1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-12 19:18:44 +02:00
FFmpeg/libavcodec/iff.c
2017-03-29 14:49:29 +02:00

1884 lines
70 KiB
C

/*
* IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN bitmap decoder
* Copyright (c) 2010 Peter Ross <pross@xvid.org>
* Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com>
* Copyright (c) 2016 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN bitmap decoder
*/
#include <stdint.h>
#include "libavutil/imgutils.h"
#include "bytestream.h"
#include "avcodec.h"
#include "internal.h"
#include "mathops.h"
// TODO: masking bits
typedef enum {
MASK_NONE,
MASK_HAS_MASK,
MASK_HAS_TRANSPARENT_COLOR,
MASK_LASSO
} mask_type;
typedef struct IffContext {
AVFrame *frame;
int planesize;
uint8_t * planebuf;
uint8_t * ham_buf; ///< temporary buffer for planar to chunky conversation
uint32_t *ham_palbuf; ///< HAM decode table
uint32_t *mask_buf; ///< temporary buffer for palette indices
uint32_t *mask_palbuf; ///< masking palette table
unsigned compression; ///< delta compression method used
unsigned is_short; ///< short compression method used
unsigned is_interlaced;///< video is interlaced
unsigned is_brush; ///< video is in ANBR format
unsigned bpp; ///< bits per plane to decode (differs from bits_per_coded_sample if HAM)
unsigned ham; ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise)
unsigned flags; ///< 1 for EHB, 0 is no extra half darkening
unsigned transparency; ///< TODO: transparency color index in palette
unsigned masking; ///< TODO: masking method used
int init; // 1 if buffer and palette data already initialized, 0 otherwise
int16_t tvdc[16]; ///< TVDC lookup table
GetByteContext gb;
uint8_t *video[2];
unsigned video_size;
uint32_t *pal;
} IffContext;
#define LUT8_PART(plane, v) \
AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane
#define LUT8(plane) { \
LUT8_PART(plane, 0x0000000), \
LUT8_PART(plane, 0x1000000), \
LUT8_PART(plane, 0x0010000), \
LUT8_PART(plane, 0x1010000), \
LUT8_PART(plane, 0x0000100), \
LUT8_PART(plane, 0x1000100), \
LUT8_PART(plane, 0x0010100), \
LUT8_PART(plane, 0x1010100), \
LUT8_PART(plane, 0x0000001), \
LUT8_PART(plane, 0x1000001), \
LUT8_PART(plane, 0x0010001), \
LUT8_PART(plane, 0x1010001), \
LUT8_PART(plane, 0x0000101), \
LUT8_PART(plane, 0x1000101), \
LUT8_PART(plane, 0x0010101), \
LUT8_PART(plane, 0x1010101), \
}
// 8 planes * 8-bit mask
static const uint64_t plane8_lut[8][256] = {
LUT8(0), LUT8(1), LUT8(2), LUT8(3),
LUT8(4), LUT8(5), LUT8(6), LUT8(7),
};
#define LUT32(plane) { \
0, 0, 0, 0, \
0, 0, 0, 1 << plane, \
0, 0, 1 << plane, 0, \
0, 0, 1 << plane, 1 << plane, \
0, 1 << plane, 0, 0, \
0, 1 << plane, 0, 1 << plane, \
0, 1 << plane, 1 << plane, 0, \
0, 1 << plane, 1 << plane, 1 << plane, \
1 << plane, 0, 0, 0, \
1 << plane, 0, 0, 1 << plane, \
1 << plane, 0, 1 << plane, 0, \
1 << plane, 0, 1 << plane, 1 << plane, \
1 << plane, 1 << plane, 0, 0, \
1 << plane, 1 << plane, 0, 1 << plane, \
1 << plane, 1 << plane, 1 << plane, 0, \
1 << plane, 1 << plane, 1 << plane, 1 << plane, \
}
// 32 planes * 4-bit mask * 4 lookup tables each
static const uint32_t plane32_lut[32][16*4] = {
LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3),
LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7),
LUT32( 8), LUT32( 9), LUT32(10), LUT32(11),
LUT32(12), LUT32(13), LUT32(14), LUT32(15),
LUT32(16), LUT32(17), LUT32(18), LUT32(19),
LUT32(20), LUT32(21), LUT32(22), LUT32(23),
LUT32(24), LUT32(25), LUT32(26), LUT32(27),
LUT32(28), LUT32(29), LUT32(30), LUT32(31),
};
// Gray to RGB, required for palette table of grayscale images with bpp < 8
static av_always_inline uint32_t gray2rgb(const uint32_t x) {
return x << 16 | x << 8 | x;
}
/**
* Convert CMAP buffer (stored in extradata) to lavc palette format
*/
static int cmap_read_palette(AVCodecContext *avctx, uint32_t *pal)
{
IffContext *s = avctx->priv_data;
int count, i;
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avctx->bits_per_coded_sample > 8) {
av_log(avctx, AV_LOG_ERROR, "bits_per_coded_sample > 8 not supported\n");
return AVERROR_INVALIDDATA;
}
count = 1 << avctx->bits_per_coded_sample;
// If extradata is smaller than actually needed, fill the remaining with black.
count = FFMIN(palette_size / 3, count);
if (count) {
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | AV_RB24(palette + i*3);
if (s->flags && count >= 32) { // EHB
for (i = 0; i < 32; i++)
pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1;
count = FFMAX(count, 64);
}
} else { // Create gray-scale color palette for bps < 8
count = 1 << avctx->bits_per_coded_sample;
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample);
}
if (s->masking == MASK_HAS_MASK) {
memcpy(pal + (1 << avctx->bits_per_coded_sample), pal, count * 4);
for (i = 0; i < count; i++)
pal[i] &= 0xFFFFFF;
} else if (s->masking == MASK_HAS_TRANSPARENT_COLOR &&
s->transparency < 1 << avctx->bits_per_coded_sample)
pal[s->transparency] &= 0xFFFFFF;
return 0;
}
/**
* Extracts the IFF extra context and updates internal
* decoder structures.
*
* @param avctx the AVCodecContext where to extract extra context to
* @param avpkt the AVPacket to extract extra context from or NULL to use avctx
* @return >= 0 in case of success, a negative error code otherwise
*/
static int extract_header(AVCodecContext *const avctx,
const AVPacket *const avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf;
unsigned buf_size = 0;
int i, palette_size;
if (avctx->extradata_size < 2) {
av_log(avctx, AV_LOG_ERROR, "not enough extradata\n");
return AVERROR_INVALIDDATA;
}
palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avpkt && avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
uint32_t chunk_id;
uint64_t data_size;
GetByteContext *gb = &s->gb;
bytestream2_skip(gb, 4);
while (bytestream2_get_bytes_left(gb) >= 1) {
chunk_id = bytestream2_get_le32(gb);
data_size = bytestream2_get_be32(gb);
if (chunk_id == MKTAG('B', 'M', 'H', 'D')) {
bytestream2_skip(gb, data_size + (data_size & 1));
} else if (chunk_id == MKTAG('A', 'N', 'H', 'D')) {
unsigned extra;
if (data_size < 40)
return AVERROR_INVALIDDATA;
s->compression = (bytestream2_get_byte(gb) << 8) | (s->compression & 0xFF);
bytestream2_skip(gb, 19);
extra = bytestream2_get_be32(gb);
s->is_short = !(extra & 1);
s->is_brush = extra == 2;
s->is_interlaced = !!(extra & 0x40);
data_size -= 24;
bytestream2_skip(gb, data_size + (data_size & 1));
} else if (chunk_id == MKTAG('D', 'L', 'T', 'A') ||
chunk_id == MKTAG('B', 'O', 'D', 'Y')) {
if (chunk_id == MKTAG('B','O','D','Y'))
s->compression &= 0xFF;
break;
} else if (chunk_id == MKTAG('C', 'M', 'A', 'P')) {
int count = data_size / 3;
uint32_t *pal = s->pal;
if (count > 256)
return AVERROR_INVALIDDATA;
if (s->ham) {
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | bytestream2_get_le24(gb);
} else {
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | bytestream2_get_be24(gb);
}
bytestream2_skip(gb, data_size & 1);
} else {
bytestream2_skip(gb, data_size + (data_size&1));
}
}
} else if (!avpkt) {
buf = avctx->extradata;
buf_size = bytestream_get_be16(&buf);
if (buf_size <= 1 || palette_size < 0) {
av_log(avctx, AV_LOG_ERROR,
"Invalid palette size received: %u -> palette data offset: %d\n",
buf_size, palette_size);
return AVERROR_INVALIDDATA;
}
}
if (buf_size >= 41) {
s->compression = bytestream_get_byte(&buf);
s->bpp = bytestream_get_byte(&buf);
s->ham = bytestream_get_byte(&buf);
s->flags = bytestream_get_byte(&buf);
s->transparency = bytestream_get_be16(&buf);
s->masking = bytestream_get_byte(&buf);
for (i = 0; i < 16; i++)
s->tvdc[i] = bytestream_get_be16(&buf);
if (s->masking == MASK_HAS_MASK) {
if (s->bpp >= 8 && !s->ham) {
avctx->pix_fmt = AV_PIX_FMT_RGB32;
av_freep(&s->mask_buf);
av_freep(&s->mask_palbuf);
s->mask_buf = av_malloc((s->planesize * 32) + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->mask_buf)
return AVERROR(ENOMEM);
if (s->bpp > 16) {
av_log(avctx, AV_LOG_ERROR, "bpp %d too large for palette\n", s->bpp);
av_freep(&s->mask_buf);
return AVERROR(ENOMEM);
}
s->mask_palbuf = av_malloc((2 << s->bpp) * sizeof(uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->mask_palbuf) {
av_freep(&s->mask_buf);
return AVERROR(ENOMEM);
}
}
s->bpp++;
} else if (s->masking != MASK_NONE && s->masking != MASK_HAS_TRANSPARENT_COLOR) {
av_log(avctx, AV_LOG_ERROR, "Masking not supported\n");
return AVERROR_PATCHWELCOME;
}
if (!s->bpp || s->bpp > 32) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp);
return AVERROR_INVALIDDATA;
} else if (s->ham >= 8) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham);
return AVERROR_INVALIDDATA;
}
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
if (s->ham) {
int i, count = FFMIN(palette_size / 3, 1 << s->ham);
int ham_count;
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
s->ham_buf = av_malloc((s->planesize * 8) + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_buf)
return AVERROR(ENOMEM);
ham_count = 8 * (1 << s->ham);
s->ham_palbuf = av_malloc((ham_count << !!(s->masking == MASK_HAS_MASK)) * sizeof (uint32_t) + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_palbuf) {
av_freep(&s->ham_buf);
return AVERROR(ENOMEM);
}
if (count) { // HAM with color palette attached
// prefill with black and palette and set HAM take direct value mask to zero
memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t));
for (i=0; i < count; i++) {
s->ham_palbuf[i*2+1] = 0xFF000000 | AV_RL24(palette + i*3);
}
count = 1 << s->ham;
} else { // HAM with grayscale color palette
count = 1 << s->ham;
for (i=0; i < count; i++) {
s->ham_palbuf[i*2] = 0xFF000000; // take direct color value from palette
s->ham_palbuf[i*2+1] = 0xFF000000 | av_le2ne32(gray2rgb((i * 255) >> s->ham));
}
}
for (i=0; i < count; i++) {
uint32_t tmp = i << (8 - s->ham);
tmp |= tmp >> s->ham;
s->ham_palbuf[(i+count)*2] = 0xFF00FFFF; // just modify blue color component
s->ham_palbuf[(i+count*2)*2] = 0xFFFFFF00; // just modify red color component
s->ham_palbuf[(i+count*3)*2] = 0xFFFF00FF; // just modify green color component
s->ham_palbuf[(i+count)*2+1] = 0xFF000000 | tmp << 16;
s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp;
s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8;
}
if (s->masking == MASK_HAS_MASK) {
for (i = 0; i < ham_count; i++)
s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000;
}
}
}
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
av_freep(&s->planebuf);
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
av_freep(&s->video[0]);
av_freep(&s->video[1]);
av_freep(&s->pal);
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
int err;
if (avctx->bits_per_coded_sample <= 8) {
int palette_size;
if (avctx->extradata_size >= 2)
palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
else
palette_size = 0;
avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) ||
(avctx->extradata_size >= 2 && palette_size) ? AV_PIX_FMT_PAL8 : AV_PIX_FMT_GRAY8;
} else if (avctx->bits_per_coded_sample <= 32) {
if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8')) {
avctx->pix_fmt = AV_PIX_FMT_RGB32;
} else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N')) {
avctx->pix_fmt = AV_PIX_FMT_RGB444;
} else if (avctx->codec_tag != MKTAG('D', 'E', 'E', 'P')) {
if (avctx->bits_per_coded_sample == 24) {
avctx->pix_fmt = AV_PIX_FMT_0BGR32;
} else if (avctx->bits_per_coded_sample == 32) {
avctx->pix_fmt = AV_PIX_FMT_BGR32;
} else {
avpriv_request_sample(avctx, "unknown bits_per_coded_sample");
return AVERROR_PATCHWELCOME;
}
}
} else {
return AVERROR_INVALIDDATA;
}
if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx)))
return err;
s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary
s->planebuf = av_malloc(s->planesize * avctx->height + AV_INPUT_BUFFER_PADDING_SIZE);
if (!s->planebuf)
return AVERROR(ENOMEM);
s->bpp = avctx->bits_per_coded_sample;
if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
s->video_size = FFALIGN(avctx->width, 2) * avctx->height * s->bpp;
s->video[0] = av_calloc(FFALIGN(avctx->width, 2) * avctx->height, s->bpp);
s->video[1] = av_calloc(FFALIGN(avctx->width, 2) * avctx->height, s->bpp);
s->pal = av_calloc(256, sizeof(*s->pal));
if (!s->video[0] || !s->video[1] || !s->pal)
return AVERROR(ENOMEM);
}
if ((err = extract_header(avctx, NULL)) < 0)
return err;
return 0;
}
/**
* Decode interleaved plane buffer up to 8bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint64_t *lut = plane8_lut[plane];
if (plane >= 8) {
av_log(NULL, AV_LOG_WARNING, "Ignoring extra planes beyond 8\n");
return;
}
do {
uint64_t v = AV_RN64A(dst) | lut[*buf++];
AV_WN64A(dst, v);
dst += 8;
} while (--buf_size);
}
/**
* Decode interleaved plane buffer up to 24bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint32_t *lut = plane32_lut[plane];
do {
unsigned mask = (*buf >> 2) & ~3;
dst[0] |= lut[mask++];
dst[1] |= lut[mask++];
dst[2] |= lut[mask++];
dst[3] |= lut[mask];
mask = (*buf++ << 2) & 0x3F;
dst[4] |= lut[mask++];
dst[5] |= lut[mask++];
dst[6] |= lut[mask++];
dst[7] |= lut[mask];
dst += 8;
} while (--buf_size);
}
#define DECODE_HAM_PLANE32(x) \
first = buf[x] << 1; \
second = buf[(x)+1] << 1; \
delta &= pal[first++]; \
delta |= pal[first]; \
dst[x] = delta; \
delta &= pal[second++]; \
delta |= pal[second]; \
dst[(x)+1] = delta
/**
* Converts one line of HAM6/8-encoded chunky buffer to 24bpp.
*
* @param dst the destination 24bpp buffer
* @param buf the source 8bpp chunky buffer
* @param pal the HAM decode table
* @param buf_size the plane size in bytes
*/
static void decode_ham_plane32(uint32_t *dst, const uint8_t *buf,
const uint32_t *const pal, unsigned buf_size)
{
uint32_t delta = pal[1]; /* first palette entry */
do {
uint32_t first, second;
DECODE_HAM_PLANE32(0);
DECODE_HAM_PLANE32(2);
DECODE_HAM_PLANE32(4);
DECODE_HAM_PLANE32(6);
buf += 8;
dst += 8;
} while (--buf_size);
}
static void lookup_pal_indicies(uint32_t *dst, const uint32_t *buf,
const uint32_t *const pal, unsigned width)
{
do {
*dst++ = pal[*buf++];
} while (--width);
}
/**
* Decode one complete byterun1 encoded line.
*
* @param dst the destination buffer where to store decompressed bitstream
* @param dst_size the destination plane size in bytes
* @param buf the source byterun1 compressed bitstream
* @param buf_end the EOF of source byterun1 compressed bitstream
* @return number of consumed bytes in byterun1 compressed bitstream
*/
static int decode_byterun(uint8_t *dst, int dst_size,
GetByteContext *gb)
{
unsigned x;
for (x = 0; x < dst_size && bytestream2_get_bytes_left(gb) > 0;) {
unsigned length;
const int8_t value = bytestream2_get_byte(gb);
if (value >= 0) {
length = FFMIN3(value + 1, dst_size - x, bytestream2_get_bytes_left(gb));
bytestream2_get_buffer(gb, dst + x, length);
if (length < value + 1)
bytestream2_skip(gb, value + 1 - length);
} else if (value > -128) {
length = FFMIN(-value + 1, dst_size - x);
memset(dst + x, bytestream2_get_byte(gb), length);
} else { // noop
continue;
}
x += length;
}
if (x < dst_size) {
av_log(NULL, AV_LOG_WARNING, "decode_byterun ended before plane size\n");
memset(dst+x, 0, dst_size - x);
}
return bytestream2_tell(gb);
}
static int decode_byterun2(uint8_t *dst, int height, int line_size,
GetByteContext *gb)
{
GetByteContext cmds;
unsigned count;
int i, y_pos = 0, x_pos = 0;
if (bytestream2_get_be32(gb) != MKBETAG('V', 'D', 'A', 'T'))
return 0;
bytestream2_skip(gb, 4);
count = bytestream2_get_be16(gb) - 2;
if (bytestream2_get_bytes_left(gb) < count)
return 0;
bytestream2_init(&cmds, gb->buffer, count);
bytestream2_skip(gb, count);
for (i = 0; i < count && x_pos < line_size; i++) {
int8_t cmd = bytestream2_get_byte(&cmds);
int l, r;
if (cmd == 0) {
l = bytestream2_get_be16(gb);
while (l-- > 0 && x_pos < line_size) {
dst[x_pos + y_pos * line_size ] = bytestream2_get_byte(gb);
dst[x_pos + y_pos++ * line_size + 1] = bytestream2_get_byte(gb);
if (y_pos >= height) {
y_pos = 0;
x_pos += 2;
}
}
} else if (cmd < 0) {
l = -cmd;
while (l-- > 0 && x_pos < line_size) {
dst[x_pos + y_pos * line_size ] = bytestream2_get_byte(gb);
dst[x_pos + y_pos++ * line_size + 1] = bytestream2_get_byte(gb);
if (y_pos >= height) {
y_pos = 0;
x_pos += 2;
}
}
} else if (cmd == 1) {
l = bytestream2_get_be16(gb);
r = bytestream2_get_be16(gb);
while (l-- > 0 && x_pos < line_size) {
dst[x_pos + y_pos * line_size ] = r >> 8;
dst[x_pos + y_pos++ * line_size + 1] = r & 0xFF;
if (y_pos >= height) {
y_pos = 0;
x_pos += 2;
}
}
} else {
l = cmd;
r = bytestream2_get_be16(gb);
while (l-- > 0 && x_pos < line_size) {
dst[x_pos + y_pos * line_size ] = r >> 8;
dst[x_pos + y_pos++ * line_size + 1] = r & 0xFF;
if (y_pos >= height) {
y_pos = 0;
x_pos += 2;
}
}
}
}
return bytestream2_tell(gb);
}
#define DECODE_RGBX_COMMON(type) \
if (!length) { \
length = bytestream2_get_byte(gb); \
if (!length) { \
length = bytestream2_get_be16(gb); \
if (!length) \
return; \
} \
} \
for (i = 0; i < length; i++) { \
*(type *)(dst + y*linesize + x * sizeof(type)) = pixel; \
x += 1; \
if (x >= width) { \
y += 1; \
if (y >= height) \
return; \
x = 0; \
} \
}
/**
* Decode RGB8 buffer
* @param[out] dst Destination buffer
* @param width Width of destination buffer (pixels)
* @param height Height of destination buffer (pixels)
* @param linesize Line size of destination buffer (bytes)
*/
static void decode_rgb8(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize)
{
int x = 0, y = 0, i, length;
while (bytestream2_get_bytes_left(gb) >= 4) {
uint32_t pixel = 0xFF000000 | bytestream2_get_be24(gb);
length = bytestream2_get_byte(gb) & 0x7F;
DECODE_RGBX_COMMON(uint32_t)
}
}
/**
* Decode RGBN buffer
* @param[out] dst Destination buffer
* @param width Width of destination buffer (pixels)
* @param height Height of destination buffer (pixels)
* @param linesize Line size of destination buffer (bytes)
*/
static void decode_rgbn(GetByteContext *gb, uint8_t *dst, int width, int height, int linesize)
{
int x = 0, y = 0, i, length;
while (bytestream2_get_bytes_left(gb) >= 2) {
uint32_t pixel = bytestream2_get_be16u(gb);
length = pixel & 0x7;
pixel >>= 4;
DECODE_RGBX_COMMON(uint16_t)
}
}
/**
* Decode DEEP RLE 32-bit buffer
* @param[out] dst Destination buffer
* @param[in] src Source buffer
* @param src_size Source buffer size (bytes)
* @param width Width of destination buffer (pixels)
* @param height Height of destination buffer (pixels)
* @param linesize Line size of destination buffer (bytes)
*/
static void decode_deep_rle32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize)
{
const uint8_t *src_end = src + src_size;
int x = 0, y = 0, i;
while (src + 5 <= src_end) {
int opcode;
opcode = *(int8_t *)src++;
if (opcode >= 0) {
int size = opcode + 1;
for (i = 0; i < size; i++) {
int length = FFMIN(size - i, width);
memcpy(dst + y*linesize + x * 4, src, length * 4);
src += length * 4;
x += length;
i += length;
if (x >= width) {
x = 0;
y += 1;
if (y >= height)
return;
}
}
} else {
int size = -opcode + 1;
uint32_t pixel = AV_RN32(src);
for (i = 0; i < size; i++) {
*(uint32_t *)(dst + y*linesize + x * 4) = pixel;
x += 1;
if (x >= width) {
x = 0;
y += 1;
if (y >= height)
return;
}
}
src += 4;
}
}
}
/**
* Decode DEEP TVDC 32-bit buffer
* @param[out] dst Destination buffer
* @param[in] src Source buffer
* @param src_size Source buffer size (bytes)
* @param width Width of destination buffer (pixels)
* @param height Height of destination buffer (pixels)
* @param linesize Line size of destination buffer (bytes)
* @param[int] tvdc TVDC lookup table
*/
static void decode_deep_tvdc32(uint8_t *dst, const uint8_t *src, int src_size, int width, int height, int linesize, const int16_t *tvdc)
{
int x = 0, y = 0, plane = 0;
int8_t pixel = 0;
int i, j;
for (i = 0; i < src_size * 2;) {
#define GETNIBBLE ((i & 1) ? (src[i>>1] & 0xF) : (src[i>>1] >> 4))
int d = tvdc[GETNIBBLE];
i++;
if (d) {
pixel += d;
dst[y * linesize + x*4 + plane] = pixel;
x++;
} else {
if (i >= src_size * 2)
return;
d = GETNIBBLE + 1;
i++;
d = FFMIN(d, width - x);
for (j = 0; j < d; j++) {
dst[y * linesize + x*4 + plane] = pixel;
x++;
}
}
if (x >= width) {
plane++;
if (plane >= 4) {
y++;
if (y >= height)
return;
plane = 0;
}
x = 0;
pixel = 0;
i = (i + 1) & ~1;
}
}
}
static void decode_short_horizontal_delta(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int bpp, int dst_size)
{
int planepitch = FFALIGN(w, 16) >> 3;
int pitch = planepitch * bpp;
GetByteContext ptrs, gb;
PutByteContext pb;
unsigned ofssrc, pos;
int i, k;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
pos = 0;
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
while (bytestream2_peek_be16(&gb) != 0xFFFF && bytestream2_get_bytes_left(&gb) > 3) {
int16_t offset = bytestream2_get_be16(&gb);
unsigned noffset;
if (offset >= 0) {
unsigned data = bytestream2_get_be16(&gb);
pos += offset * 2;
noffset = (pos / planepitch) * pitch + (pos % planepitch) + k * planepitch;
bytestream2_seek_p(&pb, noffset, SEEK_SET);
bytestream2_put_be16(&pb, data);
} else {
uint16_t count = bytestream2_get_be16(&gb);
pos += 2 * -(offset + 2);
for (i = 0; i < count; i++) {
uint16_t data = bytestream2_get_be16(&gb);
pos += 2;
noffset = (pos / planepitch) * pitch + (pos % planepitch) + k * planepitch;
bytestream2_seek_p(&pb, noffset, SEEK_SET);
bytestream2_put_be16(&pb, data);
}
}
}
}
}
static void decode_byte_vertical_delta(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int xor, int bpp, int dst_size)
{
int ncolumns = ((w + 15) / 16) * 2;
int dstpitch = ncolumns * bpp;
unsigned ofsdst, ofssrc, opcode, x;
GetByteContext ptrs, gb;
PutByteContext pb;
int i, j, k;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
for (j = 0; j < ncolumns; j++) {
ofsdst = j + k * ncolumns;
i = bytestream2_get_byte(&gb);
while (i > 0) {
opcode = bytestream2_get_byte(&gb);
if (opcode == 0) {
opcode = bytestream2_get_byte(&gb);
x = bytestream2_get_byte(&gb);
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (xor && ofsdst < dst_size) {
bytestream2_put_byte(&pb, dst[ofsdst] ^ x);
} else {
bytestream2_put_byte(&pb, x);
}
ofsdst += dstpitch;
opcode--;
}
} else if (opcode < 0x80) {
ofsdst += opcode * dstpitch;
} else {
opcode &= 0x7f;
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (xor && ofsdst < dst_size) {
bytestream2_put_byte(&pb, dst[ofsdst] ^ bytestream2_get_byte(&gb));
} else {
bytestream2_put_byte(&pb, bytestream2_get_byte(&gb));
}
ofsdst += dstpitch;
opcode--;
}
}
i--;
}
}
}
}
static void decode_delta_j(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int h, int bpp, int dst_size)
{
int32_t pitch;
uint8_t *ptr;
uint32_t type, flag, cols, groups, rows, bytes;
uint32_t offset;
int planepitch_byte = (w + 7) / 8;
int planepitch = ((w + 15) / 16) * 2;
int kludge_j, b, g, r, d;
GetByteContext gb;
pitch = planepitch * bpp;
kludge_j = w < 320 ? (320 - w) / 8 / 2 : 0;
bytestream2_init(&gb, buf, buf_end - buf);
while (bytestream2_get_bytes_left(&gb) >= 2) {
type = bytestream2_get_be16(&gb);
switch (type) {
case 0:
return;
case 1:
flag = bytestream2_get_be16(&gb);
cols = bytestream2_get_be16(&gb);
groups = bytestream2_get_be16(&gb);
for (g = 0; g < groups; g++) {
offset = bytestream2_get_be16(&gb);
if (cols * bpp == 0 || bytestream2_get_bytes_left(&gb) < cols * bpp) {
av_log(NULL, AV_LOG_ERROR, "cols*bpp is invalid (%"PRId32"*%d)", cols, bpp);
return;
}
if (kludge_j)
offset = ((offset / (320 / 8)) * pitch) + (offset % (320 / 8)) - kludge_j;
else
offset = ((offset / planepitch_byte) * pitch) + (offset % planepitch_byte);
for (b = 0; b < cols; b++) {
for (d = 0; d < bpp; d++) {
uint8_t value = bytestream2_get_byte(&gb);
if (offset >= dst_size)
return;
ptr = dst + offset;
if (flag)
ptr[0] ^= value;
else
ptr[0] = value;
offset += planepitch;
}
}
if ((cols * bpp) & 1)
bytestream2_skip(&gb, 1);
}
break;
case 2:
flag = bytestream2_get_be16(&gb);
rows = bytestream2_get_be16(&gb);
bytes = bytestream2_get_be16(&gb);
groups = bytestream2_get_be16(&gb);
for (g = 0; g < groups; g++) {
offset = bytestream2_get_be16(&gb);
if (kludge_j)
offset = ((offset / (320 / 8)) * pitch) + (offset % (320/ 8)) - kludge_j;
else
offset = ((offset / planepitch_byte) * pitch) + (offset % planepitch_byte);
for (r = 0; r < rows; r++) {
for (d = 0; d < bpp; d++) {
unsigned noffset = offset + (r * pitch) + d * planepitch;
if (!bytes || bytestream2_get_bytes_left(&gb) < bytes) {
av_log(NULL, AV_LOG_ERROR, "bytes %"PRId32" is invalid", bytes);
return;
}
for (b = 0; b < bytes; b++) {
uint8_t value = bytestream2_get_byte(&gb);
if (noffset >= dst_size)
return;
ptr = dst + noffset;
if (flag)
ptr[0] ^= value;
else
ptr[0] = value;
noffset++;
}
}
}
if ((rows * bytes * bpp) & 1)
bytestream2_skip(&gb, 1);
}
break;
default:
return;
}
}
}
static void decode_short_vertical_delta(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int bpp, int dst_size)
{
int ncolumns = (w + 15) >> 4;
int dstpitch = ncolumns * bpp * 2;
unsigned ofsdst, ofssrc, ofsdata, opcode, x;
GetByteContext ptrs, gb, dptrs, dgb;
PutByteContext pb;
int i, j, k;
if (buf_end - buf <= 64)
return;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init(&dptrs, buf + 32, (buf_end - buf) - 32);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
ofsdata = bytestream2_get_be32(&dptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
return;
if (ofsdata >= buf_end - buf)
return;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
bytestream2_init(&dgb, buf + ofsdata, buf_end - (buf + ofsdata));
for (j = 0; j < ncolumns; j++) {
ofsdst = (j + k * ncolumns) * 2;
i = bytestream2_get_byte(&gb);
while (i > 0) {
opcode = bytestream2_get_byte(&gb);
if (opcode == 0) {
opcode = bytestream2_get_byte(&gb);
x = bytestream2_get_be16(&dgb);
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
bytestream2_put_be16(&pb, x);
ofsdst += dstpitch;
opcode--;
}
} else if (opcode < 0x80) {
ofsdst += opcode * dstpitch;
} else {
opcode &= 0x7f;
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
bytestream2_put_be16(&pb, bytestream2_get_be16(&dgb));
ofsdst += dstpitch;
opcode--;
}
}
i--;
}
}
}
}
static void decode_long_vertical_delta(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int bpp, int dst_size)
{
int ncolumns = (w + 31) >> 5;
int dstpitch = ((w + 15) / 16 * 2) * bpp;
unsigned ofsdst, ofssrc, ofsdata, opcode, x;
GetByteContext ptrs, gb, dptrs, dgb;
PutByteContext pb;
int i, j, k, h;
if (buf_end - buf <= 64)
return;
h = (((w + 15) / 16 * 2) != ((w + 31) / 32 * 4)) ? 1 : 0;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init(&dptrs, buf + 32, (buf_end - buf) - 32);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
ofsdata = bytestream2_get_be32(&dptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
return;
if (ofsdata >= buf_end - buf)
return;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
bytestream2_init(&dgb, buf + ofsdata, buf_end - (buf + ofsdata));
for (j = 0; j < ncolumns; j++) {
ofsdst = (j + k * ncolumns) * 4 - h * (2 * k);
i = bytestream2_get_byte(&gb);
while (i > 0) {
opcode = bytestream2_get_byte(&gb);
if (opcode == 0) {
opcode = bytestream2_get_byte(&gb);
if (h && (j == (ncolumns - 1))) {
x = bytestream2_get_be16(&dgb);
bytestream2_skip(&dgb, 2);
} else {
x = bytestream2_get_be32(&dgb);
}
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (h && (j == (ncolumns - 1))) {
bytestream2_put_be16(&pb, x);
} else {
bytestream2_put_be32(&pb, x);
}
ofsdst += dstpitch;
opcode--;
}
} else if (opcode < 0x80) {
ofsdst += opcode * dstpitch;
} else {
opcode &= 0x7f;
while (opcode) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (h && (j == (ncolumns - 1))) {
bytestream2_put_be16(&pb, bytestream2_get_be16(&dgb));
bytestream2_skip(&dgb, 2);
} else {
bytestream2_put_be32(&pb, bytestream2_get_be32(&dgb));
}
ofsdst += dstpitch;
opcode--;
}
}
i--;
}
}
}
}
static void decode_short_vertical_delta2(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int bpp, int dst_size)
{
int ncolumns = (w + 15) >> 4;
int dstpitch = ncolumns * bpp * 2;
unsigned ofsdst, ofssrc, opcode, x;
GetByteContext ptrs, gb;
PutByteContext pb;
int i, j, k;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
for (j = 0; j < ncolumns; j++) {
ofsdst = (j + k * ncolumns) * 2;
i = bytestream2_get_be16(&gb);
while (i > 0 && bytestream2_get_bytes_left(&gb) > 4) {
opcode = bytestream2_get_be16(&gb);
if (opcode == 0) {
opcode = bytestream2_get_be16(&gb);
x = bytestream2_get_be16(&gb);
while (opcode && bytestream2_get_bytes_left_p(&pb) > 1) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
bytestream2_put_be16(&pb, x);
ofsdst += dstpitch;
opcode--;
}
} else if (opcode < 0x8000) {
ofsdst += opcode * dstpitch;
} else {
opcode &= 0x7fff;
while (opcode && bytestream2_get_bytes_left(&gb) > 1 &&
bytestream2_get_bytes_left_p(&pb) > 1) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
bytestream2_put_be16(&pb, bytestream2_get_be16(&gb));
ofsdst += dstpitch;
opcode--;
}
}
i--;
}
}
}
}
static void decode_long_vertical_delta2(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int bpp, int dst_size)
{
int ncolumns = (w + 31) >> 5;
int dstpitch = ((w + 15) / 16 * 2) * bpp;
unsigned ofsdst, ofssrc, opcode, x;
unsigned skip = 0x80000000, mask = skip - 1;
GetByteContext ptrs, gb;
PutByteContext pb;
int i, j, k, h;
h = (((w + 15) / 16 * 2) != ((w + 31) / 32 * 4)) ? 1 : 0;
bytestream2_init(&ptrs, buf, buf_end - buf);
bytestream2_init_writer(&pb, dst, dst_size);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
for (j = 0; j < ncolumns; j++) {
ofsdst = (j + k * ncolumns) * 4 - h * (2 * k);
if (h && (j == (ncolumns - 1))) {
skip = 0x8000;
mask = skip - 1;
}
i = bytestream2_get_be32(&gb);
while (i > 0 && bytestream2_get_bytes_left(&gb) > 4) {
opcode = bytestream2_get_be32(&gb);
if (opcode == 0) {
if (h && (j == ncolumns - 1)) {
opcode = bytestream2_get_be16(&gb);
x = bytestream2_get_be16(&gb);
} else {
opcode = bytestream2_get_be32(&gb);
x = bytestream2_get_be32(&gb);
}
while (opcode && bytestream2_get_bytes_left_p(&pb) > 1) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (h && (j == ncolumns - 1))
bytestream2_put_be16(&pb, x);
else
bytestream2_put_be32(&pb, x);
ofsdst += dstpitch;
opcode--;
}
} else if (opcode < skip) {
ofsdst += opcode * dstpitch;
} else {
opcode &= mask;
while (opcode && bytestream2_get_bytes_left(&gb) > 1 &&
bytestream2_get_bytes_left_p(&pb) > 1) {
bytestream2_seek_p(&pb, ofsdst, SEEK_SET);
if (h && (j == ncolumns - 1)) {
bytestream2_put_be16(&pb, bytestream2_get_be16(&gb));
} else {
bytestream2_put_be32(&pb, bytestream2_get_be32(&gb));
}
ofsdst += dstpitch;
opcode--;
}
}
i--;
}
}
}
}
static void decode_delta_d(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int flag, int bpp, int dst_size)
{
int planepitch = FFALIGN(w, 16) >> 3;
int pitch = planepitch * bpp;
int planepitch_byte = (w + 7) / 8;
unsigned entries, ofssrc;
GetByteContext gb, ptrs;
PutByteContext pb;
int k;
if (buf_end - buf <= 4 * bpp)
return;
bytestream2_init_writer(&pb, dst, dst_size);
bytestream2_init(&ptrs, buf, bpp * 4);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
entries = bytestream2_get_be32(&gb);
while (entries && bytestream2_get_bytes_left(&gb) >= 8) {
int32_t opcode = bytestream2_get_be32(&gb);
unsigned offset = bytestream2_get_be32(&gb);
bytestream2_seek_p(&pb, (offset / planepitch_byte) * pitch + (offset % planepitch_byte) + k * planepitch, SEEK_SET);
if (opcode >= 0) {
uint32_t x = bytestream2_get_be32(&gb);
while (opcode && bytestream2_get_bytes_left_p(&pb) > 0) {
bytestream2_put_be32(&pb, x);
bytestream2_skip_p(&pb, pitch - 4);
opcode--;
}
} else {
opcode = -opcode;
while (opcode && bytestream2_get_bytes_left(&gb) > 0) {
bytestream2_put_be32(&pb, bytestream2_get_be32(&gb));
bytestream2_skip_p(&pb, pitch - 4);
opcode--;
}
}
entries--;
}
}
}
static void decode_delta_e(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int flag, int bpp, int dst_size)
{
int planepitch = FFALIGN(w, 16) >> 3;
int pitch = planepitch * bpp;
int planepitch_byte = (w + 7) / 8;
unsigned entries, ofssrc;
GetByteContext gb, ptrs;
PutByteContext pb;
int k;
if (buf_end - buf <= 4 * bpp)
return;
bytestream2_init_writer(&pb, dst, dst_size);
bytestream2_init(&ptrs, buf, bpp * 4);
for (k = 0; k < bpp; k++) {
ofssrc = bytestream2_get_be32(&ptrs);
if (!ofssrc)
continue;
if (ofssrc >= buf_end - buf)
continue;
bytestream2_init(&gb, buf + ofssrc, buf_end - (buf + ofssrc));
entries = bytestream2_get_be16(&gb);
while (entries && bytestream2_get_bytes_left(&gb) >= 6) {
int16_t opcode = bytestream2_get_be16(&gb);
unsigned offset = bytestream2_get_be32(&gb);
bytestream2_seek_p(&pb, (offset / planepitch_byte) * pitch + (offset % planepitch_byte) + k * planepitch, SEEK_SET);
if (opcode >= 0) {
uint16_t x = bytestream2_get_be16(&gb);
while (opcode && bytestream2_get_bytes_left_p(&pb) > 0) {
bytestream2_put_be16(&pb, x);
bytestream2_skip_p(&pb, pitch - 2);
opcode--;
}
} else {
opcode = -opcode;
while (opcode && bytestream2_get_bytes_left(&gb) > 0) {
bytestream2_put_be16(&pb, bytestream2_get_be16(&gb));
bytestream2_skip_p(&pb, pitch - 2);
opcode--;
}
}
entries--;
}
}
}
static void decode_delta_l(uint8_t *dst,
const uint8_t *buf, const uint8_t *buf_end,
int w, int flag, int bpp, int dst_size)
{
GetByteContext off0, off1, dgb, ogb;
PutByteContext pb;
unsigned poff0, poff1;
int i, k, dstpitch;
int planepitch_byte = (w + 7) / 8;
int planepitch = ((w + 15) / 16) * 2;
int pitch = planepitch * bpp;
if (buf_end - buf <= 64)
return;
bytestream2_init(&off0, buf, buf_end - buf);
bytestream2_init(&off1, buf + 32, buf_end - (buf + 32));
bytestream2_init_writer(&pb, dst, dst_size);
dstpitch = flag ? (((w + 7) / 8) * bpp): 2;
for (k = 0; k < bpp; k++) {
poff0 = bytestream2_get_be32(&off0);
poff1 = bytestream2_get_be32(&off1);
if (!poff0)
continue;
if (2LL * poff0 >= buf_end - buf)
return;
if (2LL * poff1 >= buf_end - buf)
return;
bytestream2_init(&dgb, buf + 2 * poff0, buf_end - (buf + 2 * poff0));
bytestream2_init(&ogb, buf + 2 * poff1, buf_end - (buf + 2 * poff1));
while (bytestream2_peek_be16(&ogb) != 0xFFFF && bytestream2_get_bytes_left(&ogb) >= 4) {
uint32_t offset = bytestream2_get_be16(&ogb);
int16_t cnt = bytestream2_get_be16(&ogb);
uint16_t data;
offset = ((2 * offset) / planepitch_byte) * pitch + ((2 * offset) % planepitch_byte) + k * planepitch;
if (cnt < 0) {
if (bytestream2_get_bytes_left(&dgb) < 2)
break;
bytestream2_seek_p(&pb, offset, SEEK_SET);
cnt = -cnt;
data = bytestream2_get_be16(&dgb);
for (i = 0; i < cnt; i++) {
bytestream2_put_be16(&pb, data);
bytestream2_skip_p(&pb, dstpitch - 2);
}
} else {
if (bytestream2_get_bytes_left(&dgb) < 2*cnt)
break;
bytestream2_seek_p(&pb, offset, SEEK_SET);
for (i = 0; i < cnt; i++) {
data = bytestream2_get_be16(&dgb);
bytestream2_put_be16(&pb, data);
bytestream2_skip_p(&pb, dstpitch - 2);
}
}
}
}
}
static int unsupported(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
avpriv_request_sample(avctx, "bitmap (compression 0x%0x, bpp %i, ham %i, interlaced %i)", s->compression, s->bpp, s->ham, s->is_interlaced);
return AVERROR_INVALIDDATA;
}
static int decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
AVFrame *frame = data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
int y, plane, res;
GetByteContext *gb = &s->gb;
const AVPixFmtDescriptor *desc;
bytestream2_init(gb, avpkt->data, avpkt->size);
if ((res = extract_header(avctx, avpkt)) < 0)
return res;
if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
return res;
s->frame = frame;
buf += bytestream2_tell(gb);
buf_size -= bytestream2_tell(gb);
desc = av_pix_fmt_desc_get(avctx->pix_fmt);
if (!s->init && avctx->bits_per_coded_sample <= 8 &&
avctx->pix_fmt == AV_PIX_FMT_PAL8) {
if ((res = cmap_read_palette(avctx, (uint32_t *)frame->data[1])) < 0)
return res;
} else if (!s->init && avctx->bits_per_coded_sample <= 8 &&
avctx->pix_fmt == AV_PIX_FMT_RGB32) {
if ((res = cmap_read_palette(avctx, s->mask_palbuf)) < 0)
return res;
}
s->init = 1;
if (s->compression <= 0xff && (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M'))) {
if (avctx->pix_fmt == AV_PIX_FMT_PAL8)
memcpy(s->pal, s->frame->data[1], 256 * 4);
}
switch (s->compression) {
case 0x0:
if (avctx->codec_tag == MKTAG('A', 'C', 'B', 'M')) {
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
memset(frame->data[0], 0, avctx->height * frame->linesize[0]);
for (plane = 0; plane < s->bpp; plane++) {
for (y = 0; y < avctx->height && buf < buf_end; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
memset(frame->data[0], 0, avctx->height * frame->linesize[0]);
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize;
if (start >= buf_end)
break;
decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane);
}
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else
return unsupported(avctx);
} else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) {
int raw_width = avctx->width * (av_get_bits_per_pixel(desc) >> 3);
int x;
for (y = 0; y < avctx->height && buf < buf_end; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memcpy(row, buf, FFMIN(raw_width, buf_end - buf));
buf += raw_width;
if (avctx->pix_fmt == AV_PIX_FMT_BGR32) {
for (x = 0; x < avctx->width; x++)
row[4 * x + 3] = row[4 * x + 3] & 0xF0 | (row[4 * x + 3] >> 4);
}
}
} else if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M') || // interleaved
avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M'))
memcpy(s->video[0], buf, FFMIN(buf_end - buf, s->video_size));
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { // AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane32((uint32_t *)row, buf,
FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
}
} else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
for (y = 0; y < avctx->height && buf_end > buf; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memcpy(row, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width % 2); // padding if odd
}
} else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height && buf_end > buf; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width & 1); // padding if odd
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else
return unsupported(avctx);
} else {
return unsupported(avctx);
}
break;
case 0x1:
if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M') || // interleaved
avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
uint8_t *video = s->video[0];
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, gb);
if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
memcpy(video, s->planebuf, s->planesize);
video += s->planesize;
}
decodeplane8(row, s->planebuf, s->planesize, plane);
}
}
} else if (avctx->bits_per_coded_sample <= 8) { //8-bit (+ mask) to AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->mask_buf, 0, avctx->width * sizeof(uint32_t));
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, gb);
decodeplane32(s->mask_buf, s->planebuf, s->planesize, plane);
}
lookup_pal_indicies((uint32_t *)row, s->mask_buf, s->mask_palbuf, avctx->width);
}
} else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
uint8_t *video = s->video[0];
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, gb);
if (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M')) {
memcpy(video, s->planebuf, s->planesize);
video += s->planesize;
}
decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane);
}
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { // AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, gb);
decodeplane32((uint32_t *)row, s->planebuf, s->planesize, plane);
}
}
}
} else if (avctx->codec_tag == MKTAG('P', 'B', 'M', ' ')) { // IFF-PBM
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
buf += decode_byterun(row, avctx->width, gb);
}
} else if (s->ham) { // IFF-PBM: HAM to AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
buf += decode_byterun(s->ham_buf, avctx->width, gb);
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else
return unsupported(avctx);
} else if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) { // IFF-DEEP
if (av_get_bits_per_pixel(desc) == 32)
decode_deep_rle32(frame->data[0], buf, buf_size, avctx->width, avctx->height, frame->linesize[0]);
else
return unsupported(avctx);
} else if (avctx->codec_tag == MKTAG('A', 'C', 'B', 'M')) {
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
memset(frame->data[0], 0, avctx->height * frame->linesize[0]);
for (plane = 0; plane < s->bpp; plane++) {
for (y = 0; y < avctx->height && buf < buf_end; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to AV_PIX_FMT_BGR32
memset(frame->data[0], 0, avctx->height * frame->linesize[0]);
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize;
if (start >= buf_end)
break;
decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane);
}
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else {
return unsupported(avctx);
}
} else {
return unsupported(avctx);
}
break;
case 0x2:
if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M') && avctx->pix_fmt == AV_PIX_FMT_PAL8) {
for (plane = 0; plane < s->bpp; plane++) {
decode_byterun2(s->planebuf, avctx->height, s->planesize, gb);
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
decodeplane8(row, s->planebuf + s->planesize * y, s->planesize, plane);
}
}
} else {
return unsupported(avctx);
}
break;
case 0x4:
if (avctx->codec_tag == MKTAG('R', 'G', 'B', '8') && avctx->pix_fmt == AV_PIX_FMT_RGB32)
decode_rgb8(gb, frame->data[0], avctx->width, avctx->height, frame->linesize[0]);
else if (avctx->codec_tag == MKTAG('R', 'G', 'B', 'N') && avctx->pix_fmt == AV_PIX_FMT_RGB444)
decode_rgbn(gb, frame->data[0], avctx->width, avctx->height, frame->linesize[0]);
else
return unsupported(avctx);
break;
case 0x5:
if (avctx->codec_tag == MKTAG('D', 'E', 'E', 'P')) {
if (av_get_bits_per_pixel(desc) == 32)
decode_deep_tvdc32(frame->data[0], buf, buf_size, avctx->width, avctx->height, frame->linesize[0], s->tvdc);
else
return unsupported(avctx);
} else
return unsupported(avctx);
break;
case 0x300:
case 0x301:
decode_short_horizontal_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size);
break;
case 0x500:
case 0x501:
decode_byte_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->is_brush, s->bpp, s->video_size);
break;
case 0x700:
case 0x701:
if (s->is_short)
decode_short_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size);
else
decode_long_vertical_delta(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size);
break;
case 0x800:
case 0x801:
if (s->is_short)
decode_short_vertical_delta2(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size);
else
decode_long_vertical_delta2(s->video[0], buf, buf_end, avctx->width, s->bpp, s->video_size);
break;
case 0x4a00:
case 0x4a01:
decode_delta_j(s->video[0], buf, buf_end, avctx->width, avctx->height, s->bpp, s->video_size);
break;
case 0x6400:
case 0x6401:
if (s->is_interlaced)
return unsupported(avctx);
decode_delta_d(s->video[0], buf, buf_end, avctx->width, s->is_interlaced, s->bpp, s->video_size);
break;
case 0x6500:
case 0x6501:
if (s->is_interlaced)
return unsupported(avctx);
decode_delta_e(s->video[0], buf, buf_end, avctx->width, s->is_interlaced, s->bpp, s->video_size);
break;
case 0x6c00:
case 0x6c01:
decode_delta_l(s->video[0], buf, buf_end, avctx->width, s->is_short, s->bpp, s->video_size);
break;
default:
return unsupported(avctx);
}
if (s->compression <= 0xff && (avctx->codec_tag == MKTAG('A', 'N', 'I', 'M'))) {
memcpy(s->video[1], s->video[0], s->video_size);
}
if (s->compression > 0xff) {
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
buf = s->video[0];
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp; plane++) {
decodeplane8(row, buf, s->planesize, plane);
buf += s->planesize;
}
}
memcpy(frame->data[1], s->pal, 256 * 4);
} else if (s->ham) {
int i, count = 1 << s->ham;
buf = s->video[0];
memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof(uint32_t));
for (i = 0; i < count; i++) {
s->ham_palbuf[i*2+1] = s->pal[i];
}
for (i = 0; i < count; i++) {
uint32_t tmp = i << (8 - s->ham);
tmp |= tmp >> s->ham;
s->ham_palbuf[(i+count)*2] = 0xFF00FFFF;
s->ham_palbuf[(i+count*2)*2] = 0xFFFFFF00;
s->ham_palbuf[(i+count*3)*2] = 0xFFFF00FF;
s->ham_palbuf[(i+count)*2+1] = 0xFF000000 | tmp << 16;
s->ham_palbuf[(i+count*2)*2+1] = 0xFF000000 | tmp;
s->ham_palbuf[(i+count*3)*2+1] = 0xFF000000 | tmp << 8;
}
if (s->masking == MASK_HAS_MASK) {
for (i = 0; i < 8 * (1 << s->ham); i++)
s->ham_palbuf[(1 << s->bpp) + i] = s->ham_palbuf[i] | 0xFF000000;
}
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &frame->data[0][y * frame->linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
decodeplane8(s->ham_buf, buf, s->planesize, plane);
buf += s->planesize;
}
decode_ham_plane32((uint32_t *)row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else {
return unsupported(avctx);
}
if (!s->is_brush) {
FFSWAP(uint8_t *, s->video[0], s->video[1]);
}
}
if (avpkt->flags & AV_PKT_FLAG_KEY) {
frame->key_frame = 1;
frame->pict_type = AV_PICTURE_TYPE_I;
} else {
frame->key_frame = 0;
frame->pict_type = AV_PICTURE_TYPE_P;
}
*got_frame = 1;
return buf_size;
}
#if CONFIG_IFF_ILBM_DECODER
AVCodec ff_iff_ilbm_decoder = {
.name = "iff",
.long_name = NULL_IF_CONFIG_SMALL("IFF ACBM/ANIM/DEEP/ILBM/PBM/RGB8/RGBN"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_IFF_ILBM,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
};
#endif