1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-02 03:06:28 +02:00
FFmpeg/tests/checkasm/sw_scale.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

373 lines
14 KiB
C

/*
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <string.h>
#include "libavutil/common.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#include "libswscale/swscale.h"
#include "libswscale/swscale_internal.h"
#include "checkasm.h"
#define randomize_buffers(buf, size) \
do { \
int j; \
for (j = 0; j < size; j+=4) \
AV_WN32(buf + j, rnd()); \
} while (0)
static void yuv2planeX_8_ref(const int16_t *filter, int filterSize,
const int16_t **src, uint8_t *dest, int dstW,
const uint8_t *dither, int offset)
{
// This corresponds to the yuv2planeX_8_c function
int i;
for (i = 0; i < dstW; i++) {
int val = dither[(i + offset) & 7] << 12;
int j;
for (j = 0; j < filterSize; j++)
val += src[j][i] * filter[j];
dest[i]= av_clip_uint8(val >> 19);
}
}
static int cmp_off_by_n(const uint8_t *ref, const uint8_t *test, size_t n, int accuracy)
{
for (size_t i = 0; i < n; i++) {
if (abs(ref[i] - test[i]) > accuracy)
return 1;
}
return 0;
}
static void print_data(uint8_t *p, size_t len, size_t offset)
{
size_t i = 0;
for (; i < len; i++) {
if (i % 8 == 0) {
printf("0x%04zx: ", i+offset);
}
printf("0x%02x ", (uint32_t) p[i]);
if (i % 8 == 7) {
printf("\n");
}
}
if (i % 8 != 0) {
printf("\n");
}
}
static size_t show_differences(uint8_t *a, uint8_t *b, size_t len)
{
for (size_t i = 0; i < len; i++) {
if (a[i] != b[i]) {
size_t offset_of_mismatch = i;
size_t offset;
if (i >= 8) i-=8;
offset = i & (~7);
printf("test a:\n");
print_data(&a[offset], 32, offset);
printf("\ntest b:\n");
print_data(&b[offset], 32, offset);
printf("\n");
return offset_of_mismatch;
}
}
return len;
}
static void check_yuv2yuv1(int accurate)
{
struct SwsContext *ctx;
int osi, isi;
int dstW, offset;
size_t fail_offset;
const int input_sizes[] = {8, 24, 128, 144, 256, 512};
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
#define LARGEST_INPUT_SIZE 512
const int offsets[] = {0, 3, 8, 11, 16, 19};
const int OFFSET_SIZES = sizeof(offsets)/sizeof(offsets[0]);
const char *accurate_str = (accurate) ? "accurate" : "approximate";
declare_func(void,
const int16_t *src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_8(uint8_t, dither, [8]);
randomize_buffers((uint8_t*)dither, 8);
randomize_buffers((uint8_t*)src_pixels, LARGEST_INPUT_SIZE * sizeof(int16_t));
ctx = sws_alloc_context();
if (accurate)
ctx->flags |= SWS_ACCURATE_RND;
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for (isi = 0; isi < INPUT_SIZES; ++isi) {
dstW = input_sizes[isi];
for (osi = 0; osi < OFFSET_SIZES; osi++) {
offset = offsets[osi];
if (check_func(ctx->yuv2plane1, "yuv2yuv1_%d_%d_%s", offset, dstW, accurate_str)){
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
call_ref(src_pixels, dst0, dstW, dither, offset);
call_new(src_pixels, dst1, dstW, dither, offset);
if (cmp_off_by_n(dst0, dst1, dstW * sizeof(dst0[0]), accurate ? 0 : 2)) {
fail();
printf("failed: yuv2yuv1_%d_%di_%s\n", offset, dstW, accurate_str);
fail_offset = show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
printf("failing values: src: 0x%04x dither: 0x%02x dst-c: %02x dst-asm: %02x\n",
(int) src_pixels[fail_offset],
(int) dither[(fail_offset + fail_offset) & 7],
(int) dst0[fail_offset],
(int) dst1[fail_offset]);
}
if(dstW == LARGEST_INPUT_SIZE)
bench_new(src_pixels, dst1, dstW, dither, offset);
}
}
}
sws_freeContext(ctx);
}
static void check_yuv2yuvX(int accurate)
{
struct SwsContext *ctx;
int fsi, osi, isi, i, j;
int dstW;
#define LARGEST_FILTER 16
// ff_yuv2planeX_8_sse2 can't handle odd filter sizes
const int filter_sizes[] = {2, 4, 8, 16};
const int FILTER_SIZES = sizeof(filter_sizes)/sizeof(filter_sizes[0]);
#define LARGEST_INPUT_SIZE 512
static const int input_sizes[] = {8, 24, 128, 144, 256, 512};
const int INPUT_SIZES = sizeof(input_sizes)/sizeof(input_sizes[0]);
const char *accurate_str = (accurate) ? "accurate" : "approximate";
declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter,
int filterSize, const int16_t **src, uint8_t *dest,
int dstW, const uint8_t *dither, int offset);
const int16_t **src;
LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]);
LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]);
LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]);
union VFilterData{
const int16_t *src;
uint16_t coeff[8];
} *vFilterData;
uint8_t d_val = rnd();
memset(dither, d_val, LARGEST_INPUT_SIZE);
randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t));
ctx = sws_alloc_context();
if (accurate)
ctx->flags |= SWS_ACCURATE_RND;
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
ff_sws_init_scale(ctx);
for(isi = 0; isi < INPUT_SIZES; ++isi){
dstW = input_sizes[isi];
for(osi = 0; osi < 64; osi += 16){
if (dstW <= osi)
continue;
for (fsi = 0; fsi < FILTER_SIZES; ++fsi) {
// Generate filter coefficients for the given filter size,
// with some properties:
// - The coefficients add up to the intended sum (4096, 1<<12)
// - The coefficients contain negative values
// - The filter intermediates don't overflow for worst case
// inputs (all positive coefficients are coupled with
// input_max and all negative coefficients with input_min,
// or vice versa).
// Produce a filter with all coefficients set to
// -((1<<12)/(filter_size-1)) except for one (randomly chosen)
// which is set to ((1<<13)-1).
for (i = 0; i < filter_sizes[fsi]; ++i)
filter_coeff[i] = -((1 << 12) / (filter_sizes[fsi] - 1));
filter_coeff[rnd() % filter_sizes[fsi]] = (1 << 13) - 1;
src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]);
vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData));
memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData));
for (i = 0; i < filter_sizes[fsi]; ++i) {
src[i] = &src_pixels[i * LARGEST_INPUT_SIZE];
vFilterData[i].src = src[i] - osi;
for(j = 0; j < 4; ++j)
vFilterData[i].coeff[j + 4] = filter_coeff[i];
}
if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d_%s", filter_sizes[fsi], osi, dstW, accurate_str)){
// use vFilterData for the mmx function
const int16_t *filter = ctx->use_mmx_vfilter ? (const int16_t*)vFilterData : &filter_coeff[0];
memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0]));
// We can't use call_ref here, because we don't know if use_mmx_vfilter was set for that
// function or not, so we can't pass it the parameters correctly.
yuv2planeX_8_ref(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi);
call_new(filter, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
if (cmp_off_by_n(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]), accurate ? 0 : 2)) {
fail();
printf("failed: yuv2yuvX_%d_%d_%d_%s\n", filter_sizes[fsi], osi, dstW, accurate_str);
show_differences(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]));
}
if(dstW == LARGEST_INPUT_SIZE)
bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi);
}
av_freep(&src);
av_freep(&vFilterData);
}
}
}
sws_freeContext(ctx);
#undef FILTER_SIZES
}
#undef SRC_PIXELS
#define SRC_PIXELS 512
static void check_hscale(void)
{
#define MAX_FILTER_WIDTH 40
#define FILTER_SIZES 6
static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 };
#define HSCALE_PAIRS 2
static const int hscale_pairs[HSCALE_PAIRS][2] = {
{ 8, 14 },
{ 8, 18 },
};
#define LARGEST_INPUT_SIZE 512
#define INPUT_SIZES 6
static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512};
int i, j, fsi, hpi, width, dstWi;
struct SwsContext *ctx;
// padded
LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]);
LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]);
LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]);
// padded
LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]);
LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]);
LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]);
// The dst parameter here is either int16_t or int32_t but we use void* to
// just cover both cases.
declare_func(void, void *c, void *dst, int dstW,
const uint8_t *src, const int16_t *filter,
const int32_t *filterPos, int filterSize);
ctx = sws_alloc_context();
if (sws_init_context(ctx, NULL, NULL) < 0)
fail();
randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1);
for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) {
for (fsi = 0; fsi < FILTER_SIZES; fsi++) {
for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) {
width = filter_sizes[fsi];
ctx->srcBpc = hscale_pairs[hpi][0];
ctx->dstBpc = hscale_pairs[hpi][1];
ctx->hLumFilterSize = ctx->hChrFilterSize = width;
for (i = 0; i < SRC_PIXELS; i++) {
filterPos[i] = i;
filterPosAvx[i] = i;
// These filter cofficients are chosen to try break two corner
// cases, namely:
//
// - Negative filter coefficients. The filters output signed
// values, and it should be possible to end up with negative
// output values.
//
// - Positive clipping. The hscale filter function has clipping
// at (1<<15) - 1
//
// The coefficients sum to the 1.0 point for the hscale
// functions (1 << 14).
for (j = 0; j < width; j++) {
filter[i * width + j] = -((1 << 14) / (width - 1));
}
filter[i * width + (rnd() % width)] = ((1 << 15) - 1);
}
for (i = 0; i < MAX_FILTER_WIDTH; i++) {
// These values should be unused in SIMD implementations but
// may still be read, random coefficients here should help show
// issues where they are used in error.
filter[SRC_PIXELS * width + i] = rnd();
}
ctx->dstW = ctx->chrDstW = input_sizes[dstWi];
ff_sws_init_scale(ctx);
memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH));
ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, ctx->dstW);
if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) {
memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0]));
memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0]));
call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width);
call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width);
if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0])))
fail();
bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width);
}
}
}
}
sws_freeContext(ctx);
}
void checkasm_check_sw_scale(void)
{
check_hscale();
report("hscale");
check_yuv2yuv1(0);
check_yuv2yuv1(1);
report("yuv2yuv1");
check_yuv2yuvX(0);
check_yuv2yuvX(1);
report("yuv2yuvX");
}