y0dst[x*2+0] = bytestream2_get_byte(gbyte) + ly0;
ly0 = y0dst[x*2+0];
y0dst[x*2+1] = bytestream2_get_byte(gbyte) + ly1;
ly1 = y0dst[x*2+1];
y1dst[x*2+0] = bytestream2_get_byte(gbyte) + ly2;
ly2 = y1dst[x*2+0];
y1dst[x*2+1] = bytestream2_get_byte(gbyte) + ly3;
ly3 = y1dst[x*2+1];
udst[x] = bytestream2_get_byte(gbyte) + lu;
lu = udst[x];
vdst[x] = bytestream2_get_byte(gbyte) + lv;
lv = vdst[x];
}
y0dst -= 2*frame->linesize[0];
y1dst -= 2*frame->linesize[0];
udst -= frame->linesize[1];
vdst -= frame->linesize[2];
}
return 0;
}
static int decode_intra(AVCodecContext *avctx, GetBitContext *gb, AVFrame *frame)
{
AGMContext *s = avctx->priv_data;
int ret;
compute_quant_matrix(s, (2 * s->compression - 100) / 100.0);
s->blocks_w = avctx->coded_width >> 3;
s->blocks_h = avctx->coded_height >> 3;
ret = decode_intra_plane(s, gb, s->size[0], s->luma_quant_matrix, frame, 0);
if (ret < 0)
return ret;
bytestream2_skip(&s->gbyte, s->size[0]);
s->blocks_w = avctx->coded_width >> 4;
s->blocks_h = avctx->coded_height >> 4;
ret = decode_intra_plane(s, gb, s->size[1], s->chroma_quant_matrix, frame, 2);
if (ret < 0)
return ret;
bytestream2_skip(&s->gbyte, s->size[1]);
s->blocks_w = avctx->coded_width >> 4;
s->blocks_h = avctx->coded_height >> 4;
ret = decode_intra_plane(s, gb, s->size[2], s->chroma_quant_matrix, frame, 1);
if (ret < 0)
return ret;
return 0;
}
static int decode_motion_vectors(AVCodecContext *avctx, GetBitContext *gb)
{
AGMContext *s = avctx->priv_data;
int nb_mvs = ((avctx->coded_height + 15) >> 4) * ((avctx->coded_width + 15) >> 4);
int ret, skip = 0, value, map;
av_fast_padded_malloc(&s->mvectors, &s->mvectors_size,
nb_mvs * sizeof(*s->mvectors));
if (!s->mvectors)
return AVERROR(ENOMEM);
if ((ret = init_get_bits8(gb, s->gbyte.buffer, bytestream2_get_bytes_left(&s->gbyte) -
(s->size[0] + s->size[1] + s->size[2]))) < 0)
return ret;
memset(s->mvectors, 0, sizeof(*s->mvectors) * nb_mvs);
for (int i = 0; i < nb_mvs; i++) {
ret = read_code(gb, &skip, &value, &map, 1);
if (ret < 0)
return ret;
s->mvectors[i].x = value;
i += skip;
}
for (int i = 0; i < nb_mvs; i++) {
ret = read_code(gb, &skip, &value, &map, 1);
if (ret < 0)
return ret;
s->mvectors[i].y = value;
i += skip;
}
if (get_bits_left(gb) <= 0)
return AVERROR_INVALIDDATA;
skip = (get_bits_count(gb) >> 3) + 1;
bytestream2_skip(&s->gbyte, skip);
return 0;
}
static int decode_inter(AVCodecContext *avctx, GetBitContext *gb,
AVFrame *frame, AVFrame *prev)
{
AGMContext *s = avctx->priv_data;
int ret;
compute_quant_matrix(s, (2 * s->compression - 100) / 100.0);
if (s->flags & 2) {
ret = decode_motion_vectors(avctx, gb);
if (ret < 0)
return ret;
}
s->blocks_w = avctx->coded_width >> 3;
s->blocks_h = avctx->coded_height >> 3;
ret = decode_inter_plane(s, gb, s->size[0], s->luma_quant_matrix, frame, prev, 0);
if (ret < 0)
return ret;
bytestream2_skip(&s->gbyte, s->size[0]);
s->blocks_w = avctx->coded_width >> 4;
s->blocks_h = avctx->coded_height >> 4;
ret = decode_inter_plane(s, gb, s->size[1], s->chroma_quant_matrix, frame, prev, 2);
if (ret < 0)
return ret;
bytestream2_skip(&s->gbyte, s->size[1]);
s->blocks_w = avctx->coded_width >> 4;
s->blocks_h = avctx->coded_height >> 4;
ret = decode_inter_plane(s, gb, s->size[2], s->chroma_quant_matrix, frame, prev, 1);
if (ret < 0)
return ret;
return 0;
}
typedef struct Node {
int parent;
int child[2];
} Node;
static void get_tree_codes(uint32_t *codes, Node *nodes, int idx, uint32_t pfx, int bitpos)
{
if (idx < 256 && idx >= 0) {
codes[idx] = pfx;
} else if (idx >= 0) {
get_tree_codes(codes, nodes, nodes[idx].child[0], pfx + (0 << bitpos), bitpos + 1);
get_tree_codes(codes, nodes, nodes[idx].child[1], pfx + (1U << bitpos), bitpos + 1);
}
}
static int make_new_tree(const uint8_t *bitlens, uint32_t *codes)
{
int zlcount = 0, curlen, idx, nindex, last, llast;
int blcounts[32] = { 0 };
int syms[8192];
Node nodes[512];
int node_idx[1024];
int old_idx[512];
for (int i = 0; i < 256; i++) {
int bitlen = bitlens[i];
int blcount = blcounts[bitlen];
zlcount += bitlen < 1;
syms[(bitlen << 8) + blcount] = i;
blcounts[bitlen]++;
}
for (int i = 0; i < 512; i++) {
nodes[i].child[0] = -1;
nodes[i].child[1] = -1;
}
for (int i = 0; i < 256; i++) {
node_idx[i] = 257 + i;
}
curlen = 1;
node_idx[512] = 256;
last = 255;
nindex = 1;
for (curlen = 1; curlen < 32; curlen++) {
if (blcounts[curlen] > 0) {
int max_zlcount = zlcount + blcounts[curlen];
for (int i = 0; zlcount < 256 && zlcount < max_zlcount; zlcount++, i++) {
int p = node_idx[nindex - 1 + 512];
int ch = syms[256 * curlen + i];
if (nindex <= 0)
return AVERROR_INVALIDDATA;
if (nodes[p].child[0] == -1) {
nodes[p].child[0] = ch;
} else {
nodes[p].child[1] = ch;
nindex--;
}
nodes[ch].parent = p;
}
}
llast = last - 1;
idx = 0;
while (nindex > 0) {
int p, ch;
last = llast - idx;
p = node_idx[nindex - 1 + 512];
ch = node_idx[last];
if (nodes[p].child[0] == -1) {
nodes[p].child[0] = ch;
} else {
nodes[p].child[1] = ch;
nindex--;
}
old_idx[idx] = ch;
nodes[ch].parent = p;
if (idx == llast)
goto next;
idx++;
if (nindex <= 0) {
for (int i = 0; i < idx; i++)
node_idx[512 + i] = old_idx[i];
}
}
nindex = idx;
}
next:
get_tree_codes(codes, nodes, 256, 0, 0);
return 0;
}
static int build_huff(const uint8_t *bitlen, VLC *vlc)
{
uint32_t new_codes[256];
uint8_t bits[256];
uint8_t symbols[256];
uint32_t codes[256];
int nb_codes = 0;
int ret = make_new_tree(bitlen, new_codes);
if (ret < 0)
return ret;
for (int i = 0; i < 256; i++) {
if (bitlen[i]) {
bits[nb_codes] = bitlen[i];
codes[nb_codes] = new_codes[i];
symbols[nb_codes] = i;
nb_codes++;
}
}
ff_free_vlc(vlc);
return ff_init_vlc_sparse(vlc, 13, nb_codes,
bits, 1, 1,
codes, 4, 4,
symbols, 1, 1,
INIT_VLC_LE);
}
static int decode_huffman2(AVCodecContext *avctx, int header, int size)
{
AGMContext *s = avctx->priv_data;
GetBitContext *gb = &s->gb;
uint8_t lens[256];
int ret, x, len;
if ((ret = init_get_bits8(gb, s->gbyte.buffer,
bytestream2_get_bytes_left(&s->gbyte))) < 0)
return ret;
s->output_size = get_bits_long(gb, 32);
if (s->output_size > avctx->width * avctx->height * 9LL + 10000)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&s->output, &s->padded_output_size, s->output_size);
if (!s->output)
return AVERROR(ENOMEM);
x = get_bits(gb, 1);
len = 4 + get_bits(gb, 1);
if (x) {
int cb[8] = { 0 };
int count = get_bits(gb, 3) + 1;
for (int i = 0; i < count; i++)
cb[i] = get_bits(gb, len);
for (int i = 0; i < 256; i++) {
int idx = get_bits(gb, 3);
lens[i] = cb[idx];
}
} else {
for (int i = 0; i < 256; i++)
lens[i] = get_bits(gb, len);
}
if ((ret = build_huff(lens, &s->vlc)) < 0)
return ret;
x = 0;
while (get_bits_left(gb) > 0 && x < s->output_size) {
int val = get_vlc2(gb, s->vlc.table, s->vlc.bits, 3);
if (val < 0)
return AVERROR_INVALIDDATA;
s->output[x++] = val;
}
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
AGMContext *s = avctx->priv_data;
GetBitContext *gb = &s->gb;
GetByteContext *gbyte = &s->gbyte;
AVFrame *frame = data;
int w, h, width, height, header;
unsigned compressed_size;
long skip;
int ret;
if (!avpkt->size)
return 0;
bytestream2_init(gbyte, avpkt->data, avpkt->size);
header = bytestream2_get_le32(gbyte);
s->fflags = bytestream2_get_le32(gbyte);
s->bitstream_size = s->fflags & 0x1FFFFFFF;
s->fflags >>= 29;
av_log(avctx, AV_LOG_DEBUG, "fflags: %X\n", s->fflags);
if (avpkt->size < s->bitstream_size + 8)
return AVERROR_INVALIDDATA;
s->key_frame = (avpkt->flags & AV_PKT_FLAG_KEY);
frame->key_frame = s->key_frame;
frame->pict_type = s->key_frame ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
if (!s->key_frame) {
if (!s->prev_frame->data[0]) {
av_log(avctx, AV_LOG_ERROR, "Missing reference frame.\n");
return AVERROR_INVALIDDATA;
}
}
if (header) {
if (avctx->codec_tag == MKTAG('A', 'G', 'M', '0') ||
avctx->codec_tag == MKTAG('A', 'G', 'M', '1'))
return AVERROR_PATCHWELCOME;
else
ret = decode_huffman2(avctx, header, (avpkt->size - s->bitstream_size) - 8);
if (ret < 0)
return ret;
bytestream2_init(gbyte, s->output, s->output_size);
} else if (!s->dct) {
bytestream2_skip(gbyte, 4);
}
if (s->dct) {
s->flags = 0;
w = bytestream2_get_le32(gbyte);
h = bytestream2_get_le32(gbyte);
if (w == INT32_MIN || h == INT32_MIN)
return AVERROR_INVALIDDATA;
if (w < 0) {
w = -w;
s->flags |= 2;
}
if (h < 0) {
h = -h;
s->flags |= 1;
}
width = avctx->width;
height = avctx->height;
if (w < width || h < height || w & 7 || h & 7)
return AVERROR_INVALIDDATA;
ret = ff_set_dimensions(avctx, w, h);
if (ret < 0)
return ret;
avctx->width = width;
avctx->height = height;
s->compression = bytestream2_get_le32(gbyte);
if (s->compression < 0 || s->compression > 100)
return AVERROR_INVALIDDATA;
for (int i = 0; i < 3; i++)
s->size[i] = bytestream2_get_le32(gbyte);
if (header) {
compressed_size = s->output_size;
skip = 8LL;
} else {
compressed_size = avpkt->size;
skip = 32LL;
}
if (s->size[0] < 0 || s->size[1] < 0 || s->size[2] < 0 ||
skip + s->size[0] + s->size[1] + s->size[2] > compressed_size) {
return AVERROR_INVALIDDATA;
}
}
if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
return ret;
if (frame->key_frame) {
if (!s->dct && !s->rgb)
ret = decode_raw_intra(avctx, gbyte, frame);
else if (!s->dct && s->rgb)
ret = decode_raw_intra_rgb(avctx, gbyte, frame);
else
ret = decode_intra(avctx, gb, frame);
} else {
if (s->prev_frame-> width != frame->width ||
s->prev_frame->height != frame->height)
return AVERROR_INVALIDDATA;
if (!(s->flags & 2)) {
ret = av_frame_copy(frame, s->prev_frame);
if (ret < 0)
return ret;
}
if (s->dct) {
ret = decode_inter(avctx, gb, frame, s->prev_frame);
} else if (!s->dct && !s->rgb) {
ret = decode_runlen(avctx, gbyte, frame);
} else {
ret = decode_runlen_rgb(avctx, gbyte, frame);
}
}
if (ret < 0)
return ret;
av_frame_unref(s->prev_frame);
if ((ret = av_frame_ref(s->prev_frame, frame)) < 0)
return ret;
frame->crop_top = avctx->coded_height - avctx->height;
frame->crop_left = avctx->coded_width - avctx->width;
*got_frame = 1;
return avpkt->size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
AGMContext *s = avctx->priv_data;
s->rgb = avctx->codec_tag == MKTAG('A', 'G', 'M', '4');
avctx->pix_fmt = s->rgb ? AV_PIX_FMT_BGR24 : AV_PIX_FMT_YUV420P;
s->avctx = avctx;
s->plus = avctx->codec_tag == MKTAG('A', 'G', 'M', '3') ||
avctx->codec_tag == MKTAG('A', 'G', 'M', '7');
s->dct = avctx->codec_tag != MKTAG('A', 'G', 'M', '4') &&
avctx->codec_tag != MKTAG('A', 'G', 'M', '5');
if (!s->rgb && !s->dct) {
if ((avctx->width & 1) || (avctx->height & 1))
return AVERROR_INVALIDDATA;
}
avctx->idct_algo = FF_IDCT_SIMPLE;
ff_idctdsp_init(&s->idsp, avctx);
ff_init_scantable(s->idsp.idct_permutation, &s->scantable, ff_zigzag_direct);
s->prev_frame = av_frame_alloc();
if (!s->prev_frame)
return AVERROR(ENOMEM);
return 0;
}
static void decode_flush(AVCodecContext *avctx)
{
AGMContext *s = avctx->priv_data;
av_frame_unref(s->prev_frame);
}
static av_cold int decode_close(AVCodecContext *avctx)
{
AGMContext *s = avctx->priv_data;
ff_free_vlc(&s->vlc);
av_frame_free(&s->prev_frame);
av_freep(&s->mvectors);
s->mvectors_size = 0;
av_freep(&s->wblocks);
s->wblocks_size = 0;
av_freep(&s->output);
s->padded_output_size = 0;
av_freep(&s->map);
s->map_size = 0;
return 0;
}
const FFCodec ff_agm_decoder = {
.p.name = "agm",
.p.long_name = NULL_IF_CONFIG_SMALL("Amuse Graphics Movie"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_AGM,
.p.capabilities = AV_CODEC_CAP_DR1,
.priv_data_size = sizeof(AGMContext),
.init = decode_init,
.close = decode_close,
.decode = decode_frame,
.flush = decode_flush,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP |
FF_CODEC_CAP_EXPORTS_CROPPING,
};