mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
60b4d07cf6
This commit unifies the async and sync mode from the DNN filters' perspective. As of this commit, the Native backend only supports synchronous execution mode. Now the user can switch between async and sync mode by using the 'async' option in the backend_configs. The values can be 1 for async and 0 for sync mode of execution. This commit affects the following filters: 1. vf_dnn_classify 2. vf_dnn_detect 3. vf_dnn_processing 4. vf_sr 5. vf_derain This commit also updates the filters vf_dnn_detect and vf_dnn_classify to send only the input frame and send NULL as output frame instead of input frame to the DNN backends. Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com>
206 lines
7.5 KiB
C
206 lines
7.5 KiB
C
/*
|
|
* Copyright (c) 2018 Sergey Lavrushkin
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* Filter implementing image super-resolution using deep convolutional networks.
|
|
* https://arxiv.org/abs/1501.00092
|
|
* https://arxiv.org/abs/1609.05158
|
|
*/
|
|
|
|
#include "avfilter.h"
|
|
#include "formats.h"
|
|
#include "internal.h"
|
|
#include "libavutil/opt.h"
|
|
#include "libavutil/pixdesc.h"
|
|
#include "libavformat/avio.h"
|
|
#include "libswscale/swscale.h"
|
|
#include "dnn_filter_common.h"
|
|
|
|
typedef struct SRContext {
|
|
const AVClass *class;
|
|
DnnContext dnnctx;
|
|
int scale_factor;
|
|
struct SwsContext *sws_uv_scale;
|
|
int sws_uv_height;
|
|
struct SwsContext *sws_pre_scale;
|
|
} SRContext;
|
|
|
|
#define OFFSET(x) offsetof(SRContext, x)
|
|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
|
|
static const AVOption sr_options[] = {
|
|
{ "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" },
|
|
{ "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
|
|
#if (CONFIG_LIBTENSORFLOW == 1)
|
|
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
|
|
#endif
|
|
{ "scale_factor", "scale factor for SRCNN model", OFFSET(scale_factor), AV_OPT_TYPE_INT, { .i64 = 2 }, 2, 4, FLAGS },
|
|
{ "model", "path to model file specifying network architecture and its parameters", OFFSET(dnnctx.model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
|
|
{ "input", "input name of the model", OFFSET(dnnctx.model_inputname), AV_OPT_TYPE_STRING, { .str = "x" }, 0, 0, FLAGS },
|
|
{ "output", "output name of the model", OFFSET(dnnctx.model_outputnames_string), AV_OPT_TYPE_STRING, { .str = "y" }, 0, 0, FLAGS },
|
|
{ NULL }
|
|
};
|
|
|
|
AVFILTER_DEFINE_CLASS(sr);
|
|
|
|
static av_cold int init(AVFilterContext *context)
|
|
{
|
|
SRContext *sr_context = context->priv;
|
|
return ff_dnn_init(&sr_context->dnnctx, DFT_PROCESS_FRAME, context);
|
|
}
|
|
|
|
static int query_formats(AVFilterContext *context)
|
|
{
|
|
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
|
|
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
|
|
AV_PIX_FMT_NONE};
|
|
|
|
return ff_set_common_formats_from_list(context, pixel_formats);
|
|
}
|
|
|
|
static int config_output(AVFilterLink *outlink)
|
|
{
|
|
AVFilterContext *context = outlink->src;
|
|
SRContext *ctx = context->priv;
|
|
DNNReturnType result;
|
|
AVFilterLink *inlink = context->inputs[0];
|
|
int out_width, out_height;
|
|
|
|
// have a try run in case that the dnn model resize the frame
|
|
result = ff_dnn_get_output(&ctx->dnnctx, inlink->w, inlink->h, &out_width, &out_height);
|
|
if (result != DNN_SUCCESS) {
|
|
av_log(ctx, AV_LOG_ERROR, "could not get output from the model\n");
|
|
return AVERROR(EIO);
|
|
}
|
|
|
|
if (inlink->w != out_width || inlink->h != out_height) {
|
|
//espcn
|
|
outlink->w = out_width;
|
|
outlink->h = out_height;
|
|
if (inlink->format != AV_PIX_FMT_GRAY8){
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
|
|
int sws_src_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
|
|
int sws_src_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
|
|
int sws_dst_h = AV_CEIL_RSHIFT(outlink->h, desc->log2_chroma_h);
|
|
int sws_dst_w = AV_CEIL_RSHIFT(outlink->w, desc->log2_chroma_w);
|
|
ctx->sws_uv_scale = sws_getContext(sws_src_w, sws_src_h, AV_PIX_FMT_GRAY8,
|
|
sws_dst_w, sws_dst_h, AV_PIX_FMT_GRAY8,
|
|
SWS_BICUBIC, NULL, NULL, NULL);
|
|
ctx->sws_uv_height = sws_src_h;
|
|
}
|
|
} else {
|
|
//srcnn
|
|
outlink->w = out_width * ctx->scale_factor;
|
|
outlink->h = out_height * ctx->scale_factor;
|
|
ctx->sws_pre_scale = sws_getContext(inlink->w, inlink->h, inlink->format,
|
|
outlink->w, outlink->h, outlink->format,
|
|
SWS_BICUBIC, NULL, NULL, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
|
|
{
|
|
DNNAsyncStatusType async_state = 0;
|
|
AVFilterContext *context = inlink->dst;
|
|
SRContext *ctx = context->priv;
|
|
AVFilterLink *outlink = context->outputs[0];
|
|
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
|
|
DNNReturnType dnn_result;
|
|
|
|
if (!out){
|
|
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
|
|
av_frame_free(&in);
|
|
return AVERROR(ENOMEM);
|
|
}
|
|
av_frame_copy_props(out, in);
|
|
|
|
if (ctx->sws_pre_scale) {
|
|
sws_scale(ctx->sws_pre_scale,
|
|
(const uint8_t **)in->data, in->linesize, 0, in->height,
|
|
out->data, out->linesize);
|
|
dnn_result = ff_dnn_execute_model(&ctx->dnnctx, out, out);
|
|
} else {
|
|
dnn_result = ff_dnn_execute_model(&ctx->dnnctx, in, out);
|
|
}
|
|
|
|
if (dnn_result != DNN_SUCCESS){
|
|
av_log(ctx, AV_LOG_ERROR, "failed to execute loaded model\n");
|
|
av_frame_free(&in);
|
|
av_frame_free(&out);
|
|
return AVERROR(EIO);
|
|
}
|
|
|
|
do {
|
|
async_state = ff_dnn_get_result(&ctx->dnnctx, &in, &out);
|
|
} while (async_state == DAST_NOT_READY);
|
|
|
|
if (async_state != DAST_SUCCESS)
|
|
return AVERROR(EINVAL);
|
|
|
|
if (ctx->sws_uv_scale) {
|
|
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 1), in->linesize + 1,
|
|
0, ctx->sws_uv_height, out->data + 1, out->linesize + 1);
|
|
sws_scale(ctx->sws_uv_scale, (const uint8_t **)(in->data + 2), in->linesize + 2,
|
|
0, ctx->sws_uv_height, out->data + 2, out->linesize + 2);
|
|
}
|
|
|
|
av_frame_free(&in);
|
|
return ff_filter_frame(outlink, out);
|
|
}
|
|
|
|
static av_cold void uninit(AVFilterContext *context)
|
|
{
|
|
SRContext *sr_context = context->priv;
|
|
|
|
ff_dnn_uninit(&sr_context->dnnctx);
|
|
sws_freeContext(sr_context->sws_uv_scale);
|
|
sws_freeContext(sr_context->sws_pre_scale);
|
|
}
|
|
|
|
static const AVFilterPad sr_inputs[] = {
|
|
{
|
|
.name = "default",
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
.filter_frame = filter_frame,
|
|
},
|
|
};
|
|
|
|
static const AVFilterPad sr_outputs[] = {
|
|
{
|
|
.name = "default",
|
|
.config_props = config_output,
|
|
.type = AVMEDIA_TYPE_VIDEO,
|
|
},
|
|
};
|
|
|
|
const AVFilter ff_vf_sr = {
|
|
.name = "sr",
|
|
.description = NULL_IF_CONFIG_SMALL("Apply DNN-based image super resolution to the input."),
|
|
.priv_size = sizeof(SRContext),
|
|
.init = init,
|
|
.uninit = uninit,
|
|
.query_formats = query_formats,
|
|
FILTER_INPUTS(sr_inputs),
|
|
FILTER_OUTPUTS(sr_outputs),
|
|
.priv_class = &sr_class,
|
|
};
|