1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavutil/opencl.c
Clément Bœsch cf6ed1f129 lavu/opencl: remove semi-colon from macro.
Fixes compilation when the macros are empty and the label above ends up
containing no statement. Also makes usage of these macro consistent
(some already have a semi colon, some others don't).

Fixes Ticket #2603
2013-05-24 12:01:02 +02:00

813 lines
32 KiB
C

/*
* Copyright (C) 2012 Peng Gao <peng@multicorewareinc.com>
* Copyright (C) 2012 Li Cao <li@multicorewareinc.com>
* Copyright (C) 2012 Wei Gao <weigao@multicorewareinc.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "opencl.h"
#include "avstring.h"
#include "log.h"
#include "avassert.h"
#include "opt.h"
#if HAVE_PTHREADS
#include <pthread.h>
static pthread_mutex_t atomic_opencl_lock = PTHREAD_MUTEX_INITIALIZER;
#define LOCK_OPENCL pthread_mutex_lock(&atomic_opencl_lock)
#define UNLOCK_OPENCL pthread_mutex_unlock(&atomic_opencl_lock)
#elif !HAVE_THREADS
#define LOCK_OPENCL
#define UNLOCK_OPENCL
#endif
#define MAX_KERNEL_NUM 500
#define MAX_KERNEL_CODE_NUM 200
typedef struct {
int is_compiled;
const char *kernel_string;
} KernelCode;
typedef struct {
const AVClass *class;
int log_offset;
void *log_ctx;
int init_count;
int opt_init_flag;
/**
* if set to 1, the OpenCL environment was created by the user and
* passed as AVOpenCLExternalEnv when initing ,0:created by opencl wrapper.
*/
int is_user_created;
int platform_idx;
int device_idx;
char *build_options;
cl_platform_id platform_id;
cl_device_type device_type;
cl_context context;
cl_device_id device_id;
cl_command_queue command_queue;
int program_count;
cl_program programs[MAX_KERNEL_CODE_NUM];
int kernel_code_count;
KernelCode kernel_code[MAX_KERNEL_CODE_NUM];
int kernel_count;
AVOpenCLDeviceList device_list;
} OpenclContext;
#define OFFSET(x) offsetof(OpenclContext, x)
static const AVOption opencl_options[] = {
{ "platform_idx", "set platform index value", OFFSET(platform_idx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX},
{ "device_idx", "set device index value", OFFSET(device_idx), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX},
{ "build_options", "build options of opencl", OFFSET(build_options), AV_OPT_TYPE_STRING, {.str="-I."}, CHAR_MIN, CHAR_MAX},
{ NULL }
};
static const AVClass openclutils_class = {
.class_name = "OPENCLUTILS",
.option = opencl_options,
.item_name = av_default_item_name,
.version = LIBAVUTIL_VERSION_INT,
.log_level_offset_offset = offsetof(OpenclContext, log_offset),
.parent_log_context_offset = offsetof(OpenclContext, log_ctx),
};
static OpenclContext opencl_ctx = {&openclutils_class};
static const cl_device_type device_type[] = {CL_DEVICE_TYPE_GPU, CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_DEFAULT};
typedef struct {
int err_code;
const char *err_str;
} OpenclErrorMsg;
static const OpenclErrorMsg opencl_err_msg[] = {
{CL_DEVICE_NOT_FOUND, "DEVICE NOT FOUND"},
{CL_DEVICE_NOT_AVAILABLE, "DEVICE NOT AVAILABLE"},
{CL_COMPILER_NOT_AVAILABLE, "COMPILER NOT AVAILABLE"},
{CL_MEM_OBJECT_ALLOCATION_FAILURE, "MEM OBJECT ALLOCATION FAILURE"},
{CL_OUT_OF_RESOURCES, "OUT OF RESOURCES"},
{CL_OUT_OF_HOST_MEMORY, "OUT OF HOST MEMORY"},
{CL_PROFILING_INFO_NOT_AVAILABLE, "PROFILING INFO NOT AVAILABLE"},
{CL_MEM_COPY_OVERLAP, "MEM COPY OVERLAP"},
{CL_IMAGE_FORMAT_MISMATCH, "IMAGE FORMAT MISMATCH"},
{CL_IMAGE_FORMAT_NOT_SUPPORTED, "IMAGE FORMAT NOT_SUPPORTED"},
{CL_BUILD_PROGRAM_FAILURE, "BUILD PROGRAM FAILURE"},
{CL_MAP_FAILURE, "MAP FAILURE"},
{CL_MISALIGNED_SUB_BUFFER_OFFSET, "MISALIGNED SUB BUFFER OFFSET"},
{CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST, "EXEC STATUS ERROR FOR EVENTS IN WAIT LIST"},
{CL_COMPILE_PROGRAM_FAILURE, "COMPILE PROGRAM FAILURE"},
{CL_LINKER_NOT_AVAILABLE, "LINKER NOT AVAILABLE"},
{CL_LINK_PROGRAM_FAILURE, "LINK PROGRAM FAILURE"},
{CL_DEVICE_PARTITION_FAILED, "DEVICE PARTITION FAILED"},
{CL_KERNEL_ARG_INFO_NOT_AVAILABLE, "KERNEL ARG INFO NOT AVAILABLE"},
{CL_INVALID_VALUE, "INVALID VALUE"},
{CL_INVALID_DEVICE_TYPE, "INVALID DEVICE TYPE"},
{CL_INVALID_PLATFORM, "INVALID PLATFORM"},
{CL_INVALID_DEVICE, "INVALID DEVICE"},
{CL_INVALID_CONTEXT, "INVALID CONTEXT"},
{CL_INVALID_QUEUE_PROPERTIES, "INVALID QUEUE PROPERTIES"},
{CL_INVALID_COMMAND_QUEUE, "INVALID COMMAND QUEUE"},
{CL_INVALID_HOST_PTR, "INVALID HOST PTR"},
{CL_INVALID_MEM_OBJECT, "INVALID MEM OBJECT"},
{CL_INVALID_IMAGE_FORMAT_DESCRIPTOR, "INVALID IMAGE FORMAT DESCRIPTOR"},
{CL_INVALID_IMAGE_SIZE, "INVALID IMAGE SIZE"},
{CL_INVALID_SAMPLER, "INVALID SAMPLER"},
{CL_INVALID_BINARY, "INVALID BINARY"},
{CL_INVALID_BUILD_OPTIONS, "INVALID BUILD OPTIONS"},
{CL_INVALID_PROGRAM, "INVALID PROGRAM"},
{CL_INVALID_PROGRAM_EXECUTABLE, "INVALID PROGRAM EXECUTABLE"},
{CL_INVALID_KERNEL_NAME, "INVALID KERNEL NAME"},
{CL_INVALID_KERNEL_DEFINITION, "INVALID KERNEL DEFINITION"},
{CL_INVALID_KERNEL, "INVALID KERNEL"},
{CL_INVALID_ARG_INDEX, "INVALID ARG INDEX"},
{CL_INVALID_ARG_VALUE, "INVALID ARG VALUE"},
{CL_INVALID_ARG_SIZE, "INVALID ARG_SIZE"},
{CL_INVALID_KERNEL_ARGS, "INVALID KERNEL ARGS"},
{CL_INVALID_WORK_DIMENSION, "INVALID WORK DIMENSION"},
{CL_INVALID_WORK_GROUP_SIZE, "INVALID WORK GROUP SIZE"},
{CL_INVALID_WORK_ITEM_SIZE, "INVALID WORK ITEM SIZE"},
{CL_INVALID_GLOBAL_OFFSET, "INVALID GLOBAL OFFSET"},
{CL_INVALID_EVENT_WAIT_LIST, "INVALID EVENT WAIT LIST"},
{CL_INVALID_EVENT, "INVALID EVENT"},
{CL_INVALID_OPERATION, "INVALID OPERATION"},
{CL_INVALID_GL_OBJECT, "INVALID GL OBJECT"},
{CL_INVALID_BUFFER_SIZE, "INVALID BUFFER SIZE"},
{CL_INVALID_MIP_LEVEL, "INVALID MIP LEVEL"},
{CL_INVALID_GLOBAL_WORK_SIZE, "INVALID GLOBAL WORK SIZE"},
{CL_INVALID_PROPERTY, "INVALID PROPERTY"},
{CL_INVALID_IMAGE_DESCRIPTOR, "INVALID IMAGE DESCRIPTOR"},
{CL_INVALID_COMPILER_OPTIONS, "INVALID COMPILER OPTIONS"},
{CL_INVALID_LINKER_OPTIONS, "INVALID LINKER OPTIONS"},
{CL_INVALID_DEVICE_PARTITION_COUNT, "INVALID DEVICE PARTITION COUNT"},
};
const char *av_opencl_errstr(cl_int status)
{
int i;
for (i = 0; i < sizeof(opencl_err_msg); i++) {
if (opencl_err_msg[i].err_code == status)
return opencl_err_msg[i].err_str;
}
return "unknown error";
}
static void free_device_list(AVOpenCLDeviceList *device_list)
{
int i, j;
if (!device_list)
return;
for (i = 0; i < device_list->platform_num; i++) {
if (!device_list->platform_node[i])
continue;
for (j = 0; j < device_list->platform_node[i]->device_num; j++) {
av_freep(&(device_list->platform_node[i]->device_node[j]));
}
av_freep(&device_list->platform_node[i]->device_node);
av_freep(&device_list->platform_node[i]);
}
av_freep(&device_list->platform_node);
device_list->platform_num = 0;
}
static int get_device_list(AVOpenCLDeviceList *device_list)
{
cl_int status;
int i, j, k, device_num, total_devices_num,ret = 0;
int *devices_num;
cl_platform_id *platform_ids = NULL;
cl_device_id *device_ids = NULL;
AVOpenCLDeviceNode *device_node = NULL;
status = clGetPlatformIDs(0, NULL, &device_list->platform_num);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not get OpenCL platform ids: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
platform_ids = av_mallocz(device_list->platform_num * sizeof(cl_platform_id));
if (!platform_ids)
return AVERROR(ENOMEM);
status = clGetPlatformIDs(device_list->platform_num, platform_ids, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not get OpenCL platform ids: %s\n", av_opencl_errstr(status));
ret = AVERROR_EXTERNAL;
goto end;
}
device_list->platform_node = av_mallocz(device_list->platform_num * sizeof(AVOpenCLPlatformNode *));
if (!device_list->platform_node) {
ret = AVERROR(ENOMEM);
goto end;
}
devices_num = av_mallocz(sizeof(int) * FF_ARRAY_ELEMS(device_type));
if (!devices_num) {
ret = AVERROR(ENOMEM);
goto end;
}
for (i = 0; i < device_list->platform_num; i++) {
device_list->platform_node[i] = av_mallocz(sizeof(AVOpenCLPlatformNode));
if (!device_list->platform_node[i]) {
ret = AVERROR(ENOMEM);
goto end;
}
device_list->platform_node[i]->platform_id = platform_ids[i];
status = clGetPlatformInfo(platform_ids[i], CL_PLATFORM_VENDOR,
sizeof(device_list->platform_node[i]->platform_name),
device_list->platform_node[i]->platform_name, NULL);
total_devices_num = 0;
for (j = 0; j < FF_ARRAY_ELEMS(device_type); j++) {
status = clGetDeviceIDs(device_list->platform_node[i]->platform_id,
device_type[j], 0, NULL, &devices_num[j]);
total_devices_num += devices_num[j];
}
device_list->platform_node[i]->device_node = av_mallocz(total_devices_num * sizeof(AVOpenCLDeviceNode *));
if (!device_list->platform_node[i]->device_node) {
ret = AVERROR(ENOMEM);
goto end;
}
for (j = 0; j < FF_ARRAY_ELEMS(device_type); j++) {
if (devices_num[j]) {
device_ids = av_mallocz(devices_num[j] * sizeof(cl_device_id));
if (!device_ids) {
ret = AVERROR(ENOMEM);
goto end;
}
status = clGetDeviceIDs(device_list->platform_node[i]->platform_id, device_type[j],
devices_num[j], device_ids, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_WARNING,
"Could not get device ID: %s:\n", av_opencl_errstr(status));
av_freep(&device_ids);
continue;
}
for (k = 0; k < devices_num[j]; k++) {
device_num = device_list->platform_node[i]->device_num;
device_list->platform_node[i]->device_node[device_num] = av_mallocz(sizeof(AVOpenCLDeviceNode));
if (!device_list->platform_node[i]->device_node[device_num]) {
ret = AVERROR(ENOMEM);
goto end;
}
device_node = device_list->platform_node[i]->device_node[device_num];
device_node->device_id = device_ids[k];
device_node->device_type = device_type[j];
status = clGetDeviceInfo(device_node->device_id, CL_DEVICE_NAME,
sizeof(device_node->device_name), device_node->device_name,
NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_WARNING,
"Could not get device name: %s\n", av_opencl_errstr(status));
continue;
}
device_list->platform_node[i]->device_num++;
}
av_freep(&device_ids);
}
}
}
end:
av_freep(&platform_ids);
av_freep(&devices_num);
av_freep(&device_ids);
if (ret < 0)
free_device_list(device_list);
return ret;
}
int av_opencl_get_device_list(AVOpenCLDeviceList **device_list)
{
int ret = 0;
*device_list = av_mallocz(sizeof(AVOpenCLDeviceList));
if (!(*device_list)) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Could not allocate opencl device list\n");
return AVERROR(ENOMEM);
}
ret = get_device_list(*device_list);
if (ret < 0) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Could not get device list from environment\n");
free_device_list(*device_list);
av_freep(device_list);
return ret;
}
return ret;
}
void av_opencl_free_device_list(AVOpenCLDeviceList **device_list)
{
free_device_list(*device_list);
av_freep(device_list);
}
int av_opencl_set_option(const char *key, const char *val)
{
int ret = 0;
LOCK_OPENCL;
if (!opencl_ctx.opt_init_flag) {
av_opt_set_defaults(&opencl_ctx);
opencl_ctx.opt_init_flag = 1;
}
ret = av_opt_set(&opencl_ctx, key, val, 0);
UNLOCK_OPENCL;
return ret;
}
int av_opencl_get_option(const char *key, uint8_t **out_val)
{
int ret = 0;
LOCK_OPENCL;
ret = av_opt_get(&opencl_ctx, key, 0, out_val);
UNLOCK_OPENCL;
return ret;
}
void av_opencl_free_option(void)
{
/*FIXME: free openclutils context*/
LOCK_OPENCL;
av_opt_free(&opencl_ctx);
UNLOCK_OPENCL;
}
AVOpenCLExternalEnv *av_opencl_alloc_external_env(void)
{
AVOpenCLExternalEnv *ext = av_mallocz(sizeof(AVOpenCLExternalEnv));
if (!ext) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not malloc external opencl environment data space\n");
}
return ext;
}
void av_opencl_free_external_env(AVOpenCLExternalEnv **ext_opencl_env)
{
av_freep(ext_opencl_env);
}
int av_opencl_register_kernel_code(const char *kernel_code)
{
int i, ret = 0;
LOCK_OPENCL;
if (opencl_ctx.kernel_code_count >= MAX_KERNEL_CODE_NUM) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not register kernel code, maximum number of registered kernel code %d already reached\n",
MAX_KERNEL_CODE_NUM);
ret = AVERROR(EINVAL);
goto end;
}
for (i = 0; i < opencl_ctx.kernel_code_count; i++) {
if (opencl_ctx.kernel_code[i].kernel_string == kernel_code) {
av_log(&opencl_ctx, AV_LOG_WARNING, "Same kernel code has been registered\n");
goto end;
}
}
opencl_ctx.kernel_code[opencl_ctx.kernel_code_count].kernel_string = kernel_code;
opencl_ctx.kernel_code[opencl_ctx.kernel_code_count].is_compiled = 0;
opencl_ctx.kernel_code_count++;
end:
UNLOCK_OPENCL;
return ret;
}
int av_opencl_create_kernel(AVOpenCLKernelEnv *env, const char *kernel_name)
{
cl_int status;
int i, ret = 0;
LOCK_OPENCL;
if (strlen(kernel_name) + 1 > AV_OPENCL_MAX_KERNEL_NAME_SIZE) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Created kernel name %s is too long\n", kernel_name);
ret = AVERROR(EINVAL);
goto end;
}
if (!env->kernel) {
if (opencl_ctx.kernel_count >= MAX_KERNEL_NUM) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not create kernel with name '%s', maximum number of kernels %d already reached\n",
kernel_name, MAX_KERNEL_NUM);
ret = AVERROR(EINVAL);
goto end;
}
if (opencl_ctx.program_count == 0) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Program count of OpenCL is 0, can not create kernel\n");
ret = AVERROR(EINVAL);
goto end;
}
for (i = 0; i < opencl_ctx.program_count; i++) {
env->kernel = clCreateKernel(opencl_ctx.programs[i], kernel_name, &status);
if (status == CL_SUCCESS)
break;
}
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Could not create OpenCL kernel: %s\n", av_opencl_errstr(status));
ret = AVERROR_EXTERNAL;
goto end;
}
opencl_ctx.kernel_count++;
env->command_queue = opencl_ctx.command_queue;
av_strlcpy(env->kernel_name, kernel_name, sizeof(env->kernel_name));
}
end:
UNLOCK_OPENCL;
return ret;
}
void av_opencl_release_kernel(AVOpenCLKernelEnv *env)
{
cl_int status;
LOCK_OPENCL;
if (!env->kernel)
goto end;
status = clReleaseKernel(env->kernel);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Could not release kernel: %s\n",
av_opencl_errstr(status));
}
env->kernel = NULL;
env->command_queue = NULL;
env->kernel_name[0] = 0;
opencl_ctx.kernel_count--;
end:
UNLOCK_OPENCL;
}
static int init_opencl_env(OpenclContext *opencl_ctx, AVOpenCLExternalEnv *ext_opencl_env)
{
cl_int status;
cl_context_properties cps[3];
int i, ret = 0;
AVOpenCLDeviceNode *device_node = NULL;
if (ext_opencl_env) {
if (opencl_ctx->is_user_created)
return 0;
opencl_ctx->platform_id = ext_opencl_env->platform_id;
opencl_ctx->is_user_created = 1;
opencl_ctx->command_queue = ext_opencl_env->command_queue;
opencl_ctx->context = ext_opencl_env->context;
opencl_ctx->device_id = ext_opencl_env->device_id;
opencl_ctx->device_type = ext_opencl_env->device_type;
} else {
if (!opencl_ctx->is_user_created) {
if (!opencl_ctx->device_list.platform_num) {
ret = get_device_list(&opencl_ctx->device_list);
if (ret < 0) {
return ret;
}
}
if (opencl_ctx->platform_idx >= 0) {
if (opencl_ctx->device_list.platform_num < opencl_ctx->platform_idx + 1) {
av_log(opencl_ctx, AV_LOG_ERROR, "User set platform index not exist\n");
return AVERROR(EINVAL);
}
if (!opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_num) {
av_log(opencl_ctx, AV_LOG_ERROR, "No devices in user specific platform with index %d\n",
opencl_ctx->platform_idx);
return AVERROR(EINVAL);
}
opencl_ctx->platform_id = opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->platform_id;
} else {
/* get a usable platform by default*/
for (i = 0; i < opencl_ctx->device_list.platform_num; i++) {
if (opencl_ctx->device_list.platform_node[i]->device_num) {
opencl_ctx->platform_id = opencl_ctx->device_list.platform_node[i]->platform_id;
opencl_ctx->platform_idx = i;
break;
}
}
}
if (!opencl_ctx->platform_id) {
av_log(opencl_ctx, AV_LOG_ERROR, "Could not get OpenCL platforms\n");
return AVERROR_EXTERNAL;
}
/* get a usable device*/
if (opencl_ctx->device_idx >= 0) {
if (opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_num < opencl_ctx->device_idx + 1) {
av_log(opencl_ctx, AV_LOG_ERROR,
"Could not get OpenCL device idx %d in the user set platform\n", opencl_ctx->platform_idx);
return AVERROR(EINVAL);
}
} else {
opencl_ctx->device_idx = 0;
}
device_node = opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->device_node[opencl_ctx->device_idx];
opencl_ctx->device_id = device_node->device_id;
opencl_ctx->device_type = device_node->device_type;
/*
* Use available platform.
*/
av_log(opencl_ctx, AV_LOG_VERBOSE, "Platform Name: %s, device id: 0x%x\n",
opencl_ctx->device_list.platform_node[opencl_ctx->platform_idx]->platform_name,
(unsigned int)opencl_ctx->device_id);
cps[0] = CL_CONTEXT_PLATFORM;
cps[1] = (cl_context_properties)opencl_ctx->platform_id;
cps[2] = 0;
opencl_ctx->context = clCreateContextFromType(cps, opencl_ctx->device_type,
NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(opencl_ctx, AV_LOG_ERROR,
"Could not get OpenCL context from device type: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
opencl_ctx->command_queue = clCreateCommandQueue(opencl_ctx->context, opencl_ctx->device_id,
0, &status);
if (status != CL_SUCCESS) {
av_log(opencl_ctx, AV_LOG_ERROR,
"Could not create OpenCL command queue: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
}
}
return ret;
}
static int compile_kernel_file(OpenclContext *opencl_ctx)
{
cl_int status;
int i, kernel_code_count = 0;
const char *kernel_code[MAX_KERNEL_CODE_NUM] = {NULL};
size_t kernel_code_len[MAX_KERNEL_CODE_NUM] = {0};
for (i = 0; i < opencl_ctx->kernel_code_count; i++) {
if (!opencl_ctx->kernel_code[i].is_compiled) {
kernel_code[kernel_code_count] = opencl_ctx->kernel_code[i].kernel_string;
kernel_code_len[kernel_code_count] = strlen(opencl_ctx->kernel_code[i].kernel_string);
opencl_ctx->kernel_code[i].is_compiled = 1;
kernel_code_count++;
}
}
if (!kernel_code_count)
return 0;
/* create a CL program using the kernel source */
opencl_ctx->programs[opencl_ctx->program_count] = clCreateProgramWithSource(opencl_ctx->context,
kernel_code_count,
kernel_code,
kernel_code_len,
&status);
if(status != CL_SUCCESS) {
av_log(opencl_ctx, AV_LOG_ERROR,
"Could not create OpenCL program with source code: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
if (!opencl_ctx->programs[opencl_ctx->program_count]) {
av_log(opencl_ctx, AV_LOG_ERROR, "Created program is NULL\n");
return AVERROR_EXTERNAL;
}
status = clBuildProgram(opencl_ctx->programs[opencl_ctx->program_count], 1, &(opencl_ctx->device_id),
opencl_ctx->build_options, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(opencl_ctx, AV_LOG_ERROR,
"Could not compile OpenCL kernel: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
opencl_ctx->program_count++;
return 0;
}
int av_opencl_init(AVOpenCLExternalEnv *ext_opencl_env)
{
int ret = 0;
LOCK_OPENCL;
if (!opencl_ctx.init_count) {
if (!opencl_ctx.opt_init_flag) {
av_opt_set_defaults(&opencl_ctx);
opencl_ctx.opt_init_flag = 1;
}
ret = init_opencl_env(&opencl_ctx, ext_opencl_env);
if (ret < 0)
goto end;
}
ret = compile_kernel_file(&opencl_ctx);
if (ret < 0)
goto end;
if (opencl_ctx.kernel_code_count <= 0) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"No kernel code is registered, compile kernel file failed\n");
ret = AVERROR(EINVAL);
goto end;
}
opencl_ctx.init_count++;
end:
UNLOCK_OPENCL;
return ret;
}
void av_opencl_uninit(void)
{
cl_int status;
int i;
LOCK_OPENCL;
opencl_ctx.init_count--;
if (opencl_ctx.is_user_created)
goto end;
if (opencl_ctx.init_count > 0 || opencl_ctx.kernel_count > 0)
goto end;
for (i = 0; i < opencl_ctx.program_count; i++) {
if (opencl_ctx.programs[i]) {
status = clReleaseProgram(opencl_ctx.programs[i]);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not release OpenCL program: %s\n", av_opencl_errstr(status));
}
opencl_ctx.programs[i] = NULL;
}
}
if (opencl_ctx.command_queue) {
status = clReleaseCommandQueue(opencl_ctx.command_queue);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not release OpenCL command queue: %s\n", av_opencl_errstr(status));
}
opencl_ctx.command_queue = NULL;
}
if (opencl_ctx.context) {
status = clReleaseContext(opencl_ctx.context);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not release OpenCL context: %s\n", av_opencl_errstr(status));
}
opencl_ctx.context = NULL;
}
free_device_list(&opencl_ctx.device_list);
end:
if ((opencl_ctx.init_count <= 0) && (opencl_ctx.kernel_count <= 0))
av_opt_free(&opencl_ctx); //FIXME: free openclutils context
UNLOCK_OPENCL;
}
int av_opencl_buffer_create(cl_mem *cl_buf, size_t cl_buf_size, int flags, void *host_ptr)
{
cl_int status;
*cl_buf = clCreateBuffer(opencl_ctx.context, flags, cl_buf_size, host_ptr, &status);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR, "Could not create OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}
void av_opencl_buffer_release(cl_mem *cl_buf)
{
cl_int status = 0;
if (!cl_buf)
return;
status = clReleaseMemObject(*cl_buf);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not release OpenCL buffer: %s\n", av_opencl_errstr(status));
}
memset(cl_buf, 0, sizeof(*cl_buf));
}
int av_opencl_buffer_write(cl_mem dst_cl_buf, uint8_t *src_buf, size_t buf_size)
{
cl_int status;
void *mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, dst_cl_buf,
CL_TRUE, CL_MAP_WRITE, 0, sizeof(uint8_t) * buf_size,
0, NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not map OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
memcpy(mapped, src_buf, buf_size);
status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, dst_cl_buf, mapped, 0, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}
int av_opencl_buffer_read(uint8_t *dst_buf, cl_mem src_cl_buf, size_t buf_size)
{
cl_int status;
void *mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, src_cl_buf,
CL_TRUE, CL_MAP_READ, 0, buf_size,
0, NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not map OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
memcpy(dst_buf, mapped, buf_size);
status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, src_cl_buf, mapped, 0, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}
int av_opencl_buffer_write_image(cl_mem dst_cl_buf, size_t cl_buffer_size, int dst_cl_offset,
uint8_t **src_data, int *plane_size, int plane_num)
{
int i, buffer_size = 0;
uint8_t *temp;
cl_int status;
void *mapped;
if ((unsigned int)plane_num > 8) {
return AVERROR(EINVAL);
}
for (i = 0;i < plane_num;i++) {
buffer_size += plane_size[i];
}
if (buffer_size > cl_buffer_size) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Cannot write image to OpenCL buffer: buffer too small\n");
return AVERROR(EINVAL);
}
mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, dst_cl_buf,
CL_TRUE, CL_MAP_WRITE, 0, buffer_size + dst_cl_offset,
0, NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not map OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
temp = mapped;
temp += dst_cl_offset;
for (i = 0; i < plane_num; i++) {
memcpy(temp, src_data[i], plane_size[i]);
temp += plane_size[i];
}
status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, dst_cl_buf, mapped, 0, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}
int av_opencl_buffer_read_image(uint8_t **dst_data, int *plane_size, int plane_num,
cl_mem src_cl_buf, size_t cl_buffer_size)
{
int i,buffer_size = 0,ret = 0;
uint8_t *temp;
void *mapped;
cl_int status;
if ((unsigned int)plane_num > 8) {
return AVERROR(EINVAL);
}
for (i = 0; i < plane_num; i++) {
buffer_size += plane_size[i];
}
if (buffer_size > cl_buffer_size) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Cannot write image to CPU buffer: OpenCL buffer too small\n");
return AVERROR(EINVAL);
}
mapped = clEnqueueMapBuffer(opencl_ctx.command_queue, src_cl_buf,
CL_TRUE, CL_MAP_READ, 0, buffer_size,
0, NULL, NULL, &status);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not map OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
temp = mapped;
if (ret >= 0) {
for (i = 0; i < plane_num; i++) {
memcpy(dst_data[i], temp, plane_size[i]);
temp += plane_size[i];
}
}
status = clEnqueueUnmapMemObject(opencl_ctx.command_queue, src_cl_buf, mapped, 0, NULL, NULL);
if (status != CL_SUCCESS) {
av_log(&opencl_ctx, AV_LOG_ERROR,
"Could not unmap OpenCL buffer: %s\n", av_opencl_errstr(status));
return AVERROR_EXTERNAL;
}
return 0;
}