1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/libavfilter/af_biquads.c
Anton Khirnov 6d75d44d90 lavfi: drop internal.h
All that remains in it are things that belong in avfilter_internal.h.

Move them there and remove internal.h
2024-08-19 21:48:04 +02:00

1694 lines
74 KiB
C

/*
* Copyright (c) 2013 Paul B Mahol
* Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com>
* see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*
* 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com>
* Algorithms: Recursive single pole low/high pass filter
* Reference: The Scientist and Engineer's Guide to Digital Signal Processing
*
* low-pass: output[N] = input[N] * A + output[N-1] * B
* X = exp(-2.0 * pi * Fc)
* A = 1 - X
* B = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC low-pass filter:
*
* ---/\/\/\/\----------->
* |
* --- C
* ---
* |
* |
* V
*
* high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
* X = exp(-2.0 * pi * Fc)
* A0 = (1 + X) / 2
* A1 = -(1 + X) / 2
* B1 = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC high-pass filter:
*
* || C
* ----||--------->
* || |
* <
* > R
* <
* |
* V
*/
#include "config_components.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/ffmath.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "formats.h"
enum FilterType {
biquad,
equalizer,
bass,
treble,
bandpass,
bandreject,
allpass,
highpass,
lowpass,
lowshelf,
highshelf,
tiltshelf,
};
enum WidthType {
NONE,
HERTZ,
OCTAVE,
QFACTOR,
SLOPE,
KHERTZ,
NB_WTYPE,
};
enum TransformType {
DI,
DII,
TDI,
TDII,
LATT,
SVF,
ZDF,
NB_TTYPE,
};
typedef struct BiquadsContext {
const AVClass *class;
enum FilterType filter_type;
int width_type;
int poles;
int csg;
int transform_type;
int precision;
int block_samples;
int bypass;
double gain;
double frequency;
double width;
double mix;
char *ch_layout_str;
AVChannelLayout ch_layout;
int normalize;
int order;
double a_double[3];
double b_double[3];
float a_float[3];
float b_float[3];
double oa[3];
double ob[3];
AVFrame *block[3];
int *clip;
AVFrame *cache[2];
int block_align;
int64_t pts;
int nb_samples;
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len,
void *cache, int *clip, int disabled);
} BiquadsContext;
static int query_formats(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
static const enum AVSampleFormat auto_sample_fmts[] = {
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_NONE
};
const enum AVSampleFormat *sample_fmts_list = sample_fmts;
int ret = ff_set_common_all_channel_counts(ctx);
if (ret < 0)
return ret;
switch (s->precision) {
case 0:
sample_fmts[0] = AV_SAMPLE_FMT_S16P;
break;
case 1:
sample_fmts[0] = AV_SAMPLE_FMT_S32P;
break;
case 2:
sample_fmts[0] = AV_SAMPLE_FMT_FLTP;
break;
case 3:
sample_fmts[0] = AV_SAMPLE_FMT_DBLP;
break;
default:
sample_fmts_list = auto_sample_fmts;
break;
}
ret = ff_set_common_formats_from_list(ctx, sample_fmts_list);
if (ret < 0)
return ret;
return ff_set_common_all_samplerates(ctx);
}
#define BIQUAD_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype i1 = fcache[0], i2 = fcache[1], o1 = fcache[2], o2 = fcache[3]; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype a1 = -a[1]; \
ftype a2 = -a[2]; \
ftype b0 = b[0]; \
ftype b1 = b[1]; \
ftype b2 = b[2]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype out; \
int i; \
\
for (i = 0; i+1 < len; i++) { \
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \
i2 = ibuf[i]; \
out = o2 * wet + i2 * dry; \
if (disabled) { \
obuf[i] = i2; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
i++; \
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \
i1 = ibuf[i]; \
out = o1 * wet + i1 * dry; \
if (disabled) { \
obuf[i] = i1; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
if (i < len) { \
ftype o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
i2 = i1; \
i1 = ibuf[i]; \
o2 = o1; \
o1 = o0; \
out = o0 * wet + i1 * dry; \
if (disabled) { \
obuf[i] = i1; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = i1; \
fcache[1] = i2; \
fcache[2] = o1; \
fcache[3] = o2; \
}
BIQUAD_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_DII_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_dii_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype a1 = -a[1]; \
ftype a2 = -a[2]; \
ftype b0 = b[0]; \
ftype b1 = b[1]; \
ftype b2 = b[2]; \
ftype w1 = fcache[0]; \
ftype w2 = fcache[1]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype in, out, w0; \
\
for (int i = 0; i < len; i++) { \
in = ibuf[i]; \
w0 = in + a1 * w1 + a2 * w2; \
out = b0 * w0 + b1 * w1 + b2 * w2; \
w2 = w1; \
w1 = w0; \
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = w1; \
fcache[1] = w2; \
}
BIQUAD_DII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_DII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_DII_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_DII_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_TDI_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_tdi_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype a1 = -a[1]; \
ftype a2 = -a[2]; \
ftype b0 = b[0]; \
ftype b1 = b[1]; \
ftype b2 = b[2]; \
ftype s1 = fcache[0]; \
ftype s2 = fcache[1]; \
ftype s3 = fcache[2]; \
ftype s4 = fcache[3]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype in, out; \
\
for (int i = 0; i < len; i++) { \
ftype t1, t2, t3, t4; \
in = ibuf[i] + s1; \
t1 = in * a1 + s2; \
t2 = in * a2; \
t3 = in * b1 + s4; \
t4 = in * b2; \
out = b0 * in + s3; \
out = out * wet + in * dry; \
s1 = t1; s2 = t2; s3 = t3; s4 = t4; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
\
fcache[0] = s1; \
fcache[1] = s2; \
fcache[2] = s3; \
fcache[3] = s4; \
}
BIQUAD_TDI_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_TDI_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_TDI_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_TDI_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_TDII_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_tdii_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype a1 = -a[1]; \
ftype a2 = -a[2]; \
ftype b0 = b[0]; \
ftype b1 = b[1]; \
ftype b2 = b[2]; \
ftype w1 = fcache[0]; \
ftype w2 = fcache[1]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype in, out; \
\
for (int i = 0; i < len; i++) { \
in = ibuf[i]; \
out = b0 * in + w1; \
w1 = b1 * in + w2 + a1 * out; \
w2 = b2 * in + a2 * out; \
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = w1; \
fcache[1] = w2; \
}
BIQUAD_TDII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_TDII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_TDII_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_TDII_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_LATT_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_latt_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype k0 = a[1]; \
ftype k1 = a[2]; \
ftype v0 = b[0]; \
ftype v1 = b[1]; \
ftype v2 = b[2]; \
ftype s0 = fcache[0]; \
ftype s1 = fcache[1]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype in, out; \
ftype t0, t1; \
\
for (int i = 0; i < len; i++) { \
out = 0.; \
in = ibuf[i]; \
t0 = in - k1 * s0; \
t1 = t0 * k1 + s0; \
out += t1 * v2; \
\
t0 = t0 - k0 * s1; \
t1 = t0 * k0 + s1; \
out += t1 * v1; \
\
out += t0 * v0; \
s0 = t1; \
s1 = t0; \
\
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = s0; \
fcache[1] = s1; \
}
BIQUAD_LATT_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_LATT_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_LATT_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_LATT_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_SVF_FILTER(name, type, ftype, min, max, need_clipping) \
static void biquad_svf_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype a1 = a[1]; \
ftype a2 = a[2]; \
ftype b0 = b[0]; \
ftype b1 = b[1]; \
ftype b2 = b[2]; \
ftype s0 = fcache[0]; \
ftype s1 = fcache[1]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype in, out; \
ftype t0, t1; \
\
for (int i = 0; i < len; i++) { \
in = ibuf[i]; \
out = b2 * in + s0; \
t0 = b0 * in + a1 * s0 + s1; \
t1 = b1 * in + a2 * s0; \
s0 = t0; \
s1 = t1; \
\
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = s0; \
fcache[1] = s1; \
}
BIQUAD_SVF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1)
BIQUAD_SVF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1)
BIQUAD_SVF_FILTER(flt, float, float, -1.f, 1.f, 0)
BIQUAD_SVF_FILTER(dbl, double, double, -1., 1., 0)
#define BIQUAD_ZDF_FILTER(name, type, ftype, min, max, need_clipping, two) \
static void biquad_zdf_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
void *cache, int *clippings, int disabled) \
{ \
const type *ibuf = input; \
type *obuf = output; \
ftype *fcache = cache; \
ftype *a = s->a_##ftype; \
ftype *b = s->b_##ftype; \
ftype m0 = b[0]; \
ftype m1 = b[1]; \
ftype m2 = b[2]; \
ftype a0 = a[0]; \
ftype a1 = a[1]; \
ftype a2 = a[2]; \
ftype b0 = fcache[0]; \
ftype b1 = fcache[1]; \
ftype wet = s->mix; \
ftype dry = 1. - wet; \
ftype out; \
\
for (int i = 0; i < len; i++) { \
const ftype in = ibuf[i]; \
const ftype v0 = in; \
const ftype v3 = v0 - b1; \
const ftype v1 = a0 * b0 + a1 * v3; \
const ftype v2 = b1 + a1 * b0 + a2 * v3; \
\
b0 = two * v1 - b0; \
b1 = two * v2 - b1; \
\
out = m0 * v0 + m1 * v1 + m2 * v2; \
out = out * wet + in * dry; \
if (disabled) { \
obuf[i] = in; \
} else if (need_clipping && out < min) { \
(*clippings)++; \
obuf[i] = min; \
} else if (need_clipping && out > max) { \
(*clippings)++; \
obuf[i] = max; \
} else { \
obuf[i] = out; \
} \
} \
fcache[0] = b0; \
fcache[1] = b1; \
}
BIQUAD_ZDF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1, 2.f)
BIQUAD_ZDF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1, 2.0)
BIQUAD_ZDF_FILTER(flt, float, float, -1.f, 1.f, 0, 2.f)
BIQUAD_ZDF_FILTER(dbl, double, double, -1., 1., 0, 2.0)
static void convert_dir2latt(BiquadsContext *s)
{
double k0, k1, v0, v1, v2;
k1 = s->a_double[2];
k0 = s->a_double[1] / (1. + k1);
v2 = s->b_double[2];
v1 = s->b_double[1] - v2 * s->a_double[1];
v0 = s->b_double[0] - v1 * k0 - v2 * k1;
s->a_double[1] = k0;
s->a_double[2] = k1;
s->b_double[0] = v0;
s->b_double[1] = v1;
s->b_double[2] = v2;
}
static void convert_dir2svf(BiquadsContext *s)
{
double a[2];
double b[3];
a[0] = -s->a_double[1];
a[1] = -s->a_double[2];
b[0] = s->b_double[1] - s->a_double[1] * s->b_double[0];
b[1] = s->b_double[2] - s->a_double[2] * s->b_double[0];
b[2] = s->b_double[0];
s->a_double[1] = a[0];
s->a_double[2] = a[1];
s->b_double[0] = b[0];
s->b_double[1] = b[1];
s->b_double[2] = b[2];
}
static double convert_width2qfactor(double width,
double frequency,
double gain,
double sample_rate,
int width_type)
{
double w0 = 2. * M_PI * frequency / sample_rate;
double A = ff_exp10(gain / 40.);
double ret;
switch (width_type) {
case NONE:
case QFACTOR:
ret = width;
break;
case HERTZ:
ret = frequency / width;
break;
case KHERTZ:
ret = frequency / (width * 1000.);
break;
case OCTAVE:
ret = 1. / (2. * sinh(log(2.) / 2. * width * w0 / sin(w0)));
break;
case SLOPE:
ret = 1. / sqrt((A + 1. / A) * (1. / width - 1.) + 2.);
break;
default:
av_assert0(0);
break;
}
return ret;
}
static void convert_dir2zdf(BiquadsContext *s, int sample_rate)
{
double Q = convert_width2qfactor(s->width, s->frequency, s->gain, sample_rate, s->width_type);
double g, k, A;
double a[3];
double m[3];
switch (s->filter_type) {
case biquad:
a[0] = s->oa[0];
a[1] = s->oa[1];
a[2] = s->oa[2];
m[0] = s->ob[0];
m[1] = s->ob[1];
m[2] = s->ob[2];
break;
case equalizer:
A = ff_exp10(s->gain / 40.);
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / (Q * A);
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1.;
m[1] = k * (A * A - 1.);
m[2] = 0.;
break;
case bass:
case lowshelf:
A = ff_exp10(s->gain / 40.);
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1.;
m[1] = k * (A - 1.);
m[2] = A * A - 1.;
break;
case tiltshelf:
A = ff_exp10(s->gain / 20.);
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1./ A;
m[1] = k * (A - 1.) / A;
m[2] = (A * A - 1.) / A;
break;
case treble:
case highshelf:
A = ff_exp10(s->gain / 40.);
g = tan(M_PI * s->frequency / sample_rate) * sqrt(A);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = A * A;
m[1] = k * (1. - A) * A;
m[2] = 1. - A * A;
break;
case bandpass:
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 0.;
m[1] = s->csg ? 1. : k;
m[2] = 0.;
break;
case bandreject:
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1.;
m[1] = -k;
m[2] = 0.;
break;
case lowpass:
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 0.;
m[1] = 0.;
m[2] = 1.;
break;
case highpass:
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1.;
m[1] = -k;
m[2] = -1.;
break;
case allpass:
g = tan(M_PI * s->frequency / sample_rate);
k = 1. / Q;
a[0] = 1. / (1. + g * (g + k));
a[1] = g * a[0];
a[2] = g * a[1];
m[0] = 1.;
m[1] = -2. * k;
m[2] = 0.;
break;
default:
av_assert0(0);
}
s->a_double[0] = a[0];
s->a_double[1] = a[1];
s->a_double[2] = a[2];
s->b_double[0] = m[0];
s->b_double[1] = m[1];
s->b_double[2] = m[2];
}
static int config_filter(AVFilterLink *outlink, int reset)
{
AVFilterContext *ctx = outlink->src;
BiquadsContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
double gain = s->gain * ((s->filter_type == tiltshelf) + 1.);
double A = ff_exp10(gain / 40);
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate;
double K = tan(w0 / 2.);
double alpha, beta;
s->bypass = (((w0 > M_PI || w0 <= 0.) && reset) || (s->width <= 0.)) && (s->filter_type != biquad);
if (s->bypass) {
av_log(ctx, AV_LOG_WARNING, "Invalid frequency and/or width!\n");
return 0;
}
if ((w0 > M_PI || w0 <= 0.) && (s->filter_type != biquad))
return AVERROR(EINVAL);
switch (s->width_type) {
case NONE:
alpha = 0.0;
break;
case HERTZ:
alpha = sin(w0) / (2 * s->frequency / s->width);
break;
case KHERTZ:
alpha = sin(w0) / (2 * s->frequency / (s->width * 1000));
break;
case OCTAVE:
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0));
break;
case QFACTOR:
alpha = sin(w0) / (2 * s->width);
break;
case SLOPE:
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2);
break;
default:
av_assert0(0);
}
beta = 2 * sqrt(A);
switch (s->filter_type) {
case biquad:
s->a_double[0] = s->oa[0];
s->a_double[1] = s->oa[1];
s->a_double[2] = s->oa[2];
s->b_double[0] = s->ob[0];
s->b_double[1] = s->ob[1];
s->b_double[2] = s->ob[2];
break;
case equalizer:
s->a_double[0] = 1 + alpha / A;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha / A;
s->b_double[0] = 1 + alpha * A;
s->b_double[1] = -2 * cos(w0);
s->b_double[2] = 1 - alpha * A;
break;
case bass:
beta = sqrt((A * A + 1) - (A - 1) * (A - 1));
case tiltshelf:
case lowshelf:
if (s->poles == 1) {
double A = ff_exp10(gain / 20);
double ro = -sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4);
double n = (A + 1) / (A - 1);
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1);
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5;
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5;
s->a_double[0] = 1 + ro * alpha1;
s->a_double[1] = -ro - alpha1;
s->a_double[2] = 0;
s->b_double[0] = beta0 + ro * beta1;
s->b_double[1] = -beta1 - ro * beta0;
s->b_double[2] = 0;
} else {
s->a_double[0] = (A + 1) + (A - 1) * cos(w0) + beta * alpha;
s->a_double[1] = -2 * ((A - 1) + (A + 1) * cos(w0));
s->a_double[2] = (A + 1) + (A - 1) * cos(w0) - beta * alpha;
s->b_double[0] = A * ((A + 1) - (A - 1) * cos(w0) + beta * alpha);
s->b_double[1] = 2 * A * ((A - 1) - (A + 1) * cos(w0));
s->b_double[2] = A * ((A + 1) - (A - 1) * cos(w0) - beta * alpha);
}
break;
case treble:
beta = sqrt((A * A + 1) - (A - 1) * (A - 1));
case highshelf:
if (s->poles == 1) {
double A = ff_exp10(gain / 20);
double ro = sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4);
double n = (A + 1) / (A - 1);
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1);
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5;
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5;
s->a_double[0] = 1 + ro * alpha1;
s->a_double[1] = ro + alpha1;
s->a_double[2] = 0;
s->b_double[0] = beta0 + ro * beta1;
s->b_double[1] = beta1 + ro * beta0;
s->b_double[2] = 0;
} else {
s->a_double[0] = (A + 1) - (A - 1) * cos(w0) + beta * alpha;
s->a_double[1] = 2 * ((A - 1) - (A + 1) * cos(w0));
s->a_double[2] = (A + 1) - (A - 1) * cos(w0) - beta * alpha;
s->b_double[0] = A * ((A + 1) + (A - 1) * cos(w0) + beta * alpha);
s->b_double[1] =-2 * A * ((A - 1) + (A + 1) * cos(w0));
s->b_double[2] = A * ((A + 1) + (A - 1) * cos(w0) - beta * alpha);
}
break;
case bandpass:
if (s->csg) {
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = sin(w0) / 2;
s->b_double[1] = 0;
s->b_double[2] = -sin(w0) / 2;
} else {
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = alpha;
s->b_double[1] = 0;
s->b_double[2] = -alpha;
}
break;
case bandreject:
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = 1;
s->b_double[1] = -2 * cos(w0);
s->b_double[2] = 1;
break;
case lowpass:
if (s->poles == 1) {
s->a_double[0] = 1;
s->a_double[1] = -exp(-w0);
s->a_double[2] = 0;
s->b_double[0] = 1 + s->a_double[1];
s->b_double[1] = 0;
s->b_double[2] = 0;
} else {
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = (1 - cos(w0)) / 2;
s->b_double[1] = 1 - cos(w0);
s->b_double[2] = (1 - cos(w0)) / 2;
}
break;
case highpass:
if (s->poles == 1) {
s->a_double[0] = 1;
s->a_double[1] = -exp(-w0);
s->a_double[2] = 0;
s->b_double[0] = (1 - s->a_double[1]) / 2;
s->b_double[1] = -s->b_double[0];
s->b_double[2] = 0;
} else {
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = (1 + cos(w0)) / 2;
s->b_double[1] = -(1 + cos(w0));
s->b_double[2] = (1 + cos(w0)) / 2;
}
break;
case allpass:
switch (s->order) {
case 1:
s->a_double[0] = 1.;
s->a_double[1] = -(1. - K) / (1. + K);
s->a_double[2] = 0.;
s->b_double[0] = s->a_double[1];
s->b_double[1] = s->a_double[0];
s->b_double[2] = 0.;
break;
case 2:
s->a_double[0] = 1 + alpha;
s->a_double[1] = -2 * cos(w0);
s->a_double[2] = 1 - alpha;
s->b_double[0] = 1 - alpha;
s->b_double[1] = -2 * cos(w0);
s->b_double[2] = 1 + alpha;
break;
}
break;
default:
av_assert0(0);
}
av_log(ctx, AV_LOG_VERBOSE, "a=%f %f %f:b=%f %f %f\n",
s->a_double[0], s->a_double[1], s->a_double[2],
s->b_double[0], s->b_double[1], s->b_double[2]);
s->a_double[1] /= s->a_double[0];
s->a_double[2] /= s->a_double[0];
s->b_double[0] /= s->a_double[0];
s->b_double[1] /= s->a_double[0];
s->b_double[2] /= s->a_double[0];
s->a_double[0] /= s->a_double[0];
if (s->normalize && fabs(s->b_double[0] + s->b_double[1] + s->b_double[2]) > 1e-6) {
double factor = (s->a_double[0] + s->a_double[1] + s->a_double[2]) /
(s->b_double[0] + s->b_double[1] + s->b_double[2]);
s->b_double[0] *= factor;
s->b_double[1] *= factor;
s->b_double[2] *= factor;
}
switch (s->filter_type) {
case tiltshelf:
s->b_double[0] /= A;
s->b_double[1] /= A;
s->b_double[2] /= A;
break;
}
if (!s->cache[0])
s->cache[0] = ff_get_audio_buffer(outlink, 4 * sizeof(double));
if (!s->clip)
s->clip = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->clip));
if (!s->cache[0] || !s->clip)
return AVERROR(ENOMEM);
if (reset) {
av_samples_set_silence(s->cache[0]->extended_data, 0, s->cache[0]->nb_samples,
s->cache[0]->ch_layout.nb_channels, s->cache[0]->format);
}
if (reset && s->block_samples > 0) {
if (!s->cache[1])
s->cache[1] = ff_get_audio_buffer(outlink, 4 * sizeof(double));
if (!s->cache[1])
return AVERROR(ENOMEM);
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples,
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format);
for (int i = 0; i < 3; i++) {
if (!s->block[i])
s->block[i] = ff_get_audio_buffer(outlink, s->block_samples * 2);
if (!s->block[i])
return AVERROR(ENOMEM);
av_samples_set_silence(s->block[i]->extended_data, 0, s->block_samples * 2,
s->block[i]->ch_layout.nb_channels, s->block[i]->format);
}
}
switch (s->transform_type) {
case DI:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_dbl;
break;
default: av_assert0(0);
}
break;
case DII:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_dii_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_dii_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_dii_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_dii_dbl;
break;
default: av_assert0(0);
}
break;
case TDI:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_tdi_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_tdi_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_tdi_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_tdi_dbl;
break;
default: av_assert0(0);
}
break;
case TDII:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_tdii_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_tdii_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_tdii_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_tdii_dbl;
break;
default: av_assert0(0);
}
break;
case LATT:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_latt_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_latt_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_latt_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_latt_dbl;
break;
default: av_assert0(0);
}
break;
case SVF:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_svf_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_svf_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_svf_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_svf_dbl;
break;
default: av_assert0(0);
}
break;
case ZDF:
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P:
s->filter = biquad_zdf_s16;
break;
case AV_SAMPLE_FMT_S32P:
s->filter = biquad_zdf_s32;
break;
case AV_SAMPLE_FMT_FLTP:
s->filter = biquad_zdf_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->filter = biquad_zdf_dbl;
break;
default: av_assert0(0);
}
break;
default:
av_assert0(0);
}
s->block_align = av_get_bytes_per_sample(inlink->format);
if (s->transform_type == LATT)
convert_dir2latt(s);
else if (s->transform_type == SVF)
convert_dir2svf(s);
else if (s->transform_type == ZDF)
convert_dir2zdf(s, inlink->sample_rate);
s->a_float[0] = s->a_double[0];
s->a_float[1] = s->a_double[1];
s->a_float[2] = s->a_double[2];
s->b_float[0] = s->b_double[0];
s->b_float[1] = s->b_double[1];
s->b_float[2] = s->b_double[2];
return 0;
}
static int config_output(AVFilterLink *outlink)
{
return config_filter(outlink, 1);
}
typedef struct ThreadData {
AVFrame *in, *out;
int eof;
} ThreadData;
static void reverse_samples(AVFrame *out, AVFrame *in, int p,
int oo, int io, int nb_samples)
{
switch (out->format) {
case AV_SAMPLE_FMT_S16P: {
const int16_t *src = ((const int16_t *)in->extended_data[p]) + io;
int16_t *dst = ((int16_t *)out->extended_data[p]) + oo;
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--)
dst[i] = src[j];
}
break;
case AV_SAMPLE_FMT_S32P: {
const int32_t *src = ((const int32_t *)in->extended_data[p]) + io;
int32_t *dst = ((int32_t *)out->extended_data[p]) + oo;
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--)
dst[i] = src[j];
}
break;
case AV_SAMPLE_FMT_FLTP: {
const float *src = ((const float *)in->extended_data[p]) + io;
float *dst = ((float *)out->extended_data[p]) + oo;
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--)
dst[i] = src[j];
}
break;
case AV_SAMPLE_FMT_DBLP: {
const double *src = ((const double *)in->extended_data[p]) + io;
double *dst = ((double *)out->extended_data[p]) + oo;
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--)
dst[i] = src[j];
}
break;
}
}
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AVFilterLink *inlink = ctx->inputs[0];
ThreadData *td = arg;
AVFrame *buf = td->in;
AVFrame *out_buf = td->out;
BiquadsContext *s = ctx->priv;
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs;
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
int ch;
for (ch = start; ch < end; ch++) {
enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch);
if (av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0) {
if (buf != out_buf)
memcpy(out_buf->extended_data[ch], buf->extended_data[ch],
buf->nb_samples * s->block_align);
continue;
}
if (!s->block_samples) {
s->filter(s, buf->extended_data[ch], out_buf->extended_data[ch], buf->nb_samples,
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled);
} else if (td->eof) {
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch] + s->block_align * s->block_samples,
s->nb_samples * s->block_align);
} else {
memcpy(s->block[0]->extended_data[ch] + s->block_align * s->block_samples, buf->extended_data[ch],
buf->nb_samples * s->block_align);
memset(s->block[0]->extended_data[ch] + s->block_align * (s->block_samples + buf->nb_samples),
0, (s->block_samples - buf->nb_samples) * s->block_align);
s->filter(s, s->block[0]->extended_data[ch], s->block[1]->extended_data[ch], s->block_samples,
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled);
av_samples_copy(s->cache[1]->extended_data, s->cache[0]->extended_data, 0, 0,
s->cache[0]->nb_samples, s->cache[0]->ch_layout.nb_channels,
s->cache[0]->format);
s->filter(s, s->block[0]->extended_data[ch] + s->block_samples * s->block_align,
s->block[1]->extended_data[ch] + s->block_samples * s->block_align,
s->block_samples, s->cache[1]->extended_data[ch], s->clip+ch,
ctx->is_disabled);
reverse_samples(s->block[2], s->block[1], ch, 0, 0, 2 * s->block_samples);
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples,
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format);
s->filter(s, s->block[2]->extended_data[ch], s->block[2]->extended_data[ch], 2 * s->block_samples,
s->cache[1]->extended_data[ch], s->clip+ch, ctx->is_disabled);
reverse_samples(s->block[1], s->block[2], ch, 0, 0, 2 * s->block_samples);
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch],
s->block_samples * s->block_align);
memmove(s->block[0]->extended_data[ch], s->block[0]->extended_data[ch] + s->block_align * s->block_samples,
s->block_samples * s->block_align);
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf, int eof)
{
AVFilterContext *ctx = inlink->dst;
BiquadsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out_buf;
ThreadData td;
int ch, ret, drop = 0;
if (s->bypass)
return ff_filter_frame(outlink, buf);
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout);
if (ret < 0) {
av_frame_free(&buf);
return ret;
}
if (strcmp(s->ch_layout_str, "all"))
av_channel_layout_from_string(&s->ch_layout,
s->ch_layout_str);
if (av_frame_is_writable(buf) && s->block_samples == 0) {
out_buf = buf;
} else {
out_buf = ff_get_audio_buffer(outlink, s->block_samples > 0 ? s->block_samples : buf->nb_samples);
if (!out_buf) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out_buf, buf);
}
if (s->block_samples > 0 && s->pts == AV_NOPTS_VALUE)
drop = 1;
td.in = buf;
td.out = out_buf;
td.eof = eof;
ff_filter_execute(ctx, filter_channel, &td, NULL,
FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
for (ch = 0; ch < outlink->ch_layout.nb_channels; ch++) {
if (s->clip[ch] > 0)
av_log(ctx, AV_LOG_WARNING, "Channel %d clipping %d times. Please reduce gain.\n",
ch, s->clip[ch]);
s->clip[ch] = 0;
}
if (s->block_samples > 0) {
int nb_samples = buf->nb_samples;
int64_t pts = buf->pts;
out_buf->pts = s->pts;
out_buf->nb_samples = s->nb_samples;
s->pts = pts;
s->nb_samples = nb_samples;
}
if (buf != out_buf)
av_frame_free(&buf);
if (!drop)
return ff_filter_frame(outlink, out_buf);
else {
av_frame_free(&out_buf);
ff_filter_set_ready(ctx, 10);
return 0;
}
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
BiquadsContext *s = ctx->priv;
AVFrame *in = NULL;
int64_t pts;
int status;
int ret;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (s->block_samples > 0) {
ret = ff_inlink_consume_samples(inlink, s->block_samples, s->block_samples, &in);
} else {
ret = ff_inlink_consume_frame(inlink, &in);
}
if (ret < 0)
return ret;
if (ret > 0)
return filter_frame(inlink, in, 0);
if (s->block_samples > 0 && ff_inlink_queued_samples(inlink) >= s->block_samples) {
ff_filter_set_ready(ctx, 10);
return 0;
}
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (s->block_samples > 0) {
AVFrame *in = ff_get_audio_buffer(outlink, s->block_samples);
if (!in)
return AVERROR(ENOMEM);
ret = filter_frame(inlink, in, 1);
}
ff_outlink_set_status(outlink, status, pts);
return ret;
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
AVFilterLink *outlink = ctx->outputs[0];
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
return config_filter(outlink, 0);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
for (int i = 0; i < 3; i++)
av_frame_free(&s->block[i]);
av_frame_free(&s->cache[0]);
av_frame_free(&s->cache[1]);
av_freep(&s->clip);
av_channel_layout_uninit(&s->ch_layout);
}
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
#define OFFSET(x) offsetof(BiquadsContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define DEFINE_BIQUAD_FILTER_2(name_, description_, priv_class_) \
static av_cold int name_##_init(AVFilterContext *ctx) \
{ \
BiquadsContext *s = ctx->priv; \
s->filter_type = name_; \
s->pts = AV_NOPTS_VALUE; \
return 0; \
} \
\
const AVFilter ff_af_##name_ = { \
.name = #name_, \
.description = NULL_IF_CONFIG_SMALL(description_), \
.priv_class = &priv_class_##_class, \
.priv_size = sizeof(BiquadsContext), \
.init = name_##_init, \
.activate = activate, \
.uninit = uninit, \
FILTER_INPUTS(ff_audio_default_filterpad), \
FILTER_OUTPUTS(outputs), \
FILTER_QUERY_FUNC(query_formats), \
.process_command = process_command, \
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, \
}
#define DEFINE_BIQUAD_FILTER(name, description) \
AVFILTER_DEFINE_CLASS(name); \
DEFINE_BIQUAD_FILTER_2(name, description, name)
#define WIDTH_OPTION(x) \
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS}, \
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS}
#define WIDTH_TYPE_OPTION(x) \
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, .unit = "width_type"}, \
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, .unit = "width_type"}, \
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, .unit = "width_type"}, \
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, .unit = "width_type"}, \
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, .unit = "width_type"}
#define MIX_CHANNELS_NORMALIZE_OPTION(x, y, z) \
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \
{"channels", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \
{"c", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS}, \
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS}
#define TRANSFORM_OPTION(x) \
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, .unit = "transform_type"}, \
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, .unit = "transform_type"}, \
{"tdi", "transposed direct form I", 0, AV_OPT_TYPE_CONST, {.i64=TDI}, 0, 0, AF, .unit = "transform_type"}, \
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, .unit = "transform_type"}, \
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, .unit = "transform_type"}, \
{"svf", "state variable filter form", 0, AV_OPT_TYPE_CONST, {.i64=SVF}, 0, 0, AF, .unit = "transform_type"}, \
{"zdf", "zero-delay filter form", 0, AV_OPT_TYPE_CONST, {.i64=ZDF}, 0, 0, AF, .unit = "transform_type"}
#define PRECISION_OPTION(x) \
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, .unit = "precision"}, \
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, .unit = "precision"}, \
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, .unit = "precision"}, \
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, .unit = "precision"}, \
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, .unit = "precision"}
#define BLOCKSIZE_OPTION(x) \
{"blocksize", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF}, \
{"b", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF}
#if CONFIG_EQUALIZER_FILTER
static const AVOption equalizer_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(1.0),
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
#endif /* CONFIG_EQUALIZER_FILTER */
#if CONFIG_BASS_FILTER || CONFIG_LOWSHELF_FILTER
static const AVOption bass_lowshelf_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.5),
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
AVFILTER_DEFINE_CLASS_EXT(bass_lowshelf, "bass/lowshelf", bass_lowshelf_options);
#if CONFIG_BASS_FILTER
DEFINE_BIQUAD_FILTER_2(bass, "Boost or cut lower frequencies.", bass_lowshelf);
#endif /* CONFIG_BASS_FILTER */
#if CONFIG_LOWSHELF_FILTER
DEFINE_BIQUAD_FILTER_2(lowshelf, "Apply a low shelf filter.", bass_lowshelf);
#endif /* CONFIG_LOWSHELF_FILTER */
#endif /* CONFIG_BASS_FILTER || CONFIG LOWSHELF_FILTER */
#if CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER
static const AVOption treble_highshelf_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.5),
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
AVFILTER_DEFINE_CLASS_EXT(treble_highshelf, "treble/high/tiltshelf",
treble_highshelf_options);
#if CONFIG_TREBLE_FILTER
DEFINE_BIQUAD_FILTER_2(treble, "Boost or cut upper frequencies.", treble_highshelf);
#endif /* CONFIG_TREBLE_FILTER */
#if CONFIG_HIGHSHELF_FILTER
DEFINE_BIQUAD_FILTER_2(highshelf, "Apply a high shelf filter.", treble_highshelf);
#endif /* CONFIG_HIGHSHELF_FILTER */
#if CONFIG_TILTSHELF_FILTER
DEFINE_BIQUAD_FILTER_2(tiltshelf, "Apply a tilt shelf filter.", treble_highshelf);
#endif
#endif /* CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER */
#if CONFIG_BANDPASS_FILTER
static const AVOption bandpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.5),
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
#endif /* CONFIG_BANDPASS_FILTER */
#if CONFIG_BANDREJECT_FILTER
static const AVOption bandreject_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.5),
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
#endif /* CONFIG_BANDREJECT_FILTER */
#if CONFIG_LOWPASS_FILTER
static const AVOption lowpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.707),
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
#endif /* CONFIG_LOWPASS_FILTER */
#if CONFIG_HIGHPASS_FILTER
static const AVOption highpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.707),
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
#endif /* CONFIG_HIGHPASS_FILTER */
#if CONFIG_ALLPASS_FILTER
static const AVOption allpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
WIDTH_TYPE_OPTION(QFACTOR),
WIDTH_OPTION(0.707),
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
{"order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{"o", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
{NULL}
};
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
#endif /* CONFIG_ALLPASS_FILTER */
#if CONFIG_BIQUAD_FILTER
static const AVOption biquad_options[] = {
{"a0", NULL, OFFSET(oa[0]), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT32_MIN, INT32_MAX, FLAGS},
{"a1", NULL, OFFSET(oa[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"a2", NULL, OFFSET(oa[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b0", NULL, OFFSET(ob[0]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b1", NULL, OFFSET(ob[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
{"b2", NULL, OFFSET(ob[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS},
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0),
TRANSFORM_OPTION(DI),
PRECISION_OPTION(-1),
BLOCKSIZE_OPTION(0),
{NULL}
};
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
#endif /* CONFIG_BIQUAD_FILTER */