mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
269 lines
7.7 KiB
C
269 lines
7.7 KiB
C
/*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#undef ftype
|
|
#undef SQRT
|
|
#undef TAN
|
|
#undef ONE
|
|
#undef TWO
|
|
#undef ZERO
|
|
#undef FMAX
|
|
#undef FMIN
|
|
#undef CLIP
|
|
#undef SAMPLE_FORMAT
|
|
#undef FABS
|
|
#if DEPTH == 32
|
|
#define SAMPLE_FORMAT float
|
|
#define SQRT sqrtf
|
|
#define TAN tanf
|
|
#define ONE 1.f
|
|
#define TWO 2.f
|
|
#define ZERO 0.f
|
|
#define FMIN fminf
|
|
#define FMAX fmaxf
|
|
#define CLIP av_clipf
|
|
#define FABS fabsf
|
|
#define ftype float
|
|
#else
|
|
#define SAMPLE_FORMAT double
|
|
#define SQRT sqrt
|
|
#define TAN tan
|
|
#define ONE 1.0
|
|
#define TWO 2.0
|
|
#define ZERO 0.0
|
|
#define FMIN fmin
|
|
#define FMAX fmax
|
|
#define CLIP av_clipd
|
|
#define FABS fabs
|
|
#define ftype double
|
|
#endif
|
|
|
|
#define fn3(a,b) a##_##b
|
|
#define fn2(a,b) fn3(a,b)
|
|
#define fn(a) fn2(a, SAMPLE_FORMAT)
|
|
|
|
static ftype fn(get_svf)(ftype in, const ftype *m, const ftype *a, ftype *b)
|
|
{
|
|
const ftype v0 = in;
|
|
const ftype v3 = v0 - b[1];
|
|
const ftype v1 = a[0] * b[0] + a[1] * v3;
|
|
const ftype v2 = b[1] + a[1] * b[0] + a[2] * v3;
|
|
|
|
b[0] = TWO * v1 - b[0];
|
|
b[1] = TWO * v2 - b[1];
|
|
|
|
return m[0] * v0 + m[1] * v1 + m[2] * v2;
|
|
}
|
|
|
|
static int fn(filter_prepare)(AVFilterContext *ctx)
|
|
{
|
|
AudioDynamicEqualizerContext *s = ctx->priv;
|
|
const ftype sample_rate = ctx->inputs[0]->sample_rate;
|
|
const ftype dfrequency = FMIN(s->dfrequency, sample_rate * 0.5);
|
|
const ftype dg = TAN(M_PI * dfrequency / sample_rate);
|
|
const ftype dqfactor = s->dqfactor;
|
|
const int dftype = s->dftype;
|
|
ftype *da = fn(s->da);
|
|
ftype *dm = fn(s->dm);
|
|
ftype k;
|
|
|
|
s->attack_coef = get_coef(s->attack, sample_rate);
|
|
s->release_coef = get_coef(s->release, sample_rate);
|
|
|
|
switch (dftype) {
|
|
case 0:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = k;
|
|
dm[2] = ZERO;
|
|
break;
|
|
case 1:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = ZERO;
|
|
dm[2] = ONE;
|
|
break;
|
|
case 2:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = -k;
|
|
dm[2] = -ONE;
|
|
break;
|
|
case 3:
|
|
k = ONE / dqfactor;
|
|
|
|
da[0] = ONE / (ONE + dg * (dg + k));
|
|
da[1] = dg * da[0];
|
|
da[2] = dg * da[1];
|
|
|
|
dm[0] = ZERO;
|
|
dm[1] = -k;
|
|
dm[2] = -TWO;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fn(filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
|
|
{
|
|
AudioDynamicEqualizerContext *s = ctx->priv;
|
|
ThreadData *td = arg;
|
|
AVFrame *in = td->in;
|
|
AVFrame *out = td->out;
|
|
const ftype sample_rate = in->sample_rate;
|
|
const ftype makeup = s->makeup;
|
|
const ftype ratio = s->ratio;
|
|
const ftype range = s->range;
|
|
const ftype tfrequency = FMIN(s->tfrequency, sample_rate * 0.5);
|
|
const ftype release = s->release_coef;
|
|
const ftype irelease = ONE - release;
|
|
const ftype attack = s->attack_coef;
|
|
const ftype iattack = ONE - attack;
|
|
const ftype tqfactor = s->tqfactor;
|
|
const ftype itqfactor = ONE / tqfactor;
|
|
const ftype fg = TAN(M_PI * tfrequency / sample_rate);
|
|
const int start = (in->ch_layout.nb_channels * jobnr) / nb_jobs;
|
|
const int end = (in->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
|
|
const int detection = s->detection;
|
|
const int direction = s->direction;
|
|
const int tftype = s->tftype;
|
|
const int mode = s->mode;
|
|
const ftype *da = fn(s->da);
|
|
const ftype *dm = fn(s->dm);
|
|
|
|
for (int ch = start; ch < end; ch++) {
|
|
const ftype *src = (const ftype *)in->extended_data[ch];
|
|
ftype *dst = (ftype *)out->extended_data[ch];
|
|
ftype *state = (ftype *)s->state->extended_data[ch];
|
|
const ftype threshold = detection == 0 ? state[5] : s->threshold;
|
|
|
|
if (detection < 0)
|
|
state[5] = threshold;
|
|
|
|
for (int n = 0; n < out->nb_samples; n++) {
|
|
ftype detect, gain, v, listen;
|
|
ftype fa[3], fm[3];
|
|
ftype k, g;
|
|
|
|
detect = listen = fn(get_svf)(src[n], dm, da, state);
|
|
detect = FABS(detect);
|
|
|
|
if (detection > 0)
|
|
state[5] = FMAX(state[5], detect);
|
|
|
|
if (direction == 0) {
|
|
if (detect < threshold) {
|
|
if (mode == 0)
|
|
detect = ONE / CLIP(ONE + makeup + (threshold - detect) * ratio, ONE, range);
|
|
else
|
|
detect = CLIP(ONE + makeup + (threshold - detect) * ratio, ONE, range);
|
|
} else {
|
|
detect = ONE;
|
|
}
|
|
} else {
|
|
if (detect > threshold) {
|
|
if (mode == 0)
|
|
detect = ONE / CLIP(ONE + makeup + (detect - threshold) * ratio, ONE, range);
|
|
else
|
|
detect = CLIP(ONE + makeup + (detect - threshold) * ratio, ONE, range);
|
|
} else {
|
|
detect = ONE;
|
|
}
|
|
}
|
|
|
|
if (direction == 0) {
|
|
if (detect > state[4]) {
|
|
detect = iattack * detect + attack * state[4];
|
|
} else {
|
|
detect = irelease * detect + release * state[4];
|
|
}
|
|
} else {
|
|
if (detect < state[4]) {
|
|
detect = iattack * detect + attack * state[4];
|
|
} else {
|
|
detect = irelease * detect + release * state[4];
|
|
}
|
|
}
|
|
|
|
if (state[4] != detect || n == 0) {
|
|
state[4] = gain = detect;
|
|
|
|
switch (tftype) {
|
|
case 0:
|
|
k = ONE / (tqfactor * gain);
|
|
|
|
fa[0] = ONE / (ONE + fg * (fg + k));
|
|
fa[1] = fg * fa[0];
|
|
fa[2] = fg * fa[1];
|
|
|
|
fm[0] = ONE;
|
|
fm[1] = k * (gain * gain - ONE);
|
|
fm[2] = ZERO;
|
|
break;
|
|
case 1:
|
|
k = itqfactor;
|
|
g = fg / SQRT(gain);
|
|
|
|
fa[0] = ONE / (ONE + g * (g + k));
|
|
fa[1] = g * fa[0];
|
|
fa[2] = g * fa[1];
|
|
|
|
fm[0] = ONE;
|
|
fm[1] = k * (gain - ONE);
|
|
fm[2] = gain * gain - ONE;
|
|
break;
|
|
case 2:
|
|
k = itqfactor;
|
|
g = fg / SQRT(gain);
|
|
|
|
fa[0] = ONE / (ONE + g * (g + k));
|
|
fa[1] = g * fa[0];
|
|
fa[2] = g * fa[1];
|
|
|
|
fm[0] = gain * gain;
|
|
fm[1] = k * (ONE - gain) * gain;
|
|
fm[2] = ONE - gain * gain;
|
|
break;
|
|
}
|
|
}
|
|
|
|
v = fn(get_svf)(src[n], fm, fa, &state[2]);
|
|
v = mode == -1 ? listen : v;
|
|
dst[n] = ctx->is_disabled ? src[n] : v;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|