1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/cfhd.c
Anton Khirnov 1f4cf92cfb pthread_frame: merge the functionality for normal decoder init and init_thread_copy
The current design, where
- proper init is called for the first per-thread context
- first thread's private data is copied into private data for all the
  other threads
- a "fixup" function is called for all the other threads to e.g.
  allocate dynamically allocated data
is very fragile and hard to follow, so it is abandoned. Instead, the
same init function is used to init each per-thread context. Where
necessary, AVCodecInternal.is_copy can be used to differentiate between
the first thread and the other ones (e.g. for decoding the extradata
just once).
2020-04-10 15:24:54 +02:00

1060 lines
40 KiB
C

/*
* Copyright (c) 2015-2016 Kieran Kunhya <kieran@kunhya.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Cineform HD video decoder
*/
#include "libavutil/attributes.h"
#include "libavutil/buffer.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#include "thread.h"
#include "cfhd.h"
#define ALPHA_COMPAND_DC_OFFSET 256
#define ALPHA_COMPAND_GAIN 9400
enum CFHDParam {
ChannelCount = 12,
SubbandCount = 14,
ImageWidth = 20,
ImageHeight = 21,
LowpassPrecision = 35,
SubbandNumber = 48,
Quantization = 53,
ChannelNumber = 62,
SampleFlags = 68,
BitsPerComponent = 101,
ChannelWidth = 104,
ChannelHeight = 105,
PrescaleShift = 109,
};
static av_cold int cfhd_init(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
avctx->bits_per_raw_sample = 10;
s->avctx = avctx;
return ff_cfhd_init_vlcs(s);
}
static void init_plane_defaults(CFHDContext *s)
{
s->subband_num = 0;
s->level = 0;
s->subband_num_actual = 0;
}
static void init_peak_table_defaults(CFHDContext *s)
{
s->peak.level = 0;
s->peak.offset = 0;
memset(&s->peak.base, 0, sizeof(s->peak.base));
}
static void init_frame_defaults(CFHDContext *s)
{
s->coded_width = 0;
s->coded_height = 0;
s->cropped_height = 0;
s->bpc = 10;
s->channel_cnt = 4;
s->subband_cnt = SUBBAND_COUNT;
s->channel_num = 0;
s->lowpass_precision = 16;
s->quantisation = 1;
s->wavelet_depth = 3;
s->pshift = 1;
s->codebook = 0;
s->difference_coding = 0;
s->progressive = 0;
init_plane_defaults(s);
init_peak_table_defaults(s);
}
/* TODO: merge with VLC tables or use LUT */
static inline int dequant_and_decompand(int level, int quantisation, int codebook)
{
if (codebook == 0 || codebook == 1) {
int64_t abslevel = abs(level);
if (level < 264)
return (abslevel + ((768 * abslevel * abslevel * abslevel) / (255 * 255 * 255))) *
FFSIGN(level) * quantisation;
else
return level * quantisation;
} else
return level * quantisation;
}
static inline void difference_coding(int16_t *band, int width, int height)
{
int i,j;
for (i = 0; i < height; i++) {
for (j = 1; j < width; j++) {
band[j] += band[j-1];
}
band += width;
}
}
static inline void peak_table(int16_t *band, Peak *peak, int length)
{
int i;
for (i = 0; i < length; i++)
if (abs(band[i]) > peak->level)
band[i] = bytestream2_get_le16(&peak->base);
}
static inline void process_alpha(int16_t *alpha, int width)
{
int i, channel;
for (i = 0; i < width; i++) {
channel = alpha[i];
channel -= ALPHA_COMPAND_DC_OFFSET;
channel <<= 3;
channel *= ALPHA_COMPAND_GAIN;
channel >>= 16;
channel = av_clip_uintp2(channel, 12);
alpha[i] = channel;
}
}
static inline void process_bayer(AVFrame *frame)
{
const int linesize = frame->linesize[0];
uint16_t *r = (uint16_t *)frame->data[0];
uint16_t *g1 = (uint16_t *)(frame->data[0] + 2);
uint16_t *g2 = (uint16_t *)(frame->data[0] + frame->linesize[0]);
uint16_t *b = (uint16_t *)(frame->data[0] + frame->linesize[0] + 2);
const int mid = 2048;
for (int y = 0; y < frame->height >> 1; y++) {
for (int x = 0; x < frame->width; x += 2) {
int R, G1, G2, B;
int g, rg, bg, gd;
g = r[x];
rg = g1[x];
bg = g2[x];
gd = b[x];
gd -= mid;
R = (rg - mid) * 2 + g;
G1 = g + gd;
G2 = g - gd;
B = (bg - mid) * 2 + g;
R = av_clip_uintp2(R * 16, 16);
G1 = av_clip_uintp2(G1 * 16, 16);
G2 = av_clip_uintp2(G2 * 16, 16);
B = av_clip_uintp2(B * 16, 16);
r[x] = R;
g1[x] = G1;
g2[x] = G2;
b[x] = B;
}
r += linesize;
g1 += linesize;
g2 += linesize;
b += linesize;
}
}
static inline void filter(int16_t *output, ptrdiff_t out_stride,
int16_t *low, ptrdiff_t low_stride,
int16_t *high, ptrdiff_t high_stride,
int len, int clip)
{
int16_t tmp;
int i;
for (i = 0; i < len; i++) {
if (i == 0) {
tmp = (11*low[0*low_stride] - 4*low[1*low_stride] + low[2*low_stride] + 4) >> 3;
output[(2*i+0)*out_stride] = (tmp + high[0*high_stride]) >> 1;
if (clip)
output[(2*i+0)*out_stride] = av_clip_uintp2_c(output[(2*i+0)*out_stride], clip);
tmp = ( 5*low[0*low_stride] + 4*low[1*low_stride] - low[2*low_stride] + 4) >> 3;
output[(2*i+1)*out_stride] = (tmp - high[0*high_stride]) >> 1;
if (clip)
output[(2*i+1)*out_stride] = av_clip_uintp2_c(output[(2*i+1)*out_stride], clip);
} else if (i == len-1) {
tmp = ( 5*low[i*low_stride] + 4*low[(i-1)*low_stride] - low[(i-2)*low_stride] + 4) >> 3;
output[(2*i+0)*out_stride] = (tmp + high[i*high_stride]) >> 1;
if (clip)
output[(2*i+0)*out_stride] = av_clip_uintp2_c(output[(2*i+0)*out_stride], clip);
tmp = (11*low[i*low_stride] - 4*low[(i-1)*low_stride] + low[(i-2)*low_stride] + 4) >> 3;
output[(2*i+1)*out_stride] = (tmp - high[i*high_stride]) >> 1;
if (clip)
output[(2*i+1)*out_stride] = av_clip_uintp2_c(output[(2*i+1)*out_stride], clip);
} else {
tmp = (low[(i-1)*low_stride] - low[(i+1)*low_stride] + 4) >> 3;
output[(2*i+0)*out_stride] = (tmp + low[i*low_stride] + high[i*high_stride]) >> 1;
if (clip)
output[(2*i+0)*out_stride] = av_clip_uintp2_c(output[(2*i+0)*out_stride], clip);
tmp = (low[(i+1)*low_stride] - low[(i-1)*low_stride] + 4) >> 3;
output[(2*i+1)*out_stride] = (tmp + low[i*low_stride] - high[i*high_stride]) >> 1;
if (clip)
output[(2*i+1)*out_stride] = av_clip_uintp2_c(output[(2*i+1)*out_stride], clip);
}
}
}
static inline void interlaced_vertical_filter(int16_t *output, int16_t *low, int16_t *high,
int width, int linesize, int plane)
{
int i;
int16_t even, odd;
for (i = 0; i < width; i++) {
even = (low[i] - high[i])/2;
odd = (low[i] + high[i])/2;
output[i] = av_clip_uintp2(even, 10);
output[i + linesize] = av_clip_uintp2(odd, 10);
}
}
static void horiz_filter(int16_t *output, int16_t *low, int16_t *high,
int width)
{
filter(output, 1, low, 1, high, 1, width, 0);
}
static void horiz_filter_clip(int16_t *output, int16_t *low, int16_t *high,
int width, int clip)
{
filter(output, 1, low, 1, high, 1, width, clip);
}
static void horiz_filter_clip_bayer(int16_t *output, int16_t *low, int16_t *high,
int width, int clip)
{
filter(output, 2, low, 1, high, 1, width, clip);
}
static void vert_filter(int16_t *output, ptrdiff_t out_stride,
int16_t *low, ptrdiff_t low_stride,
int16_t *high, ptrdiff_t high_stride, int len)
{
filter(output, out_stride, low, low_stride, high, high_stride, len, 0);
}
static void free_buffers(CFHDContext *s)
{
int i, j;
for (i = 0; i < FF_ARRAY_ELEMS(s->plane); i++) {
av_freep(&s->plane[i].idwt_buf);
av_freep(&s->plane[i].idwt_tmp);
for (j = 0; j < 9; j++)
s->plane[i].subband[j] = NULL;
for (j = 0; j < 8; j++)
s->plane[i].l_h[j] = NULL;
}
s->a_height = 0;
s->a_width = 0;
}
static int alloc_buffers(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
int i, j, ret, planes;
int chroma_x_shift, chroma_y_shift;
unsigned k;
if (s->coded_format == AV_PIX_FMT_BAYER_RGGB16) {
s->coded_width *= 2;
s->coded_height *= 2;
}
if ((ret = ff_set_dimensions(avctx, s->coded_width, s->coded_height)) < 0)
return ret;
avctx->pix_fmt = s->coded_format;
if ((ret = av_pix_fmt_get_chroma_sub_sample(s->coded_format,
&chroma_x_shift,
&chroma_y_shift)) < 0)
return ret;
planes = av_pix_fmt_count_planes(s->coded_format);
if (s->coded_format == AV_PIX_FMT_BAYER_RGGB16) {
planes = 4;
chroma_x_shift = 1;
chroma_y_shift = 1;
}
for (i = 0; i < planes; i++) {
int w8, h8, w4, h4, w2, h2;
int width = i ? avctx->width >> chroma_x_shift : avctx->width;
int height = i ? avctx->height >> chroma_y_shift : avctx->height;
ptrdiff_t stride = FFALIGN(width / 8, 8) * 8;
if (chroma_y_shift)
height = FFALIGN(height / 8, 2) * 8;
s->plane[i].width = width;
s->plane[i].height = height;
s->plane[i].stride = stride;
w8 = FFALIGN(s->plane[i].width / 8, 8);
h8 = height / 8;
w4 = w8 * 2;
h4 = h8 * 2;
w2 = w4 * 2;
h2 = h4 * 2;
s->plane[i].idwt_buf =
av_mallocz_array(height * stride, sizeof(*s->plane[i].idwt_buf));
s->plane[i].idwt_tmp =
av_malloc_array(height * stride, sizeof(*s->plane[i].idwt_tmp));
if (!s->plane[i].idwt_buf || !s->plane[i].idwt_tmp)
return AVERROR(ENOMEM);
s->plane[i].subband[0] = s->plane[i].idwt_buf;
s->plane[i].subband[1] = s->plane[i].idwt_buf + 2 * w8 * h8;
s->plane[i].subband[2] = s->plane[i].idwt_buf + 1 * w8 * h8;
s->plane[i].subband[3] = s->plane[i].idwt_buf + 3 * w8 * h8;
s->plane[i].subband[4] = s->plane[i].idwt_buf + 2 * w4 * h4;
s->plane[i].subband[5] = s->plane[i].idwt_buf + 1 * w4 * h4;
s->plane[i].subband[6] = s->plane[i].idwt_buf + 3 * w4 * h4;
s->plane[i].subband[7] = s->plane[i].idwt_buf + 2 * w2 * h2;
s->plane[i].subband[8] = s->plane[i].idwt_buf + 1 * w2 * h2;
s->plane[i].subband[9] = s->plane[i].idwt_buf + 3 * w2 * h2;
for (j = 0; j < DWT_LEVELS; j++) {
for (k = 0; k < FF_ARRAY_ELEMS(s->plane[i].band[j]); k++) {
s->plane[i].band[j][k].a_width = w8 << j;
s->plane[i].band[j][k].a_height = h8 << j;
}
}
/* ll2 and ll1 commented out because they are done in-place */
s->plane[i].l_h[0] = s->plane[i].idwt_tmp;
s->plane[i].l_h[1] = s->plane[i].idwt_tmp + 2 * w8 * h8;
// s->plane[i].l_h[2] = ll2;
s->plane[i].l_h[3] = s->plane[i].idwt_tmp;
s->plane[i].l_h[4] = s->plane[i].idwt_tmp + 2 * w4 * h4;
// s->plane[i].l_h[5] = ll1;
s->plane[i].l_h[6] = s->plane[i].idwt_tmp;
s->plane[i].l_h[7] = s->plane[i].idwt_tmp + 2 * w2 * h2;
}
s->a_height = s->coded_height;
s->a_width = s->coded_width;
s->a_format = s->coded_format;
return 0;
}
static int cfhd_decode(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
CFHDContext *s = avctx->priv_data;
GetByteContext gb;
ThreadFrame frame = { .f = data };
AVFrame *pic = data;
int ret = 0, i, j, planes, plane, got_buffer = 0;
int16_t *coeff_data;
s->coded_format = AV_PIX_FMT_YUV422P10;
init_frame_defaults(s);
planes = av_pix_fmt_count_planes(s->coded_format);
bytestream2_init(&gb, avpkt->data, avpkt->size);
while (bytestream2_get_bytes_left(&gb) > 4) {
/* Bit weird but implement the tag parsing as the spec says */
uint16_t tagu = bytestream2_get_be16(&gb);
int16_t tag = (int16_t)tagu;
int8_t tag8 = (int8_t)(tagu >> 8);
uint16_t abstag = abs(tag);
int8_t abs_tag8 = abs(tag8);
uint16_t data = bytestream2_get_be16(&gb);
if (abs_tag8 >= 0x60 && abs_tag8 <= 0x6f) {
av_log(avctx, AV_LOG_DEBUG, "large len %x\n", ((tagu & 0xff) << 16) | data);
} else if (tag == SampleFlags) {
av_log(avctx, AV_LOG_DEBUG, "Progressive?%"PRIu16"\n", data);
s->progressive = data & 0x0001;
} else if (tag == ImageWidth) {
av_log(avctx, AV_LOG_DEBUG, "Width %"PRIu16"\n", data);
s->coded_width = data;
} else if (tag == ImageHeight) {
av_log(avctx, AV_LOG_DEBUG, "Height %"PRIu16"\n", data);
s->coded_height = data;
} else if (tag == 101) {
av_log(avctx, AV_LOG_DEBUG, "Bits per component: %"PRIu16"\n", data);
if (data < 1 || data > 31) {
av_log(avctx, AV_LOG_ERROR, "Bits per component %d is invalid\n", data);
ret = AVERROR(EINVAL);
break;
}
s->bpc = data;
} else if (tag == ChannelCount) {
av_log(avctx, AV_LOG_DEBUG, "Channel Count: %"PRIu16"\n", data);
s->channel_cnt = data;
if (data > 4) {
av_log(avctx, AV_LOG_ERROR, "Channel Count of %"PRIu16" is unsupported\n", data);
ret = AVERROR_PATCHWELCOME;
break;
}
} else if (tag == SubbandCount) {
av_log(avctx, AV_LOG_DEBUG, "Subband Count: %"PRIu16"\n", data);
if (data != SUBBAND_COUNT) {
av_log(avctx, AV_LOG_ERROR, "Subband Count of %"PRIu16" is unsupported\n", data);
ret = AVERROR_PATCHWELCOME;
break;
}
} else if (tag == ChannelNumber) {
s->channel_num = data;
av_log(avctx, AV_LOG_DEBUG, "Channel number %"PRIu16"\n", data);
if (s->channel_num >= planes) {
av_log(avctx, AV_LOG_ERROR, "Invalid channel number\n");
ret = AVERROR(EINVAL);
break;
}
init_plane_defaults(s);
} else if (tag == SubbandNumber) {
if (s->subband_num != 0 && data == 1) // hack
s->level++;
av_log(avctx, AV_LOG_DEBUG, "Subband number %"PRIu16"\n", data);
s->subband_num = data;
if (s->level >= DWT_LEVELS) {
av_log(avctx, AV_LOG_ERROR, "Invalid level\n");
ret = AVERROR(EINVAL);
break;
}
if (s->subband_num > 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid subband number\n");
ret = AVERROR(EINVAL);
break;
}
} else if (tag == 51) {
av_log(avctx, AV_LOG_DEBUG, "Subband number actual %"PRIu16"\n", data);
s->subband_num_actual = data;
if (s->subband_num_actual >= 10) {
av_log(avctx, AV_LOG_ERROR, "Invalid subband number actual\n");
ret = AVERROR(EINVAL);
break;
}
} else if (tag == LowpassPrecision)
av_log(avctx, AV_LOG_DEBUG, "Lowpass precision bits: %"PRIu16"\n", data);
else if (tag == Quantization) {
s->quantisation = data;
av_log(avctx, AV_LOG_DEBUG, "Quantisation: %"PRIu16"\n", data);
} else if (tag == PrescaleShift) {
s->prescale_shift[0] = (data >> 0) & 0x7;
s->prescale_shift[1] = (data >> 3) & 0x7;
s->prescale_shift[2] = (data >> 6) & 0x7;
av_log(avctx, AV_LOG_DEBUG, "Prescale shift (VC-5): %x\n", data);
} else if (tag == 27) {
av_log(avctx, AV_LOG_DEBUG, "Lowpass width %"PRIu16"\n", data);
if (data < 3 || data > s->plane[s->channel_num].band[0][0].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid lowpass width\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[0][0].width = data;
s->plane[s->channel_num].band[0][0].stride = data;
} else if (tag == 28) {
av_log(avctx, AV_LOG_DEBUG, "Lowpass height %"PRIu16"\n", data);
if (data < 3 || data > s->plane[s->channel_num].band[0][0].a_height) {
av_log(avctx, AV_LOG_ERROR, "Invalid lowpass height\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[0][0].height = data;
} else if (tag == 1)
av_log(avctx, AV_LOG_DEBUG, "Sample type? %"PRIu16"\n", data);
else if (tag == 10) {
if (data != 0) {
avpriv_report_missing_feature(avctx, "Transform type of %"PRIu16, data);
ret = AVERROR_PATCHWELCOME;
break;
}
av_log(avctx, AV_LOG_DEBUG, "Transform-type? %"PRIu16"\n", data);
} else if (abstag >= 0x4000 && abstag <= 0x40ff) {
if (abstag == 0x4001)
s->peak.level = 0;
av_log(avctx, AV_LOG_DEBUG, "Small chunk length %d %s\n", data * 4, tag < 0 ? "optional" : "required");
bytestream2_skipu(&gb, data * 4);
} else if (tag == 23) {
av_log(avctx, AV_LOG_DEBUG, "Skip frame\n");
avpriv_report_missing_feature(avctx, "Skip frame");
ret = AVERROR_PATCHWELCOME;
break;
} else if (tag == 2) {
av_log(avctx, AV_LOG_DEBUG, "tag=2 header - skipping %i tag/value pairs\n", data);
if (data > bytestream2_get_bytes_left(&gb) / 4) {
av_log(avctx, AV_LOG_ERROR, "too many tag/value pairs (%d)\n", data);
ret = AVERROR_INVALIDDATA;
break;
}
for (i = 0; i < data; i++) {
uint16_t tag2 = bytestream2_get_be16(&gb);
uint16_t val2 = bytestream2_get_be16(&gb);
av_log(avctx, AV_LOG_DEBUG, "Tag/Value = %x %x\n", tag2, val2);
}
} else if (tag == 41) {
av_log(avctx, AV_LOG_DEBUG, "Highpass width %i channel %i level %i subband %i\n", data, s->channel_num, s->level, s->subband_num);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass width\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].width = data;
s->plane[s->channel_num].band[s->level][s->subband_num].stride = FFALIGN(data, 8);
} else if (tag == 42) {
av_log(avctx, AV_LOG_DEBUG, "Highpass height %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass height\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].height = data;
} else if (tag == 49) {
av_log(avctx, AV_LOG_DEBUG, "Highpass width2 %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass width2\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].width = data;
s->plane[s->channel_num].band[s->level][s->subband_num].stride = FFALIGN(data, 8);
} else if (tag == 50) {
av_log(avctx, AV_LOG_DEBUG, "Highpass height2 %i\n", data);
if (data < 3) {
av_log(avctx, AV_LOG_ERROR, "Invalid highpass height2\n");
ret = AVERROR(EINVAL);
break;
}
s->plane[s->channel_num].band[s->level][s->subband_num].height = data;
} else if (tag == 71) {
s->codebook = data;
av_log(avctx, AV_LOG_DEBUG, "Codebook %i\n", s->codebook);
} else if (tag == 72) {
s->codebook = data & 0xf;
s->difference_coding = (data >> 4) & 1;
av_log(avctx, AV_LOG_DEBUG, "Other codebook? %i\n", s->codebook);
} else if (tag == 70) {
av_log(avctx, AV_LOG_DEBUG, "Subsampling or bit-depth flag? %i\n", data);
if (!(data == 10 || data == 12)) {
av_log(avctx, AV_LOG_ERROR, "Invalid bits per channel\n");
ret = AVERROR(EINVAL);
break;
}
s->bpc = data;
} else if (tag == 84) {
av_log(avctx, AV_LOG_DEBUG, "Sample format? %i\n", data);
if (data == 1) {
s->coded_format = AV_PIX_FMT_YUV422P10;
} else if (data == 2) {
s->coded_format = AV_PIX_FMT_BAYER_RGGB16;
} else if (data == 3) {
s->coded_format = AV_PIX_FMT_GBRP12;
} else if (data == 4) {
s->coded_format = AV_PIX_FMT_GBRAP12;
} else {
avpriv_report_missing_feature(avctx, "Sample format of %"PRIu16, data);
ret = AVERROR_PATCHWELCOME;
break;
}
planes = data == 2 ? 4 : av_pix_fmt_count_planes(s->coded_format);
} else if (tag == -85) {
av_log(avctx, AV_LOG_DEBUG, "Cropped height %"PRIu16"\n", data);
s->cropped_height = data;
} else if (tag == -75) {
s->peak.offset &= ~0xffff;
s->peak.offset |= (data & 0xffff);
s->peak.base = gb;
s->peak.level = 0;
} else if (tag == -76) {
s->peak.offset &= 0xffff;
s->peak.offset |= (data & 0xffffU)<<16;
s->peak.base = gb;
s->peak.level = 0;
} else if (tag == -74 && s->peak.offset) {
s->peak.level = data;
bytestream2_seek(&s->peak.base, s->peak.offset - 4, SEEK_CUR);
} else
av_log(avctx, AV_LOG_DEBUG, "Unknown tag %i data %x\n", tag, data);
/* Some kind of end of header tag */
if (tag == 4 && data == 0x1a4a && s->coded_width && s->coded_height &&
s->coded_format != AV_PIX_FMT_NONE) {
if (s->a_width != s->coded_width || s->a_height != s->coded_height ||
s->a_format != s->coded_format) {
free_buffers(s);
if ((ret = alloc_buffers(avctx)) < 0) {
free_buffers(s);
return ret;
}
}
ret = ff_set_dimensions(avctx, s->coded_width, s->coded_height);
if (ret < 0)
return ret;
if (s->cropped_height) {
unsigned height = s->cropped_height << (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16);
if (avctx->height < height)
return AVERROR_INVALIDDATA;
avctx->height = height;
}
frame.f->width =
frame.f->height = 0;
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
s->coded_width = 0;
s->coded_height = 0;
s->coded_format = AV_PIX_FMT_NONE;
got_buffer = 1;
}
coeff_data = s->plane[s->channel_num].subband[s->subband_num_actual];
/* Lowpass coefficients */
if (tag == 4 && data == 0xf0f && s->a_width && s->a_height) {
int lowpass_height = s->plane[s->channel_num].band[0][0].height;
int lowpass_width = s->plane[s->channel_num].band[0][0].width;
int lowpass_a_height = s->plane[s->channel_num].band[0][0].a_height;
int lowpass_a_width = s->plane[s->channel_num].band[0][0].a_width;
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
if (lowpass_height > lowpass_a_height || lowpass_width > lowpass_a_width ||
lowpass_a_width * lowpass_a_height * sizeof(int16_t) > bytestream2_get_bytes_left(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Too many lowpass coefficients\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Start of lowpass coeffs component %d height:%d, width:%d\n", s->channel_num, lowpass_height, lowpass_width);
for (i = 0; i < lowpass_height; i++) {
for (j = 0; j < lowpass_width; j++)
coeff_data[j] = bytestream2_get_be16u(&gb);
coeff_data += lowpass_width;
}
/* Align to mod-4 position to continue reading tags */
bytestream2_seek(&gb, bytestream2_tell(&gb) & 3, SEEK_CUR);
/* Copy last line of coefficients if odd height */
if (lowpass_height & 1) {
memcpy(&coeff_data[lowpass_height * lowpass_width],
&coeff_data[(lowpass_height - 1) * lowpass_width],
lowpass_width * sizeof(*coeff_data));
}
av_log(avctx, AV_LOG_DEBUG, "Lowpass coefficients %d\n", lowpass_width * lowpass_height);
}
if (tag == 55 && s->subband_num_actual != 255 && s->a_width && s->a_height) {
int highpass_height = s->plane[s->channel_num].band[s->level][s->subband_num].height;
int highpass_width = s->plane[s->channel_num].band[s->level][s->subband_num].width;
int highpass_a_width = s->plane[s->channel_num].band[s->level][s->subband_num].a_width;
int highpass_a_height = s->plane[s->channel_num].band[s->level][s->subband_num].a_height;
int highpass_stride = s->plane[s->channel_num].band[s->level][s->subband_num].stride;
int expected;
int a_expected = highpass_a_height * highpass_a_width;
int level, run, coeff;
int count = 0, bytes;
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
if (highpass_height > highpass_a_height || highpass_width > highpass_a_width || a_expected < highpass_height * (uint64_t)highpass_stride) {
av_log(avctx, AV_LOG_ERROR, "Too many highpass coefficients\n");
ret = AVERROR(EINVAL);
goto end;
}
expected = highpass_height * highpass_stride;
av_log(avctx, AV_LOG_DEBUG, "Start subband coeffs plane %i level %i codebook %i expected %i\n", s->channel_num, s->level, s->codebook, expected);
init_get_bits(&s->gb, gb.buffer, bytestream2_get_bytes_left(&gb) * 8);
{
OPEN_READER(re, &s->gb);
if (!s->codebook) {
while (1) {
UPDATE_CACHE(re, &s->gb);
GET_RL_VLC(level, run, re, &s->gb, s->table_9_rl_vlc,
VLC_BITS, 3, 1);
/* escape */
if (level == 64)
break;
count += run;
if (count > expected)
break;
coeff = dequant_and_decompand(level, s->quantisation, 0);
for (i = 0; i < run; i++)
*coeff_data++ = coeff;
}
} else {
while (1) {
UPDATE_CACHE(re, &s->gb);
GET_RL_VLC(level, run, re, &s->gb, s->table_18_rl_vlc,
VLC_BITS, 3, 1);
/* escape */
if (level == 255 && run == 2)
break;
count += run;
if (count > expected)
break;
coeff = dequant_and_decompand(level, s->quantisation, s->codebook);
for (i = 0; i < run; i++)
*coeff_data++ = coeff;
}
}
CLOSE_READER(re, &s->gb);
}
if (count > expected) {
av_log(avctx, AV_LOG_ERROR, "Escape codeword not found, probably corrupt data\n");
ret = AVERROR(EINVAL);
goto end;
}
if (s->peak.level)
peak_table(coeff_data - count, &s->peak, count);
if (s->difference_coding)
difference_coding(s->plane[s->channel_num].subband[s->subband_num_actual], highpass_width, highpass_height);
bytes = FFALIGN(AV_CEIL_RSHIFT(get_bits_count(&s->gb), 3), 4);
if (bytes > bytestream2_get_bytes_left(&gb)) {
av_log(avctx, AV_LOG_ERROR, "Bitstream overread error\n");
ret = AVERROR(EINVAL);
goto end;
} else
bytestream2_seek(&gb, bytes, SEEK_CUR);
av_log(avctx, AV_LOG_DEBUG, "End subband coeffs %i extra %i\n", count, count - expected);
s->codebook = 0;
/* Copy last line of coefficients if odd height */
if (highpass_height & 1) {
memcpy(&coeff_data[highpass_height * highpass_stride],
&coeff_data[(highpass_height - 1) * highpass_stride],
highpass_stride * sizeof(*coeff_data));
}
}
}
if (!s->a_width || !s->a_height || s->a_format == AV_PIX_FMT_NONE ||
s->coded_width || s->coded_height || s->coded_format != AV_PIX_FMT_NONE) {
av_log(avctx, AV_LOG_ERROR, "Invalid dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
if (!got_buffer) {
av_log(avctx, AV_LOG_ERROR, "No end of header tag found\n");
ret = AVERROR(EINVAL);
goto end;
}
planes = av_pix_fmt_count_planes(avctx->pix_fmt);
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
if (!s->progressive)
return AVERROR_INVALIDDATA;
planes = 4;
}
for (plane = 0; plane < planes && !ret; plane++) {
/* level 1 */
int lowpass_height = s->plane[plane].band[0][0].height;
int lowpass_width = s->plane[plane].band[0][0].width;
int highpass_stride = s->plane[plane].band[0][1].stride;
int act_plane = plane == 1 ? 2 : plane == 2 ? 1 : plane;
ptrdiff_t dst_linesize;
int16_t *low, *high, *output, *dst;
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
act_plane = 0;
dst_linesize = pic->linesize[act_plane];
} else {
dst_linesize = pic->linesize[act_plane] / 2;
}
if (lowpass_height > s->plane[plane].band[0][0].a_height || lowpass_width > s->plane[plane].band[0][0].a_width ||
!highpass_stride || s->plane[plane].band[0][1].width > s->plane[plane].band[0][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Decoding level 1 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[2];
output = s->plane[plane].l_h[0];
for (i = 0; i < lowpass_width; i++) {
vert_filter(output, lowpass_width, low, lowpass_width, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
low = s->plane[plane].subband[1];
high = s->plane[plane].subband[3];
output = s->plane[plane].l_h[1];
for (i = 0; i < lowpass_width; i++) {
// note the stride of "low" is highpass_stride
vert_filter(output, lowpass_width, low, highpass_stride, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
low = s->plane[plane].l_h[0];
high = s->plane[plane].l_h[1];
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
horiz_filter(output, low, high, lowpass_width);
low += lowpass_width;
high += lowpass_width;
output += lowpass_width * 2;
}
if (s->bpc == 12) {
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += lowpass_width * 2;
}
}
/* level 2 */
lowpass_height = s->plane[plane].band[1][1].height;
lowpass_width = s->plane[plane].band[1][1].width;
highpass_stride = s->plane[plane].band[1][1].stride;
if (lowpass_height > s->plane[plane].band[1][1].a_height || lowpass_width > s->plane[plane].band[1][1].a_width ||
!highpass_stride || s->plane[plane].band[1][1].width > s->plane[plane].band[1][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Level 2 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[5];
output = s->plane[plane].l_h[3];
for (i = 0; i < lowpass_width; i++) {
vert_filter(output, lowpass_width, low, lowpass_width, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
low = s->plane[plane].subband[4];
high = s->plane[plane].subband[6];
output = s->plane[plane].l_h[4];
for (i = 0; i < lowpass_width; i++) {
vert_filter(output, lowpass_width, low, highpass_stride, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
low = s->plane[plane].l_h[3];
high = s->plane[plane].l_h[4];
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
horiz_filter(output, low, high, lowpass_width);
low += lowpass_width;
high += lowpass_width;
output += lowpass_width * 2;
}
output = s->plane[plane].subband[0];
for (i = 0; i < lowpass_height * 2; i++) {
for (j = 0; j < lowpass_width * 2; j++)
output[j] *= 4;
output += lowpass_width * 2;
}
/* level 3 */
lowpass_height = s->plane[plane].band[2][1].height;
lowpass_width = s->plane[plane].band[2][1].width;
highpass_stride = s->plane[plane].band[2][1].stride;
if (lowpass_height > s->plane[plane].band[2][1].a_height || lowpass_width > s->plane[plane].band[2][1].a_width ||
!highpass_stride || s->plane[plane].band[2][1].width > s->plane[plane].band[2][1].a_width) {
av_log(avctx, AV_LOG_ERROR, "Invalid plane dimensions\n");
ret = AVERROR(EINVAL);
goto end;
}
av_log(avctx, AV_LOG_DEBUG, "Level 3 plane %i %i %i %i\n", plane, lowpass_height, lowpass_width, highpass_stride);
if (s->progressive) {
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[8];
output = s->plane[plane].l_h[6];
for (i = 0; i < lowpass_width; i++) {
vert_filter(output, lowpass_width, low, lowpass_width, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
low = s->plane[plane].subband[7];
high = s->plane[plane].subband[9];
output = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_width; i++) {
vert_filter(output, lowpass_width, low, highpass_stride, high, highpass_stride, lowpass_height);
low++;
high++;
output++;
}
dst = (int16_t *)pic->data[act_plane];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16) {
if (plane & 1)
dst++;
if (plane > 1)
dst += pic->linesize[act_plane] >> 1;
}
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16 &&
(lowpass_height * 2 > avctx->coded_height / 2 ||
lowpass_width * 2 > avctx->coded_width / 2 )
) {
ret = AVERROR_INVALIDDATA;
goto end;
}
for (i = 0; i < lowpass_height * 2; i++) {
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16)
horiz_filter_clip_bayer(dst, low, high, lowpass_width, s->bpc);
else
horiz_filter_clip(dst, low, high, lowpass_width, s->bpc);
if (avctx->pix_fmt == AV_PIX_FMT_GBRAP12 && act_plane == 3)
process_alpha(dst, lowpass_width * 2);
low += lowpass_width;
high += lowpass_width;
dst += dst_linesize;
}
} else {
av_log(avctx, AV_LOG_DEBUG, "interlaced frame ? %d", pic->interlaced_frame);
pic->interlaced_frame = 1;
low = s->plane[plane].subband[0];
high = s->plane[plane].subband[7];
output = s->plane[plane].l_h[6];
for (i = 0; i < lowpass_height; i++) {
horiz_filter(output, low, high, lowpass_width);
low += lowpass_width;
high += lowpass_width;
output += lowpass_width * 2;
}
low = s->plane[plane].subband[8];
high = s->plane[plane].subband[9];
output = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height; i++) {
horiz_filter(output, low, high, lowpass_width);
low += lowpass_width;
high += lowpass_width;
output += lowpass_width * 2;
}
dst = (int16_t *)pic->data[act_plane];
low = s->plane[plane].l_h[6];
high = s->plane[plane].l_h[7];
for (i = 0; i < lowpass_height; i++) {
interlaced_vertical_filter(dst, low, high, lowpass_width * 2, pic->linesize[act_plane]/2, act_plane);
low += lowpass_width * 2;
high += lowpass_width * 2;
dst += pic->linesize[act_plane];
}
}
}
if (avctx->pix_fmt == AV_PIX_FMT_BAYER_RGGB16)
process_bayer(pic);
end:
if (ret < 0)
return ret;
*got_frame = 1;
return avpkt->size;
}
static av_cold int cfhd_close(AVCodecContext *avctx)
{
CFHDContext *s = avctx->priv_data;
free_buffers(s);
ff_free_vlc(&s->vlc_9);
ff_free_vlc(&s->vlc_18);
return 0;
}
AVCodec ff_cfhd_decoder = {
.name = "cfhd",
.long_name = NULL_IF_CONFIG_SMALL("Cineform HD"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_CFHD,
.priv_data_size = sizeof(CFHDContext),
.init = cfhd_init,
.close = cfhd_close,
.decode = cfhd_decode,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};