mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-03 05:10:03 +02:00
6394acaf36
This patch fixes a pointer arithmetic bug in adjust_frame_information that resulted in heavily corrupted audio when using M/S encoding. Also, a backup copy of untransformed coefficients has to be kept around or attempts at re-processing the frame (which happens when hevavily overspending bits during transients) will result in re-encoding of the coefficients and subsequent corruption of the resulting stream. A/B testing shows the bug as corrected, but still cannot prove that M/S coding is a win at least in numbers. Limited listening tests do show improvement on M/S encoded samples in lower bitrates, but they're hidden among the other artifacts that remain to be corrected in the encoder. Some of the regressions flagged in the report do show poor stereo image (but not buggy), so M/S encoding is clearly not good enough yet to be defaulted to auto. In numbers, Patched against Unpatched, stereo_mode auto: Files: 114 Bitrates: 6 Tests: 683 Serious Regressions: 0 (0%) Regressions: 0 (0%) Improvements: 227 (33%) Big improvements: 92 (13%) Worst regression - mybloodrusts.wv - 256k - StdDev: 28.61 pSNR: -0.43 maxdiff: 1372.00 Best improvement - 60.wv - 384k - StdDev: -369.57 pSNR: 45.02 maxdiff: -13322.00 Average - StdDev: -80.56 pSNR: 2.49 maxdiff: -8858.00 Patched against Unpatched stereo_mode ms_off shows no difference. Patched stereo_mode auto vs Unpatched stereo_mode ms_off shows a small average improvement, just not too significant: Serious Regressions: 0 (0%) Regressions: 10 (1%) Improvements: 45 (6%) Big improvements: 2 (0%) Worst regression - Illinois.wv - 256k - StdDev: 33.20 pSNR: -2.03 maxdiff: 477.00 Best improvement - song_of_circomstances.flac - 384k - StdDev: -3.97 pSNR: 7.61 maxdiff: -826.00 Average - StdDev: -10.25 pSNR: 0.20 maxdiff: -281.00 Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
1139 lines
44 KiB
C
1139 lines
44 KiB
C
/*
|
|
* AAC coefficients encoder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC coefficients encoder
|
|
*/
|
|
|
|
/***********************************
|
|
* TODOs:
|
|
* speedup quantizer selection
|
|
* add sane pulse detection
|
|
***********************************/
|
|
|
|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
|
|
|
|
#include <float.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
|
|
/** bits needed to code codebook run value for long windows */
|
|
static const uint8_t run_value_bits_long[64] = {
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
|
|
};
|
|
|
|
/** bits needed to code codebook run value for short windows */
|
|
static const uint8_t run_value_bits_short[16] = {
|
|
3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
|
|
};
|
|
|
|
static const uint8_t * const run_value_bits[2] = {
|
|
run_value_bits_long, run_value_bits_short
|
|
};
|
|
|
|
|
|
/**
|
|
* Quantize one coefficient.
|
|
* @return absolute value of the quantized coefficient
|
|
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
|
|
*/
|
|
static av_always_inline int quant(float coef, const float Q)
|
|
{
|
|
float a = coef * Q;
|
|
return sqrtf(a * sqrtf(a)) + 0.4054;
|
|
}
|
|
|
|
static void quantize_bands(int *out, const float *in, const float *scaled,
|
|
int size, float Q34, int is_signed, int maxval)
|
|
{
|
|
int i;
|
|
double qc;
|
|
for (i = 0; i < size; i++) {
|
|
qc = scaled[i] * Q34;
|
|
out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
|
|
if (is_signed && in[i] < 0.0f) {
|
|
out[i] = -out[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void abs_pow34_v(float *out, const float *in, const int size)
|
|
{
|
|
#ifndef USE_REALLY_FULL_SEARCH
|
|
int i;
|
|
for (i = 0; i < size; i++) {
|
|
float a = fabsf(in[i]);
|
|
out[i] = sqrtf(a * sqrtf(a));
|
|
}
|
|
#endif /* USE_REALLY_FULL_SEARCH */
|
|
}
|
|
|
|
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
|
|
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
|
|
|
|
/**
|
|
* Calculate rate distortion cost for quantizing with given codebook
|
|
*
|
|
* @return quantization distortion
|
|
*/
|
|
static av_always_inline float quantize_and_encode_band_cost_template(
|
|
struct AACEncContext *s,
|
|
PutBitContext *pb, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits, int BT_ZERO, int BT_UNSIGNED,
|
|
int BT_PAIR, int BT_ESC)
|
|
{
|
|
const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
|
|
const float Q = ff_aac_pow2sf_tab [q_idx];
|
|
const float Q34 = ff_aac_pow34sf_tab[q_idx];
|
|
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
|
|
const float CLIPPED_ESCAPE = 165140.0f*IQ;
|
|
int i, j;
|
|
float cost = 0;
|
|
const int dim = BT_PAIR ? 2 : 4;
|
|
int resbits = 0;
|
|
const int range = aac_cb_range[cb];
|
|
const int maxval = aac_cb_maxval[cb];
|
|
int off;
|
|
|
|
if (BT_ZERO) {
|
|
for (i = 0; i < size; i++)
|
|
cost += in[i]*in[i];
|
|
if (bits)
|
|
*bits = 0;
|
|
return cost * lambda;
|
|
}
|
|
if (!scaled) {
|
|
abs_pow34_v(s->scoefs, in, size);
|
|
scaled = s->scoefs;
|
|
}
|
|
quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
|
|
if (BT_UNSIGNED) {
|
|
off = 0;
|
|
} else {
|
|
off = maxval;
|
|
}
|
|
for (i = 0; i < size; i += dim) {
|
|
const float *vec;
|
|
int *quants = s->qcoefs + i;
|
|
int curidx = 0;
|
|
int curbits;
|
|
float rd = 0.0f;
|
|
for (j = 0; j < dim; j++) {
|
|
curidx *= range;
|
|
curidx += quants[j] + off;
|
|
}
|
|
curbits = ff_aac_spectral_bits[cb-1][curidx];
|
|
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
|
|
if (BT_UNSIGNED) {
|
|
for (j = 0; j < dim; j++) {
|
|
float t = fabsf(in[i+j]);
|
|
float di;
|
|
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
|
|
if (t >= CLIPPED_ESCAPE) {
|
|
di = t - CLIPPED_ESCAPE;
|
|
curbits += 21;
|
|
} else {
|
|
int c = av_clip_uintp2(quant(t, Q), 13);
|
|
di = t - c*cbrtf(c)*IQ;
|
|
curbits += av_log2(c)*2 - 4 + 1;
|
|
}
|
|
} else {
|
|
di = t - vec[j]*IQ;
|
|
}
|
|
if (vec[j] != 0.0f)
|
|
curbits++;
|
|
rd += di*di;
|
|
}
|
|
} else {
|
|
for (j = 0; j < dim; j++) {
|
|
float di = in[i+j] - vec[j]*IQ;
|
|
rd += di*di;
|
|
}
|
|
}
|
|
cost += rd * lambda + curbits;
|
|
resbits += curbits;
|
|
if (cost >= uplim)
|
|
return uplim;
|
|
if (pb) {
|
|
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
|
|
if (BT_UNSIGNED)
|
|
for (j = 0; j < dim; j++)
|
|
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
|
|
put_bits(pb, 1, in[i+j] < 0.0f);
|
|
if (BT_ESC) {
|
|
for (j = 0; j < 2; j++) {
|
|
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
|
|
int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q), 13);
|
|
int len = av_log2(coef);
|
|
|
|
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
|
|
put_bits(pb, len, coef & ((1 << len) - 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bits)
|
|
*bits = resbits;
|
|
return cost;
|
|
}
|
|
|
|
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
|
|
static float quantize_and_encode_band_cost_ ## NAME( \
|
|
struct AACEncContext *s, \
|
|
PutBitContext *pb, const float *in, \
|
|
const float *scaled, int size, int scale_idx, \
|
|
int cb, const float lambda, const float uplim, \
|
|
int *bits) { \
|
|
return quantize_and_encode_band_cost_template( \
|
|
s, pb, in, scaled, size, scale_idx, \
|
|
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
|
|
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \
|
|
}
|
|
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
|
|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1)
|
|
|
|
static float (*const quantize_and_encode_band_cost_arr[])(
|
|
struct AACEncContext *s,
|
|
PutBitContext *pb, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits) = {
|
|
quantize_and_encode_band_cost_ZERO,
|
|
quantize_and_encode_band_cost_SQUAD,
|
|
quantize_and_encode_band_cost_SQUAD,
|
|
quantize_and_encode_band_cost_UQUAD,
|
|
quantize_and_encode_band_cost_UQUAD,
|
|
quantize_and_encode_band_cost_SPAIR,
|
|
quantize_and_encode_band_cost_SPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_UPAIR,
|
|
quantize_and_encode_band_cost_ESC,
|
|
};
|
|
|
|
#define quantize_and_encode_band_cost( \
|
|
s, pb, in, scaled, size, scale_idx, cb, \
|
|
lambda, uplim, bits) \
|
|
quantize_and_encode_band_cost_arr[cb]( \
|
|
s, pb, in, scaled, size, scale_idx, cb, \
|
|
lambda, uplim, bits)
|
|
|
|
static float quantize_band_cost(struct AACEncContext *s, const float *in,
|
|
const float *scaled, int size, int scale_idx,
|
|
int cb, const float lambda, const float uplim,
|
|
int *bits)
|
|
{
|
|
return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
|
|
cb, lambda, uplim, bits);
|
|
}
|
|
|
|
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
|
|
const float *in, int size, int scale_idx,
|
|
int cb, const float lambda)
|
|
{
|
|
quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
|
|
INFINITY, NULL);
|
|
}
|
|
|
|
static float find_max_val(int group_len, int swb_size, const float *scaled) {
|
|
float maxval = 0.0f;
|
|
int w2, i;
|
|
for (w2 = 0; w2 < group_len; w2++) {
|
|
for (i = 0; i < swb_size; i++) {
|
|
maxval = FFMAX(maxval, scaled[w2*128+i]);
|
|
}
|
|
}
|
|
return maxval;
|
|
}
|
|
|
|
static int find_min_book(float maxval, int sf) {
|
|
float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
|
|
float Q34 = sqrtf(Q * sqrtf(Q));
|
|
int qmaxval, cb;
|
|
qmaxval = maxval * Q34 + 0.4054f;
|
|
if (qmaxval == 0) cb = 0;
|
|
else if (qmaxval == 1) cb = 1;
|
|
else if (qmaxval == 2) cb = 3;
|
|
else if (qmaxval <= 4) cb = 5;
|
|
else if (qmaxval <= 7) cb = 7;
|
|
else if (qmaxval <= 12) cb = 9;
|
|
else cb = 11;
|
|
return cb;
|
|
}
|
|
|
|
/**
|
|
* structure used in optimal codebook search
|
|
*/
|
|
typedef struct BandCodingPath {
|
|
int prev_idx; ///< pointer to the previous path point
|
|
float cost; ///< path cost
|
|
int run;
|
|
} BandCodingPath;
|
|
|
|
/**
|
|
* Encode band info for single window group bands.
|
|
*/
|
|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][12];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minrd = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[0][cb].cost = 0.0f;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = path[swb][cb].cost;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
} else {
|
|
float minrd = next_minrd;
|
|
int mincb = next_mincb;
|
|
next_minrd = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float rd = 0.0f;
|
|
for (w = 0; w < group_len; w++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
|
|
rd += quantize_band_cost(s, sce->coeffs + start + w*128,
|
|
s->scoefs + start + w*128, size,
|
|
sce->sf_idx[(win+w)*16+swb], cb,
|
|
lambda / band->threshold, INFINITY, NULL);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + rd;
|
|
cost_get_here = minrd + rd + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minrd) {
|
|
next_minrd = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < 12; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
put_bits(&s->pb, 4, stackcb[i]);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = stackcb[i];
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
|
|
int win, int group_len, const float lambda)
|
|
{
|
|
BandCodingPath path[120][12];
|
|
int w, swb, cb, start, size;
|
|
int i, j;
|
|
const int max_sfb = sce->ics.max_sfb;
|
|
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
|
|
const int run_esc = (1 << run_bits) - 1;
|
|
int idx, ppos, count;
|
|
int stackrun[120], stackcb[120], stack_len;
|
|
float next_minbits = INFINITY;
|
|
int next_mincb = 0;
|
|
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
start = win*128;
|
|
for (cb = 0; cb < 12; cb++) {
|
|
path[0][cb].cost = run_bits+4;
|
|
path[0][cb].prev_idx = -1;
|
|
path[0][cb].run = 0;
|
|
}
|
|
for (swb = 0; swb < max_sfb; swb++) {
|
|
size = sce->ics.swb_sizes[swb];
|
|
if (sce->zeroes[win*16 + swb]) {
|
|
float cost_stay_here = path[swb][0].cost;
|
|
float cost_get_here = next_minbits + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][0].prev_idx = next_mincb;
|
|
path[swb+1][0].cost = cost_get_here;
|
|
path[swb+1][0].run = 1;
|
|
} else {
|
|
path[swb+1][0].prev_idx = 0;
|
|
path[swb+1][0].cost = cost_stay_here;
|
|
path[swb+1][0].run = path[swb][0].run + 1;
|
|
}
|
|
next_minbits = path[swb+1][0].cost;
|
|
next_mincb = 0;
|
|
for (cb = 1; cb < 12; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
} else {
|
|
float minbits = next_minbits;
|
|
int mincb = next_mincb;
|
|
int startcb = sce->band_type[win*16+swb];
|
|
next_minbits = INFINITY;
|
|
next_mincb = 0;
|
|
for (cb = 0; cb < startcb; cb++) {
|
|
path[swb+1][cb].cost = 61450;
|
|
path[swb+1][cb].prev_idx = -1;
|
|
path[swb+1][cb].run = 0;
|
|
}
|
|
for (cb = startcb; cb < 12; cb++) {
|
|
float cost_stay_here, cost_get_here;
|
|
float bits = 0.0f;
|
|
for (w = 0; w < group_len; w++) {
|
|
bits += quantize_band_cost(s, sce->coeffs + start + w*128,
|
|
s->scoefs + start + w*128, size,
|
|
sce->sf_idx[(win+w)*16+swb], cb,
|
|
0, INFINITY, NULL);
|
|
}
|
|
cost_stay_here = path[swb][cb].cost + bits;
|
|
cost_get_here = minbits + bits + run_bits + 4;
|
|
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
|
|
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
|
|
cost_stay_here += run_bits;
|
|
if (cost_get_here < cost_stay_here) {
|
|
path[swb+1][cb].prev_idx = mincb;
|
|
path[swb+1][cb].cost = cost_get_here;
|
|
path[swb+1][cb].run = 1;
|
|
} else {
|
|
path[swb+1][cb].prev_idx = cb;
|
|
path[swb+1][cb].cost = cost_stay_here;
|
|
path[swb+1][cb].run = path[swb][cb].run + 1;
|
|
}
|
|
if (path[swb+1][cb].cost < next_minbits) {
|
|
next_minbits = path[swb+1][cb].cost;
|
|
next_mincb = cb;
|
|
}
|
|
}
|
|
}
|
|
start += sce->ics.swb_sizes[swb];
|
|
}
|
|
|
|
//convert resulting path from backward-linked list
|
|
stack_len = 0;
|
|
idx = 0;
|
|
for (cb = 1; cb < 12; cb++)
|
|
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
|
|
idx = cb;
|
|
ppos = max_sfb;
|
|
while (ppos > 0) {
|
|
av_assert1(idx >= 0);
|
|
cb = idx;
|
|
stackrun[stack_len] = path[ppos][cb].run;
|
|
stackcb [stack_len] = cb;
|
|
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
|
|
ppos -= path[ppos][cb].run;
|
|
stack_len++;
|
|
}
|
|
//perform actual band info encoding
|
|
start = 0;
|
|
for (i = stack_len - 1; i >= 0; i--) {
|
|
put_bits(&s->pb, 4, stackcb[i]);
|
|
count = stackrun[i];
|
|
memset(sce->zeroes + win*16 + start, !stackcb[i], count);
|
|
//XXX: memset when band_type is also uint8_t
|
|
for (j = 0; j < count; j++) {
|
|
sce->band_type[win*16 + start] = stackcb[i];
|
|
start++;
|
|
}
|
|
while (count >= run_esc) {
|
|
put_bits(&s->pb, run_bits, run_esc);
|
|
count -= run_esc;
|
|
}
|
|
put_bits(&s->pb, run_bits, count);
|
|
}
|
|
}
|
|
|
|
/** Return the minimum scalefactor where the quantized coef does not clip. */
|
|
static av_always_inline uint8_t coef2minsf(float coef) {
|
|
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
}
|
|
|
|
/** Return the maximum scalefactor where the quantized coef is not zero. */
|
|
static av_always_inline uint8_t coef2maxsf(float coef) {
|
|
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
}
|
|
|
|
typedef struct TrellisPath {
|
|
float cost;
|
|
int prev;
|
|
} TrellisPath;
|
|
|
|
#define TRELLIS_STAGES 121
|
|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
|
|
|
|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int q, w, w2, g, start = 0;
|
|
int i, j;
|
|
int idx;
|
|
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
|
|
int bandaddr[TRELLIS_STAGES];
|
|
int minq;
|
|
float mincost;
|
|
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
|
|
int q0, q1, qcnt = 0;
|
|
|
|
for (i = 0; i < 1024; i++) {
|
|
float t = fabsf(sce->coeffs[i]);
|
|
if (t > 0.0f) {
|
|
q0f = FFMIN(q0f, t);
|
|
q1f = FFMAX(q1f, t);
|
|
qnrgf += t*t;
|
|
qcnt++;
|
|
}
|
|
}
|
|
|
|
if (!qcnt) {
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
memset(sce->zeroes, 1, sizeof(sce->zeroes));
|
|
return;
|
|
}
|
|
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
q0 = coef2minsf(q0f);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
q1 = coef2maxsf(q1f);
|
|
if (q1 - q0 > 60) {
|
|
int q0low = q0;
|
|
int q1high = q1;
|
|
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
|
|
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
|
|
q1 = qnrg + 30;
|
|
q0 = qnrg - 30;
|
|
if (q0 < q0low) {
|
|
q1 += q0low - q0;
|
|
q0 = q0low;
|
|
} else if (q1 > q1high) {
|
|
q0 -= q1 - q1high;
|
|
q1 = q1high;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[0][i].cost = 0.0f;
|
|
paths[0][i].prev = -1;
|
|
}
|
|
for (j = 1; j < TRELLIS_STAGES; j++) {
|
|
for (i = 0; i < TRELLIS_STATES; i++) {
|
|
paths[j][i].cost = INFINITY;
|
|
paths[j][i].prev = -2;
|
|
}
|
|
}
|
|
idx = 1;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
float qmin, qmax;
|
|
int nz = 0;
|
|
|
|
bandaddr[idx] = w * 16 + g;
|
|
qmin = INT_MAX;
|
|
qmax = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
nz = 1;
|
|
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
|
|
float t = fabsf(coefs[w2*128+i]);
|
|
if (t > 0.0f)
|
|
qmin = FFMIN(qmin, t);
|
|
qmax = FFMAX(qmax, t);
|
|
}
|
|
}
|
|
if (nz) {
|
|
int minscale, maxscale;
|
|
float minrd = INFINITY;
|
|
float maxval;
|
|
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
|
|
minscale = coef2minsf(qmin);
|
|
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
|
|
maxscale = coef2maxsf(qmax);
|
|
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
|
|
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
|
|
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
|
|
for (q = minscale; q < maxscale; q++) {
|
|
float dist = 0;
|
|
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
|
|
q + q0, cb, lambda / band->threshold, INFINITY, NULL);
|
|
}
|
|
minrd = FFMIN(minrd, dist);
|
|
|
|
for (i = 0; i < q1 - q0; i++) {
|
|
float cost;
|
|
cost = paths[idx - 1][i].cost + dist
|
|
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
|
|
if (cost < paths[idx][q].cost) {
|
|
paths[idx][q].cost = cost;
|
|
paths[idx][q].prev = i;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (q = 0; q < q1 - q0; q++) {
|
|
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
|
|
paths[idx][q].prev = q;
|
|
}
|
|
}
|
|
sce->zeroes[w*16+g] = !nz;
|
|
start += sce->ics.swb_sizes[g];
|
|
idx++;
|
|
}
|
|
}
|
|
idx--;
|
|
mincost = paths[idx][0].cost;
|
|
minq = 0;
|
|
for (i = 1; i < TRELLIS_STATES; i++) {
|
|
if (paths[idx][i].cost < mincost) {
|
|
mincost = paths[idx][i].cost;
|
|
minq = i;
|
|
}
|
|
}
|
|
while (idx) {
|
|
sce->sf_idx[bandaddr[idx]] = minq + q0;
|
|
minq = paths[idx][minq].prev;
|
|
idx--;
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
/**
|
|
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
|
*/
|
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
|
AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
|
|
float dists[128] = { 0 }, uplims[128];
|
|
float maxvals[128];
|
|
int fflag, minscaler;
|
|
int its = 0;
|
|
int allz = 0;
|
|
float minthr = INFINITY;
|
|
|
|
// for values above this the decoder might end up in an endless loop
|
|
// due to always having more bits than what can be encoded.
|
|
destbits = FFMIN(destbits, 5800);
|
|
//XXX: some heuristic to determine initial quantizers will reduce search time
|
|
//determine zero bands and upper limits
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int nz = 0;
|
|
float uplim = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
uplim += band->threshold;
|
|
if (band->energy <= band->threshold || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
nz = 1;
|
|
}
|
|
uplims[w*16+g] = uplim *512;
|
|
sce->zeroes[w*16+g] = !nz;
|
|
if (nz)
|
|
minthr = FFMIN(minthr, uplim);
|
|
allz |= nz;
|
|
}
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->zeroes[w*16+g]) {
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
|
continue;
|
|
}
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
|
|
}
|
|
}
|
|
|
|
if (!allz)
|
|
return;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *scaled = s->scoefs + start;
|
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
//perform two-loop search
|
|
//outer loop - improve quality
|
|
do {
|
|
int tbits, qstep;
|
|
minscaler = sce->sf_idx[0];
|
|
//inner loop - quantize spectrum to fit into given number of bits
|
|
qstep = its ? 1 : 32;
|
|
do {
|
|
int prev = -1;
|
|
tbits = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
int bits = 0;
|
|
int cb;
|
|
float dist = 0.0f;
|
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
|
start += sce->ics.swb_sizes[g];
|
|
continue;
|
|
}
|
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g],
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b);
|
|
bits += b;
|
|
}
|
|
dists[w*16+g] = dist - bits;
|
|
if (prev != -1) {
|
|
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
|
|
}
|
|
tbits += bits;
|
|
start += sce->ics.swb_sizes[g];
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
if (tbits > destbits) {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] < 218 - qstep)
|
|
sce->sf_idx[i] += qstep;
|
|
} else {
|
|
for (i = 0; i < 128; i++)
|
|
if (sce->sf_idx[i] > 60 - qstep)
|
|
sce->sf_idx[i] -= qstep;
|
|
}
|
|
qstep >>= 1;
|
|
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
|
|
qstep = 1;
|
|
} while (qstep);
|
|
|
|
fflag = 0;
|
|
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int prevsc = sce->sf_idx[w*16+g];
|
|
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
|
|
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
|
|
sce->sf_idx[w*16+g]--;
|
|
else //Try to make sure there is some energy in every band
|
|
sce->sf_idx[w*16+g]-=2;
|
|
}
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
|
|
if (sce->sf_idx[w*16+g] != prevsc)
|
|
fflag = 1;
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
its++;
|
|
} while (fflag && its < 10);
|
|
}
|
|
|
|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float uplim[128], maxq[128];
|
|
int minq, maxsf;
|
|
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
|
|
int last = 0, lastband = 0, curband = 0;
|
|
float avg_energy = 0.0;
|
|
if (sce->ics.num_windows == 1) {
|
|
start = 0;
|
|
for (i = 0; i < 1024; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (sce->coeffs[i]) {
|
|
avg_energy += sce->coeffs[i] * sce->coeffs[i];
|
|
last = i;
|
|
lastband = curband;
|
|
}
|
|
}
|
|
} else {
|
|
for (w = 0; w < 8; w++) {
|
|
const float *coeffs = sce->coeffs + w*128;
|
|
curband = start = 0;
|
|
for (i = 0; i < 128; i++) {
|
|
if (i - start >= sce->ics.swb_sizes[curband]) {
|
|
start += sce->ics.swb_sizes[curband];
|
|
curband++;
|
|
}
|
|
if (coeffs[i]) {
|
|
avg_energy += coeffs[i] * coeffs[i];
|
|
last = FFMAX(last, i);
|
|
lastband = FFMAX(lastband, curband);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
last++;
|
|
avg_energy /= last;
|
|
if (avg_energy == 0.0f) {
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
|
|
sce->sf_idx[i] = SCALE_ONE_POS;
|
|
return;
|
|
}
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
float *coefs = sce->coeffs + start;
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int start2 = start, end2 = start + size, peakpos = start;
|
|
float maxval = -1, thr = 0.0f, t;
|
|
maxq[w*16+g] = 0.0f;
|
|
if (g > lastband) {
|
|
maxq[w*16+g] = 0.0f;
|
|
start += size;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
|
|
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
|
|
continue;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
for (i = 0; i < size; i++) {
|
|
float t = coefs[w2*128+i]*coefs[w2*128+i];
|
|
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
|
|
thr += t;
|
|
if (sce->ics.num_windows == 1 && maxval < t) {
|
|
maxval = t;
|
|
peakpos = start+i;
|
|
}
|
|
}
|
|
}
|
|
if (sce->ics.num_windows == 1) {
|
|
start2 = FFMAX(peakpos - 2, start2);
|
|
end2 = FFMIN(peakpos + 3, end2);
|
|
} else {
|
|
start2 -= start;
|
|
end2 -= start;
|
|
}
|
|
start += size;
|
|
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
|
|
t = 1.0 - (1.0 * start2 / last);
|
|
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
|
|
}
|
|
}
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
const int size = sce->ics.swb_sizes[g];
|
|
int scf, prev_scf, step;
|
|
int min_scf = -1, max_scf = 256;
|
|
float curdiff;
|
|
if (maxq[w*16+g] < 21.544) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
start += size;
|
|
continue;
|
|
}
|
|
sce->zeroes[w*16+g] = 0;
|
|
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
|
|
for (;;) {
|
|
float dist = 0.0f;
|
|
int quant_max;
|
|
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
dist += quantize_band_cost(s, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
scf,
|
|
ESC_BT,
|
|
lambda,
|
|
INFINITY,
|
|
&b);
|
|
dist -= b;
|
|
}
|
|
dist *= 1.0f / 512.0f / lambda;
|
|
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
|
|
if (quant_max >= 8191) { // too much, return to the previous quantizer
|
|
sce->sf_idx[w*16+g] = prev_scf;
|
|
break;
|
|
}
|
|
prev_scf = scf;
|
|
curdiff = fabsf(dist - uplim[w*16+g]);
|
|
if (curdiff <= 1.0f)
|
|
step = 0;
|
|
else
|
|
step = log2f(curdiff);
|
|
if (dist > uplim[w*16+g])
|
|
step = -step;
|
|
scf += step;
|
|
scf = av_clip_uint8(scf);
|
|
step = scf - prev_scf;
|
|
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
|
|
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
|
|
break;
|
|
}
|
|
if (step > 0)
|
|
min_scf = prev_scf;
|
|
else
|
|
max_scf = prev_scf;
|
|
}
|
|
start += size;
|
|
}
|
|
}
|
|
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
|
|
for (i = 1; i < 128; i++) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i-1];
|
|
else
|
|
minq = FFMIN(minq, sce->sf_idx[i]);
|
|
}
|
|
if (minq == INT_MAX)
|
|
minq = 0;
|
|
minq = FFMIN(minq, SCALE_MAX_POS);
|
|
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
|
|
for (i = 126; i >= 0; i--) {
|
|
if (!sce->sf_idx[i])
|
|
sce->sf_idx[i] = sce->sf_idx[i+1];
|
|
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
|
|
}
|
|
}
|
|
|
|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int i, w, w2, g;
|
|
int minq = 255;
|
|
|
|
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= band->threshold) {
|
|
sce->sf_idx[(w+w2)*16+g] = 218;
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
} else {
|
|
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
|
|
sce->zeroes[(w+w2)*16+g] = 0;
|
|
}
|
|
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < 128; i++) {
|
|
sce->sf_idx[i] = 140;
|
|
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
|
|
}
|
|
//set the same quantizers inside window groups
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
|
|
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
|
|
}
|
|
|
|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g;
|
|
float M[128], S[128];
|
|
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
|
|
SingleChannelElement *sce0 = &cpe->ch[0];
|
|
SingleChannelElement *sce1 = &cpe->ch[1];
|
|
if (!cpe->common_window)
|
|
return;
|
|
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
|
|
for (g = 0; g < sce0->ics.num_swb; g++) {
|
|
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
|
|
float dist1 = 0.0f, dist2 = 0.0f;
|
|
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
|
|
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
|
|
float minthr = FFMIN(band0->threshold, band1->threshold);
|
|
float maxthr = FFMAX(band0->threshold, band1->threshold);
|
|
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
|
|
M[i] = (sce0->pcoeffs[start+w2*128+i]
|
|
+ sce1->pcoeffs[start+w2*128+i]) * 0.5;
|
|
S[i] = M[i]
|
|
- sce1->pcoeffs[start+w2*128+i];
|
|
}
|
|
abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
|
|
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
|
|
dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
|
|
L34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / band0->threshold, INFINITY, NULL);
|
|
dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
|
|
R34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / band1->threshold, INFINITY, NULL);
|
|
dist2 += quantize_band_cost(s, M,
|
|
M34,
|
|
sce0->ics.swb_sizes[g],
|
|
sce0->sf_idx[(w+w2)*16+g],
|
|
sce0->band_type[(w+w2)*16+g],
|
|
lambda / maxthr, INFINITY, NULL);
|
|
dist2 += quantize_band_cost(s, S,
|
|
S34,
|
|
sce1->ics.swb_sizes[g],
|
|
sce1->sf_idx[(w+w2)*16+g],
|
|
sce1->band_type[(w+w2)*16+g],
|
|
lambda / minthr, INFINITY, NULL);
|
|
}
|
|
cpe->ms_mask[w*16+g] = dist2 < dist1;
|
|
}
|
|
start += sce0->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
}
|
|
|
|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
|
|
[AAC_CODER_FAAC] = {
|
|
search_for_quantizers_faac,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
[AAC_CODER_ANMR] = {
|
|
search_for_quantizers_anmr,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
[AAC_CODER_TWOLOOP] = {
|
|
search_for_quantizers_twoloop,
|
|
codebook_trellis_rate,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
[AAC_CODER_FAST] = {
|
|
search_for_quantizers_fast,
|
|
encode_window_bands_info,
|
|
quantize_and_encode_band,
|
|
search_for_ms,
|
|
},
|
|
};
|