1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libswresample/rematrix.c
Michael Niedermayer c56d4dab03 swr/rematrix: Fix handling of AV_CH_LAYOUT_STEREO_DOWNMIX output
Fixes Ticket2859

Note, testcases related to the downmix channels are welcome.
(id like to make sure this is working correctly now, as obviously it didnt
 work before ...)

Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-08-20 16:56:51 +02:00

501 lines
19 KiB
C

/*
* Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
*
* This file is part of libswresample
*
* libswresample is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* libswresample is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with libswresample; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "swresample_internal.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#define TEMPLATE_REMATRIX_FLT
#include "rematrix_template.c"
#undef TEMPLATE_REMATRIX_FLT
#define TEMPLATE_REMATRIX_DBL
#include "rematrix_template.c"
#undef TEMPLATE_REMATRIX_DBL
#define TEMPLATE_REMATRIX_S16
#include "rematrix_template.c"
#undef TEMPLATE_REMATRIX_S16
#define TEMPLATE_REMATRIX_S32
#include "rematrix_template.c"
#undef TEMPLATE_REMATRIX_S32
#define FRONT_LEFT 0
#define FRONT_RIGHT 1
#define FRONT_CENTER 2
#define LOW_FREQUENCY 3
#define BACK_LEFT 4
#define BACK_RIGHT 5
#define FRONT_LEFT_OF_CENTER 6
#define FRONT_RIGHT_OF_CENTER 7
#define BACK_CENTER 8
#define SIDE_LEFT 9
#define SIDE_RIGHT 10
#define TOP_CENTER 11
#define TOP_FRONT_LEFT 12
#define TOP_FRONT_CENTER 13
#define TOP_FRONT_RIGHT 14
#define TOP_BACK_LEFT 15
#define TOP_BACK_CENTER 16
#define TOP_BACK_RIGHT 17
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
{
int nb_in, nb_out, in, out;
if (!s || s->in_convert) // s needs to be allocated but not initialized
return AVERROR(EINVAL);
memset(s->matrix, 0, sizeof(s->matrix));
nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
for (out = 0; out < nb_out; out++) {
for (in = 0; in < nb_in; in++)
s->matrix[out][in] = matrix[in];
matrix += stride;
}
s->rematrix_custom = 1;
return 0;
}
static int even(int64_t layout){
if(!layout) return 1;
if(layout&(layout-1)) return 1;
return 0;
}
static int clean_layout(SwrContext *s, int64_t layout){
if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
char buf[128];
av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
return AV_CH_FRONT_CENTER;
}
return layout;
}
static int sane_layout(int64_t layout){
if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
return 0;
if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
return 0;
if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
return 0;
if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)))
return 0;
if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)))
return 0;
if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX)
return 0;
return 1;
}
av_cold static int auto_matrix(SwrContext *s)
{
int i, j, out_i;
double matrix[64][64]={{0}};
int64_t unaccounted, in_ch_layout, out_ch_layout;
double maxcoef=0;
char buf[128];
const int matrix_encoding = s->matrix_encoding;
float maxval;
in_ch_layout = clean_layout(s, s->in_ch_layout);
out_ch_layout = clean_layout(s, s->out_ch_layout);
if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
&& (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
)
out_ch_layout = AV_CH_LAYOUT_STEREO;
if(!sane_layout(in_ch_layout)){
av_get_channel_layout_string(buf, sizeof(buf), -1, s->in_ch_layout);
av_log(s, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
return AVERROR(EINVAL);
}
if(!sane_layout(out_ch_layout)){
av_get_channel_layout_string(buf, sizeof(buf), -1, s->out_ch_layout);
av_log(s, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
return AVERROR(EINVAL);
}
memset(s->matrix, 0, sizeof(s->matrix));
for(i=0; i<64; i++){
if(in_ch_layout & out_ch_layout & (1ULL<<i))
matrix[i][i]= 1.0;
}
unaccounted= in_ch_layout & ~out_ch_layout;
//FIXME implement dolby surround
//FIXME implement full ac3
if(unaccounted & AV_CH_FRONT_CENTER){
if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
matrix[ FRONT_LEFT][FRONT_CENTER]+= s->clev;
matrix[FRONT_RIGHT][FRONT_CENTER]+= s->clev;
} else {
matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
matrix[FRONT_RIGHT][FRONT_CENTER]+= M_SQRT1_2;
}
}else
av_assert0(0);
}
if(unaccounted & AV_CH_LAYOUT_STEREO){
if(out_ch_layout & AV_CH_FRONT_CENTER){
matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
matrix[FRONT_CENTER][FRONT_RIGHT]+= M_SQRT1_2;
if(in_ch_layout & AV_CH_FRONT_CENTER)
matrix[FRONT_CENTER][ FRONT_CENTER] = s->clev*sqrt(2);
}else
av_assert0(0);
}
if(unaccounted & AV_CH_BACK_CENTER){
if(out_ch_layout & AV_CH_BACK_LEFT){
matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev * M_SQRT1_2;
} else {
matrix[FRONT_LEFT ][BACK_CENTER] -= s->slev;
matrix[FRONT_RIGHT][BACK_CENTER] += s->slev;
}
} else {
matrix[ FRONT_LEFT][BACK_CENTER]+= s->slev*M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_CENTER]+= s->slev*M_SQRT1_2;
}
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][BACK_CENTER]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_BACK_LEFT){
if(out_ch_layout & AV_CH_BACK_CENTER){
matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
}else if(out_ch_layout & AV_CH_SIDE_LEFT){
if(in_ch_layout & AV_CH_SIDE_LEFT){
matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
}else{
matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
}
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * M_SQRT1_2;
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * M_SQRT1_2;
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
matrix[FRONT_LEFT ][BACK_LEFT ] -= s->slev * SQRT3_2;
matrix[FRONT_LEFT ][BACK_RIGHT] -= s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_LEFT ] += s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev * SQRT3_2;
} else {
matrix[ FRONT_LEFT][ BACK_LEFT] += s->slev;
matrix[FRONT_RIGHT][BACK_RIGHT] += s->slev;
}
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][BACK_LEFT ]+= s->slev*M_SQRT1_2;
matrix[ FRONT_CENTER][BACK_RIGHT]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_SIDE_LEFT){
if(out_ch_layout & AV_CH_BACK_LEFT){
/* if back channels do not exist in the input, just copy side
channels to back channels, otherwise mix side into back */
if (in_ch_layout & AV_CH_BACK_LEFT) {
matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
} else {
matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
}
}else if(out_ch_layout & AV_CH_BACK_CENTER){
matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
}else if(out_ch_layout & AV_CH_FRONT_LEFT){
if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * M_SQRT1_2;
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * M_SQRT1_2;
} else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
matrix[FRONT_LEFT ][SIDE_LEFT ] -= s->slev * SQRT3_2;
matrix[FRONT_LEFT ][SIDE_RIGHT] -= s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][SIDE_LEFT ] += s->slev * M_SQRT1_2;
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev * SQRT3_2;
} else {
matrix[ FRONT_LEFT][ SIDE_LEFT] += s->slev;
matrix[FRONT_RIGHT][SIDE_RIGHT] += s->slev;
}
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][SIDE_LEFT ]+= s->slev*M_SQRT1_2;
matrix[ FRONT_CENTER][SIDE_RIGHT]+= s->slev*M_SQRT1_2;
}else
av_assert0(0);
}
if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
if(out_ch_layout & AV_CH_FRONT_LEFT){
matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
}else if(out_ch_layout & AV_CH_FRONT_CENTER){
matrix[ FRONT_CENTER][ FRONT_LEFT_OF_CENTER]+= M_SQRT1_2;
matrix[ FRONT_CENTER][FRONT_RIGHT_OF_CENTER]+= M_SQRT1_2;
}else
av_assert0(0);
}
/* mix LFE into front left/right or center */
if (unaccounted & AV_CH_LOW_FREQUENCY) {
if (out_ch_layout & AV_CH_FRONT_CENTER) {
matrix[FRONT_CENTER][LOW_FREQUENCY] += s->lfe_mix_level;
} else if (out_ch_layout & AV_CH_FRONT_LEFT) {
matrix[FRONT_LEFT ][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
matrix[FRONT_RIGHT][LOW_FREQUENCY] += s->lfe_mix_level * M_SQRT1_2;
} else
av_assert0(0);
}
for(out_i=i=0; i<64; i++){
double sum=0;
int in_i=0;
for(j=0; j<64; j++){
s->matrix[out_i][in_i]= matrix[i][j];
if(matrix[i][j]){
sum += fabs(matrix[i][j]);
}
if(in_ch_layout & (1ULL<<j))
in_i++;
}
maxcoef= FFMAX(maxcoef, sum);
if(out_ch_layout & (1ULL<<i))
out_i++;
}
if(s->rematrix_volume < 0)
maxcoef = -s->rematrix_volume;
if (s->rematrix_maxval > 0) {
maxval = s->rematrix_maxval;
} else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
|| av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
maxval = 1.0;
} else
maxval = INT_MAX;
if(maxcoef > maxval || s->rematrix_volume < 0){
maxcoef /= maxval;
for(i=0; i<SWR_CH_MAX; i++)
for(j=0; j<SWR_CH_MAX; j++){
s->matrix[i][j] /= maxcoef;
}
}
if(s->rematrix_volume > 0){
for(i=0; i<SWR_CH_MAX; i++)
for(j=0; j<SWR_CH_MAX; j++){
s->matrix[i][j] *= s->rematrix_volume;
}
}
for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
av_log(NULL, AV_LOG_DEBUG, "%f ", s->matrix[i][j]);
}
av_log(NULL, AV_LOG_DEBUG, "\n");
}
return 0;
}
av_cold int swri_rematrix_init(SwrContext *s){
int i, j;
int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout);
int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout);
s->mix_any_f = NULL;
if (!s->rematrix_custom) {
int r = auto_matrix(s);
if (r)
return r;
}
if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
s->native_one = av_mallocz(sizeof(int));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((int*)s->native_matrix)[i * nb_in + j] = lrintf(s->matrix[i][j] * 32768);
*((int*)s->native_one) = 32768;
s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
s->native_one = av_mallocz(sizeof(float));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
*((float*)s->native_one) = 1.0;
s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
s->native_one = av_mallocz(sizeof(double));
for (i = 0; i < nb_out; i++)
for (j = 0; j < nb_in; j++)
((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
*((double*)s->native_one) = 1.0;
s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
}else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
// Only for dithering currently
// s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
s->native_one = av_mallocz(sizeof(int));
// for (i = 0; i < nb_out; i++)
// for (j = 0; j < nb_in; j++)
// ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
*((int*)s->native_one) = 32768;
s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
}else
av_assert0(0);
//FIXME quantize for integeres
for (i = 0; i < SWR_CH_MAX; i++) {
int ch_in=0;
for (j = 0; j < SWR_CH_MAX; j++) {
s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
if(s->matrix[i][j])
s->matrix_ch[i][++ch_in]= j;
}
s->matrix_ch[i][0]= ch_in;
}
if(HAVE_YASM && HAVE_MMX) swri_rematrix_init_x86(s);
return 0;
}
av_cold void swri_rematrix_free(SwrContext *s){
av_freep(&s->native_matrix);
av_freep(&s->native_one);
av_freep(&s->native_simd_matrix);
av_freep(&s->native_simd_one);
}
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
int out_i, in_i, i, j;
int len1 = 0;
int off = 0;
if(s->mix_any_f) {
s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
return 0;
}
if(s->mix_2_1_simd || s->mix_1_1_simd){
len1= len&~15;
off = len1 * out->bps;
}
av_assert0(out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
av_assert0(in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
for(out_i=0; out_i<out->ch_count; out_i++){
switch(s->matrix_ch[out_i][0]){
case 0:
if(mustcopy)
memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
break;
case 1:
in_i= s->matrix_ch[out_i][1];
if(s->matrix[out_i][in_i]!=1.0){
if(s->mix_1_1_simd && len1)
s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
if(len != len1)
s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
}else if(mustcopy){
memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
}else{
out->ch[out_i]= in->ch[in_i];
}
break;
case 2: {
int in_i1 = s->matrix_ch[out_i][1];
int in_i2 = s->matrix_ch[out_i][2];
if(s->mix_2_1_simd && len1)
s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
else
s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
if(len != len1)
s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
break;}
default:
if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
for(i=0; i<len; i++){
float v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((float*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
}
((float*)out->ch[out_i])[i]= v;
}
}else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
for(i=0; i<len; i++){
double v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
}
((double*)out->ch[out_i])[i]= v;
}
}else{
for(i=0; i<len; i++){
int v=0;
for(j=0; j<s->matrix_ch[out_i][0]; j++){
in_i= s->matrix_ch[out_i][1+j];
v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
}
((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
}
}
}
}
return 0;
}