1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/mlpenc.c
Andreas Rheinhardt c81b8e04aa Avoid intermediate bitcount for number of bytes in PutBitContext
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
2021-03-30 12:36:32 +02:00

2400 lines
83 KiB
C

/**
* MLP encoder
* Copyright (c) 2008 Ramiro Polla
* Copyright (c) 2016-2019 Jai Luthra
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "internal.h"
#include "put_bits.h"
#include "audio_frame_queue.h"
#include "libavutil/crc.h"
#include "libavutil/avstring.h"
#include "libavutil/samplefmt.h"
#include "mlp.h"
#include "lpc.h"
#define MAJOR_HEADER_INTERVAL 16
#define MLP_MIN_LPC_ORDER 1
#define MLP_MAX_LPC_ORDER 8
#define MLP_MIN_LPC_SHIFT 8
#define MLP_MAX_LPC_SHIFT 15
typedef struct {
uint8_t min_channel; ///< The index of the first channel coded in this substream.
uint8_t max_channel; ///< The index of the last channel coded in this substream.
uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage.
uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams.
uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s).
int data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks.
int32_t lossless_check_data; ///< XOR of all output samples
uint8_t max_huff_lsbs; ///< largest huff_lsbs
uint8_t max_output_bits; ///< largest output bit-depth
} RestartHeader;
typedef struct {
uint8_t count; ///< number of matrices to apply
uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix
int32_t forco[MAX_MATRICES][MAX_CHANNELS+2]; ///< forward coefficients
int32_t coeff[MAX_MATRICES][MAX_CHANNELS+2]; ///< decoding coefficients
uint8_t fbits[MAX_CHANNELS]; ///< fraction bits
int8_t shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output.
} MatrixParams;
enum ParamFlags {
PARAMS_DEFAULT = 0xff,
PARAM_PRESENCE_FLAGS = 1 << 8,
PARAM_BLOCKSIZE = 1 << 7,
PARAM_MATRIX = 1 << 6,
PARAM_OUTSHIFT = 1 << 5,
PARAM_QUANTSTEP = 1 << 4,
PARAM_FIR = 1 << 3,
PARAM_IIR = 1 << 2,
PARAM_HUFFOFFSET = 1 << 1,
PARAM_PRESENT = 1 << 0,
};
typedef struct {
uint16_t blocksize; ///< number of PCM samples in current audio block
uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals
MatrixParams matrix_params;
uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
} DecodingParams;
typedef struct BestOffset {
int32_t offset;
int bitcount;
int lsb_bits;
int32_t min;
int32_t max;
} BestOffset;
#define HUFF_OFFSET_MIN (-16384)
#define HUFF_OFFSET_MAX ( 16383)
/** Number of possible codebooks (counting "no codebooks") */
#define NUM_CODEBOOKS 4
typedef struct {
AVCodecContext *avctx;
int num_substreams; ///< Number of substreams contained within this stream.
int num_channels; /**< Number of channels in major_scratch_buffer.
* Normal channels + noise channels. */
int coded_sample_fmt [2]; ///< sample format encoded for MLP
int coded_sample_rate[2]; ///< sample rate encoded for MLP
int coded_peak_bitrate; ///< peak bitrate for this major sync header
int flags; ///< major sync info flags
/* channel_meaning */
int substream_info;
int fs;
int wordlength;
int channel_occupancy;
int summary_info;
int32_t *inout_buffer; ///< Pointer to data currently being read from lavc or written to bitstream.
int32_t *major_inout_buffer; ///< Buffer with all in/out data for one entire major frame interval.
int32_t *write_buffer; ///< Pointer to data currently being written to bitstream.
int32_t *sample_buffer; ///< Pointer to current access unit samples.
int32_t *major_scratch_buffer; ///< Scratch buffer big enough to fit all data for one entire major frame interval.
int32_t *last_frame; ///< Pointer to last frame with data to encode.
int32_t *lpc_sample_buffer;
unsigned int major_number_of_frames;
unsigned int next_major_number_of_frames;
unsigned int major_frame_size; ///< Number of samples in current major frame being encoded.
unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame.
int32_t *lossless_check_data; ///< Array with lossless_check_data for each access unit.
unsigned int *max_output_bits; ///< largest output bit-depth
unsigned int *frame_size; ///< Array with number of samples/channel in each access unit.
unsigned int frame_index; ///< Index of current frame being encoded.
unsigned int one_sample_buffer_size; ///< Number of samples*channel for one access unit.
unsigned int max_restart_interval; ///< Max interval of access units in between two major frames.
unsigned int min_restart_interval; ///< Min interval of access units in between two major frames.
unsigned int restart_intervals; ///< Number of possible major frame sizes.
uint16_t timestamp; ///< Timestamp of current access unit.
uint16_t dts; ///< Decoding timestamp of current access unit.
uint8_t channel_arrangement; ///< channel arrangement for MLP streams
uint8_t ch_modifier_thd0; ///< channel modifier for TrueHD stream 0
uint8_t ch_modifier_thd1; ///< channel modifier for TrueHD stream 1
uint8_t ch_modifier_thd2; ///< channel modifier for TrueHD stream 2
unsigned int seq_size [MAJOR_HEADER_INTERVAL];
unsigned int seq_offset[MAJOR_HEADER_INTERVAL];
unsigned int sequence_size;
ChannelParams *channel_params;
BestOffset best_offset[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS][NUM_CODEBOOKS];
DecodingParams *decoding_params;
RestartHeader restart_header [MAX_SUBSTREAMS];
ChannelParams major_channel_params[MAJOR_HEADER_INTERVAL+1][MAX_CHANNELS]; ///< ChannelParams to be written to bitstream.
DecodingParams major_decoding_params[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< DecodingParams to be written to bitstream.
int major_params_changed[MAJOR_HEADER_INTERVAL+1][MAX_SUBSTREAMS]; ///< params_changed to be written to bitstream.
unsigned int major_cur_subblock_index;
unsigned int major_filter_state_subblock;
unsigned int major_number_of_subblocks;
BestOffset (*cur_best_offset)[NUM_CODEBOOKS];
ChannelParams *cur_channel_params;
DecodingParams *cur_decoding_params;
RestartHeader *cur_restart_header;
AudioFrameQueue afq;
/* Analysis stage. */
unsigned int starting_frame_index;
unsigned int number_of_frames;
unsigned int number_of_samples;
unsigned int number_of_subblocks;
unsigned int seq_index; ///< Sequence index for high compression levels.
ChannelParams *prev_channel_params;
DecodingParams *prev_decoding_params;
ChannelParams *seq_channel_params;
DecodingParams *seq_decoding_params;
unsigned int max_codebook_search;
LPCContext lpc_ctx;
} MLPEncodeContext;
static ChannelParams restart_channel_params[MAX_CHANNELS];
static DecodingParams restart_decoding_params[MAX_SUBSTREAMS];
static BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}};
#define SYNC_MAJOR 0xf8726f
#define MAJOR_SYNC_INFO_SIGNATURE 0xB752
#define SYNC_MLP 0xbb
#define SYNC_TRUEHD 0xba
/* must be set for DVD-A */
#define FLAGS_DVDA 0x4000
/* FIFO delay must be constant */
#define FLAGS_CONST 0x8000
#define SUBSTREAM_INFO_MAX_2_CHAN 0x01
#define SUBSTREAM_INFO_HIGH_RATE 0x02
#define SUBSTREAM_INFO_ALWAYS_SET 0x04
#define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
/****************************************************************************
************ Functions that copy, clear, or compare parameters *************
****************************************************************************/
/** Compares two FilterParams structures and returns 1 if anything has
* changed. Returns 0 if they are both equal.
*/
static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
{
const FilterParams *prev = &prev_cp->filter_params[filter];
const FilterParams *fp = &cp->filter_params[filter];
int i;
if (prev->order != fp->order)
return 1;
if (!prev->order)
return 0;
if (prev->shift != fp->shift)
return 1;
for (i = 0; i < fp->order; i++)
if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
return 1;
return 0;
}
/** Compare two primitive matrices and returns 1 if anything has changed.
* Returns 0 if they are both equal.
*/
static int compare_matrix_params(MLPEncodeContext *ctx, const MatrixParams *prev, const MatrixParams *mp)
{
RestartHeader *rh = ctx->cur_restart_header;
unsigned int channel, mat;
if (prev->count != mp->count)
return 1;
if (!prev->count)
return 0;
for (channel = rh->min_channel; channel <= rh->max_channel; channel++)
if (prev->fbits[channel] != mp->fbits[channel])
return 1;
for (mat = 0; mat < mp->count; mat++) {
if (prev->outch[mat] != mp->outch[mat])
return 1;
for (channel = 0; channel < ctx->num_channels; channel++)
if (prev->coeff[mat][channel] != mp->coeff[mat][channel])
return 1;
}
return 0;
}
/** Compares two DecodingParams and ChannelParams structures to decide if a
* new decoding params header has to be written.
*/
static int compare_decoding_params(MLPEncodeContext *ctx)
{
DecodingParams *prev = ctx->prev_decoding_params;
DecodingParams *dp = ctx->cur_decoding_params;
MatrixParams *prev_mp = &prev->matrix_params;
MatrixParams *mp = &dp->matrix_params;
RestartHeader *rh = ctx->cur_restart_header;
unsigned int ch;
int retval = 0;
if (prev->param_presence_flags != dp->param_presence_flags)
retval |= PARAM_PRESENCE_FLAGS;
if (prev->blocksize != dp->blocksize)
retval |= PARAM_BLOCKSIZE;
if (compare_matrix_params(ctx, prev_mp, mp))
retval |= PARAM_MATRIX;
for (ch = 0; ch <= rh->max_matrix_channel; ch++)
if (prev_mp->shift[ch] != mp->shift[ch]) {
retval |= PARAM_OUTSHIFT;
break;
}
for (ch = 0; ch <= rh->max_channel; ch++)
if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
retval |= PARAM_QUANTSTEP;
break;
}
for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *prev_cp = &ctx->prev_channel_params[ch];
ChannelParams *cp = &ctx->cur_channel_params[ch];
if (!(retval & PARAM_FIR) &&
compare_filter_params(prev_cp, cp, FIR))
retval |= PARAM_FIR;
if (!(retval & PARAM_IIR) &&
compare_filter_params(prev_cp, cp, IIR))
retval |= PARAM_IIR;
if (prev_cp->huff_offset != cp->huff_offset)
retval |= PARAM_HUFFOFFSET;
if (prev_cp->codebook != cp->codebook ||
prev_cp->huff_lsbs != cp->huff_lsbs )
retval |= 0x1;
}
return retval;
}
static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
{
FilterParams *dst = &dst_cp->filter_params[filter];
FilterParams *src = &src_cp->filter_params[filter];
unsigned int order;
dst->order = src->order;
if (dst->order) {
dst->shift = src->shift;
dst->coeff_shift = src->coeff_shift;
dst->coeff_bits = src->coeff_bits;
}
for (order = 0; order < dst->order; order++)
dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
}
static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
{
dst->count = src->count;
if (dst->count) {
unsigned int channel, count;
for (channel = 0; channel < MAX_CHANNELS; channel++) {
dst->fbits[channel] = src->fbits[channel];
dst->shift[channel] = src->shift[channel];
for (count = 0; count < MAX_MATRICES; count++)
dst->coeff[count][channel] = src->coeff[count][channel];
}
for (count = 0; count < MAX_MATRICES; count++)
dst->outch[count] = src->outch[count];
}
}
static void copy_restart_frame_params(MLPEncodeContext *ctx,
unsigned int substr)
{
unsigned int index;
for (index = 0; index < ctx->number_of_subblocks; index++) {
DecodingParams *dp = ctx->seq_decoding_params + index*(ctx->num_substreams) + substr;
unsigned int channel;
copy_matrix_params(&dp->matrix_params, &ctx->cur_decoding_params->matrix_params);
for (channel = 0; channel < ctx->avctx->channels; channel++) {
ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
unsigned int filter;
dp->quant_step_size[channel] = ctx->cur_decoding_params->quant_step_size[channel];
dp->matrix_params.shift[channel] = ctx->cur_decoding_params->matrix_params.shift[channel];
if (index)
for (filter = 0; filter < NUM_FILTERS; filter++)
copy_filter_params(cp, &ctx->cur_channel_params[channel], filter);
}
}
}
/** Clears a DecodingParams struct the way it should be after a restart header. */
static void clear_decoding_params(MLPEncodeContext *ctx, DecodingParams decoding_params[MAX_SUBSTREAMS])
{
unsigned int substr;
for (substr = 0; substr < ctx->num_substreams; substr++) {
DecodingParams *dp = &decoding_params[substr];
dp->param_presence_flags = 0xff;
dp->blocksize = 8;
memset(&dp->matrix_params , 0, sizeof(MatrixParams ));
memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
}
}
/** Clears a ChannelParams struct the way it should be after a restart header. */
static void clear_channel_params(MLPEncodeContext *ctx, ChannelParams channel_params[MAX_CHANNELS])
{
unsigned int channel;
for (channel = 0; channel < ctx->avctx->channels; channel++) {
ChannelParams *cp = &channel_params[channel];
memset(&cp->filter_params, 0, sizeof(cp->filter_params));
/* Default audio coding is 24-bit raw PCM. */
cp->huff_offset = 0;
cp->codebook = 0;
cp->huff_lsbs = 24;
}
}
/** Sets default vales in our encoder for a DecodingParams struct. */
static void default_decoding_params(MLPEncodeContext *ctx,
DecodingParams decoding_params[MAX_SUBSTREAMS])
{
unsigned int substr;
clear_decoding_params(ctx, decoding_params);
for (substr = 0; substr < ctx->num_substreams; substr++) {
DecodingParams *dp = &decoding_params[substr];
uint8_t param_presence_flags = 0;
param_presence_flags |= PARAM_BLOCKSIZE;
param_presence_flags |= PARAM_MATRIX;
param_presence_flags |= PARAM_OUTSHIFT;
param_presence_flags |= PARAM_QUANTSTEP;
param_presence_flags |= PARAM_FIR;
/* param_presence_flags |= PARAM_IIR; */
param_presence_flags |= PARAM_HUFFOFFSET;
param_presence_flags |= PARAM_PRESENT;
dp->param_presence_flags = param_presence_flags;
}
}
/****************************************************************************/
/** Calculates the smallest number of bits it takes to encode a given signed
* value in two's complement.
*/
static int inline number_sbits(int number)
{
if (number < -1)
number++;
return av_log2(FFABS(number)) + 1 + !!number;
}
enum InputBitDepth {
BITS_16,
BITS_20,
BITS_24,
};
static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
{
return ((peak_bitrate << 4) - 8) / sample_rate;
}
static av_cold int mlp_encode_init(AVCodecContext *avctx)
{
MLPEncodeContext *ctx = avctx->priv_data;
unsigned int substr, index;
unsigned int sum = 0;
unsigned int size;
int ret;
ctx->avctx = avctx;
switch (avctx->sample_rate) {
case 44100 << 0:
avctx->frame_size = 40 << 0;
ctx->coded_sample_rate[0] = 0x08 + 0;
ctx->fs = 0x08 + 1;
break;
case 44100 << 1:
avctx->frame_size = 40 << 1;
ctx->coded_sample_rate[0] = 0x08 + 1;
ctx->fs = 0x0C + 1;
break;
case 44100 << 2:
ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
avctx->frame_size = 40 << 2;
ctx->coded_sample_rate[0] = 0x08 + 2;
ctx->fs = 0x10 + 1;
break;
case 48000 << 0:
avctx->frame_size = 40 << 0;
ctx->coded_sample_rate[0] = 0x00 + 0;
ctx->fs = 0x08 + 2;
break;
case 48000 << 1:
avctx->frame_size = 40 << 1;
ctx->coded_sample_rate[0] = 0x00 + 1;
ctx->fs = 0x0C + 2;
break;
case 48000 << 2:
ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
avctx->frame_size = 40 << 2;
ctx->coded_sample_rate[0] = 0x00 + 2;
ctx->fs = 0x10 + 2;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported "
"sample rates are 44100, 88200, 176400, 48000, "
"96000, and 192000.\n", avctx->sample_rate);
return AVERROR(EINVAL);
}
ctx->coded_sample_rate[1] = -1 & 0xf;
/* TODO Keep count of bitrate and calculate real value. */
ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
/* TODO support more channels. */
if (avctx->channels > 2) {
av_log(avctx, AV_LOG_WARNING,
"Only mono and stereo are supported at the moment.\n");
}
ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
if (avctx->channels <= 2) {
ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
}
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_S16:
ctx->coded_sample_fmt[0] = BITS_16;
ctx->wordlength = 16;
avctx->bits_per_raw_sample = 16;
break;
/* TODO 20 bits: */
case AV_SAMPLE_FMT_S32:
ctx->coded_sample_fmt[0] = BITS_24;
ctx->wordlength = 24;
avctx->bits_per_raw_sample = 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Sample format not supported. "
"Only 16- and 24-bit samples are supported.\n");
return AVERROR(EINVAL);
}
ctx->coded_sample_fmt[1] = -1 & 0xf;
ctx->dts = -avctx->frame_size;
ctx->num_channels = avctx->channels + 2; /* +2 noise channels */
ctx->one_sample_buffer_size = avctx->frame_size
* ctx->num_channels;
/* TODO Let user pass major header interval as parameter. */
ctx->max_restart_interval = MAJOR_HEADER_INTERVAL;
ctx->max_codebook_search = 3;
ctx->min_restart_interval = MAJOR_HEADER_INTERVAL;
ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
/* TODO Let user pass parameters for LPC filter. */
size = avctx->frame_size * ctx->max_restart_interval;
ctx->lpc_sample_buffer = av_malloc_array(size, sizeof(int32_t));
if (!ctx->lpc_sample_buffer) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for buffering samples.\n");
return AVERROR(ENOMEM);
}
size = ctx->one_sample_buffer_size * ctx->max_restart_interval;
ctx->major_scratch_buffer = av_malloc_array(size, sizeof(int32_t));
if (!ctx->major_scratch_buffer) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for buffering samples.\n");
return AVERROR(ENOMEM);
}
ctx->major_inout_buffer = av_malloc_array(size, sizeof(int32_t));
if (!ctx->major_inout_buffer) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for buffering samples.\n");
return AVERROR(ENOMEM);
}
ff_mlp_init_crc();
ctx->num_substreams = 1; // TODO: change this after adding multi-channel support for TrueHD
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
/* MLP */
switch(avctx->channel_layout) {
case AV_CH_LAYOUT_MONO:
ctx->channel_arrangement = 0; break;
case AV_CH_LAYOUT_STEREO:
ctx->channel_arrangement = 1; break;
case AV_CH_LAYOUT_2_1:
ctx->channel_arrangement = 2; break;
case AV_CH_LAYOUT_QUAD:
ctx->channel_arrangement = 3; break;
case AV_CH_LAYOUT_2POINT1:
ctx->channel_arrangement = 4; break;
case AV_CH_LAYOUT_SURROUND:
ctx->channel_arrangement = 7; break;
case AV_CH_LAYOUT_4POINT0:
ctx->channel_arrangement = 8; break;
case AV_CH_LAYOUT_5POINT0_BACK:
ctx->channel_arrangement = 9; break;
case AV_CH_LAYOUT_3POINT1:
ctx->channel_arrangement = 10; break;
case AV_CH_LAYOUT_4POINT1:
ctx->channel_arrangement = 11; break;
case AV_CH_LAYOUT_5POINT1_BACK:
ctx->channel_arrangement = 12; break;
default:
av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
return AVERROR(EINVAL);
}
ctx->flags = FLAGS_DVDA;
ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ;
} else {
/* TrueHD */
switch(avctx->channel_layout) {
case AV_CH_LAYOUT_STEREO:
ctx->ch_modifier_thd0 = 0;
ctx->ch_modifier_thd1 = 0;
ctx->ch_modifier_thd2 = 0;
ctx->channel_arrangement = 1;
break;
case AV_CH_LAYOUT_5POINT0_BACK:
ctx->ch_modifier_thd0 = 1;
ctx->ch_modifier_thd1 = 1;
ctx->ch_modifier_thd2 = 1;
ctx->channel_arrangement = 11;
break;
case AV_CH_LAYOUT_5POINT1_BACK:
ctx->ch_modifier_thd0 = 2;
ctx->ch_modifier_thd1 = 1;
ctx->ch_modifier_thd2 = 2;
ctx->channel_arrangement = 15;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unsupported channel arrangement\n");
return AVERROR(EINVAL);
}
ctx->flags = 0;
ctx->channel_occupancy = 0;
ctx->summary_info = 0;
}
size = sizeof(unsigned int) * ctx->max_restart_interval;
ctx->frame_size = av_malloc(size);
if (!ctx->frame_size)
return AVERROR(ENOMEM);
ctx->max_output_bits = av_malloc(size);
if (!ctx->max_output_bits)
return AVERROR(ENOMEM);
size = sizeof(int32_t)
* ctx->num_substreams * ctx->max_restart_interval;
ctx->lossless_check_data = av_malloc(size);
if (!ctx->lossless_check_data)
return AVERROR(ENOMEM);
for (index = 0; index < ctx->restart_intervals; index++) {
ctx->seq_offset[index] = sum;
ctx->seq_size [index] = ((index + 1) * ctx->min_restart_interval) + 1;
sum += ctx->seq_size[index];
}
ctx->sequence_size = sum;
size = sizeof(ChannelParams)
* ctx->restart_intervals * ctx->sequence_size * ctx->avctx->channels;
ctx->channel_params = av_malloc(size);
if (!ctx->channel_params) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for analysis context.\n");
return AVERROR(ENOMEM);
}
size = sizeof(DecodingParams)
* ctx->restart_intervals * ctx->sequence_size * ctx->num_substreams;
ctx->decoding_params = av_malloc(size);
if (!ctx->decoding_params) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for analysis context.\n");
return AVERROR(ENOMEM);
}
for (substr = 0; substr < ctx->num_substreams; substr++) {
RestartHeader *rh = &ctx->restart_header [substr];
/* TODO see if noisegen_seed is really worth it. */
rh->noisegen_seed = 0;
rh->min_channel = 0;
rh->max_channel = avctx->channels - 1;
/* FIXME: this works for 1 and 2 channels, but check for more */
rh->max_matrix_channel = rh->max_channel;
}
clear_channel_params(ctx, restart_channel_params);
clear_decoding_params(ctx, restart_decoding_params);
if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->number_of_samples,
MLP_MAX_LPC_ORDER, FF_LPC_TYPE_LEVINSON)) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Not enough memory for LPC context.\n");
return ret;
}
ff_af_queue_init(avctx, &ctx->afq);
return 0;
}
/****************************************************************************
****************** Functions that write to the bitstream *******************
****************************************************************************/
/** Writes a major sync header to the bitstream. */
static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
{
PutBitContext pb;
init_put_bits(&pb, buf, buf_size);
put_bits(&pb, 24, SYNC_MAJOR );
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
put_bits(&pb, 8, SYNC_MLP );
put_bits(&pb, 4, ctx->coded_sample_fmt [0]);
put_bits(&pb, 4, ctx->coded_sample_fmt [1]);
put_bits(&pb, 4, ctx->coded_sample_rate[0]);
put_bits(&pb, 4, ctx->coded_sample_rate[1]);
put_bits(&pb, 4, 0 ); /* ignored */
put_bits(&pb, 4, 0 ); /* multi_channel_type */
put_bits(&pb, 3, 0 ); /* ignored */
put_bits(&pb, 5, ctx->channel_arrangement );
} else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
put_bits(&pb, 8, SYNC_TRUEHD );
put_bits(&pb, 4, ctx->coded_sample_rate[0]);
put_bits(&pb, 4, 0 ); /* ignored */
put_bits(&pb, 2, ctx->ch_modifier_thd0 );
put_bits(&pb, 2, ctx->ch_modifier_thd1 );
put_bits(&pb, 5, ctx->channel_arrangement );
put_bits(&pb, 2, ctx->ch_modifier_thd2 );
put_bits(&pb, 13, ctx->channel_arrangement );
}
put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
put_bits(&pb, 16, ctx->flags );
put_bits(&pb, 16, 0 ); /* ignored */
put_bits(&pb, 1, 1 ); /* is_vbr */
put_bits(&pb, 15, ctx->coded_peak_bitrate );
put_bits(&pb, 4, 1 ); /* num_substreams */
put_bits(&pb, 4, 0x1 ); /* ignored */
/* channel_meaning */
put_bits(&pb, 8, ctx->substream_info );
put_bits(&pb, 5, ctx->fs );
put_bits(&pb, 5, ctx->wordlength );
put_bits(&pb, 6, ctx->channel_occupancy );
put_bits(&pb, 3, 0 ); /* ignored */
put_bits(&pb, 10, 0 ); /* speaker_layout */
put_bits(&pb, 3, 0 ); /* copy_protection */
put_bits(&pb, 16, 0x8080 ); /* ignored */
put_bits(&pb, 7, 0 ); /* ignored */
put_bits(&pb, 4, 0 ); /* source_format */
put_bits(&pb, 5, ctx->summary_info );
flush_put_bits(&pb);
AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
}
/** Writes a restart header to the bitstream. Damaged streams can start being
* decoded losslessly again after such a header and the subsequent decoding
* params header.
*/
static void write_restart_header(MLPEncodeContext *ctx, PutBitContext *pb)
{
RestartHeader *rh = ctx->cur_restart_header;
uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data);
unsigned int start_count = put_bits_count(pb);
PutBitContext tmpb;
uint8_t checksum;
unsigned int ch;
put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */
put_bits(pb, 16, ctx->timestamp );
put_bits(pb, 4, rh->min_channel );
put_bits(pb, 4, rh->max_channel );
put_bits(pb, 4, rh->max_matrix_channel);
put_bits(pb, 4, rh->noise_shift );
put_bits(pb, 23, rh->noisegen_seed );
put_bits(pb, 4, 0 ); /* TODO max_shift */
put_bits(pb, 5, rh->max_huff_lsbs );
put_bits(pb, 5, rh->max_output_bits );
put_bits(pb, 5, rh->max_output_bits );
put_bits(pb, 1, rh->data_check_present);
put_bits(pb, 8, lossless_check );
put_bits(pb, 16, 0 ); /* ignored */
for (ch = 0; ch <= rh->max_matrix_channel; ch++)
put_bits(pb, 6, ch);
/* Data must be flushed for the checksum to be correct. */
tmpb = *pb;
flush_put_bits(&tmpb);
checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
put_bits(pb, 8, checksum);
}
/** Writes matrix params for all primitive matrices to the bitstream. */
static void write_matrix_params(MLPEncodeContext *ctx, PutBitContext *pb)
{
DecodingParams *dp = ctx->cur_decoding_params;
MatrixParams *mp = &dp->matrix_params;
unsigned int mat;
put_bits(pb, 4, mp->count);
for (mat = 0; mat < mp->count; mat++) {
unsigned int channel;
put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
put_bits(pb, 4, mp->fbits[mat]);
put_bits(pb, 1, 0 ); /* lsb_bypass */
for (channel = 0; channel < ctx->num_channels; channel++) {
int32_t coeff = mp->coeff[mat][channel];
if (coeff) {
put_bits(pb, 1, 1);
coeff >>= 14 - mp->fbits[mat];
put_sbits(pb, mp->fbits[mat] + 2, coeff);
} else {
put_bits(pb, 1, 0);
}
}
}
}
/** Writes filter parameters for one filter to the bitstream. */
static void write_filter_params(MLPEncodeContext *ctx, PutBitContext *pb,
unsigned int channel, unsigned int filter)
{
FilterParams *fp = &ctx->cur_channel_params[channel].filter_params[filter];
put_bits(pb, 4, fp->order);
if (fp->order > 0) {
int i;
int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
put_bits(pb, 4, fp->shift );
put_bits(pb, 5, fp->coeff_bits );
put_bits(pb, 3, fp->coeff_shift);
for (i = 0; i < fp->order; i++) {
put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
}
/* TODO state data for IIR filter. */
put_bits(pb, 1, 0);
}
}
/** Writes decoding parameters to the bitstream. These change very often,
* usually at almost every frame.
*/
static void write_decoding_params(MLPEncodeContext *ctx, PutBitContext *pb,
int params_changed)
{
DecodingParams *dp = ctx->cur_decoding_params;
RestartHeader *rh = ctx->cur_restart_header;
MatrixParams *mp = &dp->matrix_params;
unsigned int ch;
if (dp->param_presence_flags != PARAMS_DEFAULT &&
params_changed & PARAM_PRESENCE_FLAGS) {
put_bits(pb, 1, 1);
put_bits(pb, 8, dp->param_presence_flags);
} else {
put_bits(pb, 1, 0);
}
if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
if (params_changed & PARAM_BLOCKSIZE) {
put_bits(pb, 1, 1);
put_bits(pb, 9, dp->blocksize);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_MATRIX) {
if (params_changed & PARAM_MATRIX) {
put_bits(pb, 1, 1);
write_matrix_params(ctx, pb);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_OUTSHIFT) {
if (params_changed & PARAM_OUTSHIFT) {
put_bits(pb, 1, 1);
for (ch = 0; ch <= rh->max_matrix_channel; ch++)
put_sbits(pb, 4, mp->shift[ch]);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_QUANTSTEP) {
if (params_changed & PARAM_QUANTSTEP) {
put_bits(pb, 1, 1);
for (ch = 0; ch <= rh->max_channel; ch++)
put_bits(pb, 4, dp->quant_step_size[ch]);
} else {
put_bits(pb, 1, 0);
}
}
for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &ctx->cur_channel_params[ch];
if (dp->param_presence_flags & 0xF) {
put_bits(pb, 1, 1);
if (dp->param_presence_flags & PARAM_FIR) {
if (params_changed & PARAM_FIR) {
put_bits(pb, 1, 1);
write_filter_params(ctx, pb, ch, FIR);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_IIR) {
if (params_changed & PARAM_IIR) {
put_bits(pb, 1, 1);
write_filter_params(ctx, pb, ch, IIR);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
if (params_changed & PARAM_HUFFOFFSET) {
put_bits (pb, 1, 1);
put_sbits(pb, 15, cp->huff_offset);
} else {
put_bits(pb, 1, 0);
}
}
if (cp->codebook > 0 && cp->huff_lsbs > 24) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs\n");
}
put_bits(pb, 2, cp->codebook );
put_bits(pb, 5, cp->huff_lsbs);
} else {
put_bits(pb, 1, 0);
}
}
}
/** Writes the residuals to the bitstream. That is, the VLC codes from the
* codebooks (if any is used), and then the residual.
*/
static void write_block_data(MLPEncodeContext *ctx, PutBitContext *pb)
{
DecodingParams *dp = ctx->cur_decoding_params;
RestartHeader *rh = ctx->cur_restart_header;
int32_t *sample_buffer = ctx->write_buffer;
int32_t sign_huff_offset[MAX_CHANNELS];
int codebook_index [MAX_CHANNELS];
int lsb_bits [MAX_CHANNELS];
unsigned int i, ch;
for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &ctx->cur_channel_params[ch];
int sign_shift;
lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
codebook_index [ch] = cp->codebook - 1;
sign_huff_offset[ch] = cp->huff_offset;
sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1);
if (cp->codebook > 0)
sign_huff_offset[ch] -= 7 << lsb_bits[ch];
/* Unsign if needed. */
if (sign_shift >= 0)
sign_huff_offset[ch] -= 1 << sign_shift;
}
for (i = 0; i < dp->blocksize; i++) {
for (ch = rh->min_channel; ch <= rh->max_channel; ch++) {
int32_t sample = *sample_buffer++ >> dp->quant_step_size[ch];
sample -= sign_huff_offset[ch];
if (codebook_index[ch] >= 0) {
int vlc = sample >> lsb_bits[ch];
put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
}
put_sbits(pb, lsb_bits[ch], sample);
}
sample_buffer += 2; /* noise channels */
}
ctx->write_buffer = sample_buffer;
}
/** Writes the substreams data to the bitstream. */
static uint8_t *write_substrs(MLPEncodeContext *ctx, uint8_t *buf, int buf_size,
int restart_frame,
uint16_t substream_data_len[MAX_SUBSTREAMS])
{
int32_t *lossless_check_data = ctx->lossless_check_data;
unsigned int substr;
int end = 0;
lossless_check_data += ctx->frame_index * ctx->num_substreams;
for (substr = 0; substr < ctx->num_substreams; substr++) {
unsigned int cur_subblock_index = ctx->major_cur_subblock_index;
unsigned int num_subblocks = ctx->major_filter_state_subblock;
unsigned int subblock;
RestartHeader *rh = &ctx->restart_header [substr];
int substr_restart_frame = restart_frame;
uint8_t parity, checksum;
PutBitContext pb;
int params_changed;
ctx->cur_restart_header = rh;
init_put_bits(&pb, buf, buf_size);
for (subblock = 0; subblock <= num_subblocks; subblock++) {
unsigned int subblock_index;
subblock_index = cur_subblock_index++;
ctx->cur_decoding_params = &ctx->major_decoding_params[subblock_index][substr];
ctx->cur_channel_params = ctx->major_channel_params[subblock_index];
params_changed = ctx->major_params_changed[subblock_index][substr];
if (substr_restart_frame || params_changed) {
put_bits(&pb, 1, 1);
if (substr_restart_frame) {
put_bits(&pb, 1, 1);
write_restart_header(ctx, &pb);
rh->lossless_check_data = 0;
} else {
put_bits(&pb, 1, 0);
}
write_decoding_params(ctx, &pb, params_changed);
} else {
put_bits(&pb, 1, 0);
}
write_block_data(ctx, &pb);
put_bits(&pb, 1, !substr_restart_frame);
substr_restart_frame = 0;
}
put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
rh->lossless_check_data ^= *lossless_check_data++;
if (ctx->last_frame == ctx->inout_buffer) {
/* TODO find a sample and implement shorten_by. */
put_bits(&pb, 32, END_OF_STREAM);
}
/* Data must be flushed for the checksum and parity to be correct;
* notice that we already are word-aligned here. */
flush_put_bits(&pb);
parity = ff_mlp_calculate_parity(buf, put_bytes_output(&pb)) ^ 0xa9;
checksum = ff_mlp_checksum8 (buf, put_bytes_output(&pb));
put_bits(&pb, 8, parity );
put_bits(&pb, 8, checksum);
flush_put_bits(&pb);
end += put_bytes_output(&pb);
substream_data_len[substr] = end;
buf += put_bytes_output(&pb);
}
ctx->major_cur_subblock_index += ctx->major_filter_state_subblock + 1;
ctx->major_filter_state_subblock = 0;
return buf;
}
/** Writes the access unit and substream headers to the bitstream. */
static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
uint8_t *substream_headers, unsigned int length,
int restart_frame,
uint16_t substream_data_len[MAX_SUBSTREAMS])
{
uint16_t access_unit_header = 0;
uint16_t parity_nibble = 0;
unsigned int substr;
parity_nibble = ctx->dts;
parity_nibble ^= length;
for (substr = 0; substr < ctx->num_substreams; substr++) {
uint16_t substr_hdr = 0;
substr_hdr |= (0 << 15); /* extraword */
substr_hdr |= (!restart_frame << 14); /* !restart_frame */
substr_hdr |= (1 << 13); /* checkdata */
substr_hdr |= (0 << 12); /* ??? */
substr_hdr |= (substream_data_len[substr] / 2) & 0x0FFF;
AV_WB16(substream_headers, substr_hdr);
parity_nibble ^= *substream_headers++;
parity_nibble ^= *substream_headers++;
}
parity_nibble ^= parity_nibble >> 8;
parity_nibble ^= parity_nibble >> 4;
parity_nibble &= 0xF;
access_unit_header |= (parity_nibble ^ 0xF) << 12;
access_unit_header |= length & 0xFFF;
AV_WB16(frame_header , access_unit_header);
AV_WB16(frame_header+2, ctx->dts );
}
/** Writes an entire access unit to the bitstream. */
static unsigned int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
int buf_size, int restart_frame)
{
uint16_t substream_data_len[MAX_SUBSTREAMS];
uint8_t *buf1, *buf0 = buf;
unsigned int substr;
int total_length;
if (buf_size < 4)
return AVERROR(EINVAL);
/* Frame header will be written at the end. */
buf += 4;
buf_size -= 4;
if (restart_frame) {
if (buf_size < 28)
return AVERROR(EINVAL);
write_major_sync(ctx, buf, buf_size);
buf += 28;
buf_size -= 28;
}
buf1 = buf;
/* Substream headers will be written at the end. */
for (substr = 0; substr < ctx->num_substreams; substr++) {
buf += 2;
buf_size -= 2;
}
buf = write_substrs(ctx, buf, buf_size, restart_frame, substream_data_len);
total_length = buf - buf0;
write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
return total_length;
}
/****************************************************************************
****************** Functions that input data to context ********************
****************************************************************************/
/** Inputs data from the samples passed by lavc into the context, shifts them
* appropriately depending on the bit-depth, and calculates the
* lossless_check_data that will be written to the restart header.
*/
static void input_data_internal(MLPEncodeContext *ctx, const uint8_t *samples,
int is24)
{
int32_t *lossless_check_data = ctx->lossless_check_data;
const int32_t *samples_32 = (const int32_t *) samples;
const int16_t *samples_16 = (const int16_t *) samples;
unsigned int substr;
lossless_check_data += ctx->frame_index * ctx->num_substreams;
for (substr = 0; substr < ctx->num_substreams; substr++) {
RestartHeader *rh = &ctx->restart_header [substr];
int32_t *sample_buffer = ctx->inout_buffer;
int32_t temp_lossless_check_data = 0;
uint32_t greatest = 0;
unsigned int channel;
int i;
for (i = 0; i < ctx->frame_size[ctx->frame_index]; i++) {
for (channel = 0; channel <= rh->max_channel; channel++) {
uint32_t abs_sample;
int32_t sample;
sample = is24 ? *samples_32++ >> 8 : *samples_16++ * 256;
/* TODO Find out if number_sbits can be used for negative values. */
abs_sample = FFABS(sample);
if (greatest < abs_sample)
greatest = abs_sample;
temp_lossless_check_data ^= (sample & 0x00ffffff) << channel;
*sample_buffer++ = sample;
}
sample_buffer += 2; /* noise channels */
}
ctx->max_output_bits[ctx->frame_index] = number_sbits(greatest);
*lossless_check_data++ = temp_lossless_check_data;
}
}
/** Wrapper function for inputting data in two different bit-depths. */
static void input_data(MLPEncodeContext *ctx, void *samples)
{
if (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32)
input_data_internal(ctx, samples, 1);
else
input_data_internal(ctx, samples, 0);
}
static void input_to_sample_buffer(MLPEncodeContext *ctx)
{
int32_t *sample_buffer = ctx->sample_buffer;
unsigned int index;
for (index = 0; index < ctx->number_of_frames; index++) {
unsigned int cur_index = (ctx->starting_frame_index + index) % ctx->max_restart_interval;
int32_t *input_buffer = ctx->inout_buffer + cur_index * ctx->one_sample_buffer_size;
unsigned int i, channel;
for (i = 0; i < ctx->frame_size[cur_index]; i++) {
for (channel = 0; channel < ctx->avctx->channels; channel++)
*sample_buffer++ = *input_buffer++;
sample_buffer += 2; /* noise_channels */
input_buffer += 2; /* noise_channels */
}
}
}
/****************************************************************************
********* Functions that analyze the data and set the parameters ***********
****************************************************************************/
/** Counts the number of trailing zeroes in a value */
static int number_trailing_zeroes(int32_t sample)
{
int bits;
for (bits = 0; bits < 24 && !(sample & (1<<bits)); bits++);
/* All samples are 0. TODO Return previous quant_step_size to avoid
* writing a new header. */
if (bits == 24)
return 0;
return bits;
}
/** Determines how many bits are zero at the end of all samples so they can be
* shifted out.
*/
static void determine_quant_step_size(MLPEncodeContext *ctx)
{
DecodingParams *dp = ctx->cur_decoding_params;
RestartHeader *rh = ctx->cur_restart_header;
MatrixParams *mp = &dp->matrix_params;
int32_t *sample_buffer = ctx->sample_buffer;
int32_t sample_mask[MAX_CHANNELS];
unsigned int channel;
int i;
memset(sample_mask, 0x00, sizeof(sample_mask));
for (i = 0; i < ctx->number_of_samples; i++) {
for (channel = 0; channel <= rh->max_channel; channel++)
sample_mask[channel] |= *sample_buffer++;
sample_buffer += 2; /* noise channels */
}
for (channel = 0; channel <= rh->max_channel; channel++)
dp->quant_step_size[channel] = number_trailing_zeroes(sample_mask[channel]) - mp->shift[channel];
}
/** Determines the smallest number of bits needed to encode the filter
* coefficients, and if it's possible to right-shift their values without
* losing any precision.
*/
static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, int32_t *fcoeff)
{
int min = INT_MAX, max = INT_MIN;
int bits, shift;
int coeff_mask = 0;
int order;
for (order = 0; order < fp->order; order++) {
int coeff = fcoeff[order];
if (coeff < min)
min = coeff;
if (coeff > max)
max = coeff;
coeff_mask |= coeff;
}
bits = FFMAX(number_sbits(min), number_sbits(max));
for (shift = 0; shift < 7 && bits + shift < 16 && !(coeff_mask & (1<<shift)); shift++);
fp->coeff_bits = bits;
fp->coeff_shift = shift;
}
/** Determines the best filter parameters for the given data and writes the
* necessary information to the context.
* TODO Add IIR filter predictor!
*/
static void set_filter_params(MLPEncodeContext *ctx,
unsigned int channel, unsigned int filter,
int clear_filter)
{
ChannelParams *cp = &ctx->cur_channel_params[channel];
FilterParams *fp = &cp->filter_params[filter];
if ((filter == IIR && ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE) ||
clear_filter) {
fp->order = 0;
} else if (filter == IIR) {
fp->order = 0;
} else if (filter == FIR) {
const int max_order = (ctx->substream_info & SUBSTREAM_INFO_HIGH_RATE)
? 4 : MLP_MAX_LPC_ORDER;
int32_t *sample_buffer = ctx->sample_buffer + channel;
int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
int32_t *lpc_samples = ctx->lpc_sample_buffer;
int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
int shift[MLP_MAX_LPC_ORDER];
unsigned int i;
int order;
for (i = 0; i < ctx->number_of_samples; i++) {
*lpc_samples++ = *sample_buffer;
sample_buffer += ctx->num_channels;
}
order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
ctx->number_of_samples, MLP_MIN_LPC_ORDER,
max_order, 11, coefs, shift, FF_LPC_TYPE_LEVINSON, 0,
ORDER_METHOD_EST, MLP_MIN_LPC_SHIFT,
MLP_MAX_LPC_SHIFT, MLP_MIN_LPC_SHIFT);
fp->order = order;
fp->shift = shift[order-1];
for (i = 0; i < order; i++)
fcoeff[i] = coefs[order-1][i];
code_filter_coeffs(ctx, fp, fcoeff);
}
}
/** Tries to determine a good prediction filter, and applies it to the samples
* buffer if the filter is good enough. Sets the filter data to be cleared if
* no good filter was found.
*/
static void determine_filters(MLPEncodeContext *ctx)
{
RestartHeader *rh = ctx->cur_restart_header;
int channel, filter;
for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
for (filter = 0; filter < NUM_FILTERS; filter++)
set_filter_params(ctx, channel, filter, 0);
}
}
enum MLPChMode {
MLP_CHMODE_LEFT_RIGHT,
MLP_CHMODE_LEFT_SIDE,
MLP_CHMODE_RIGHT_SIDE,
MLP_CHMODE_MID_SIDE,
};
static enum MLPChMode estimate_stereo_mode(MLPEncodeContext *ctx)
{
uint64_t score[4], sum[4] = { 0, 0, 0, 0, };
int32_t *right_ch = ctx->sample_buffer + 1;
int32_t *left_ch = ctx->sample_buffer;
int i;
enum MLPChMode best = 0;
for(i = 2; i < ctx->number_of_samples; i++) {
int32_t left = left_ch [i * ctx->num_channels] - 2 * left_ch [(i - 1) * ctx->num_channels] + left_ch [(i - 2) * ctx->num_channels];
int32_t right = right_ch[i * ctx->num_channels] - 2 * right_ch[(i - 1) * ctx->num_channels] + right_ch[(i - 2) * ctx->num_channels];
sum[0] += FFABS( left );
sum[1] += FFABS( right);
sum[2] += FFABS((left + right) >> 1);
sum[3] += FFABS( left - right);
}
score[MLP_CHMODE_LEFT_RIGHT] = sum[0] + sum[1];
score[MLP_CHMODE_LEFT_SIDE] = sum[0] + sum[3];
score[MLP_CHMODE_RIGHT_SIDE] = sum[1] + sum[3];
score[MLP_CHMODE_MID_SIDE] = sum[2] + sum[3];
for(i = 1; i < 3; i++)
if(score[i] < score[best])
best = i;
return best;
}
/** Determines how many fractional bits are needed to encode matrix
* coefficients. Also shifts the coefficients to fit within 2.14 bits.
*/
static void code_matrix_coeffs(MLPEncodeContext *ctx, unsigned int mat)
{
DecodingParams *dp = ctx->cur_decoding_params;
MatrixParams *mp = &dp->matrix_params;
int32_t coeff_mask = 0;
unsigned int channel;
unsigned int bits;
for (channel = 0; channel < ctx->num_channels; channel++) {
int32_t coeff = mp->coeff[mat][channel];
coeff_mask |= coeff;
}
for (bits = 0; bits < 14 && !(coeff_mask & (1<<bits)); bits++);
mp->fbits [mat] = 14 - bits;
}
/** Determines best coefficients to use for the lossless matrix. */
static void lossless_matrix_coeffs(MLPEncodeContext *ctx)
{
DecodingParams *dp = ctx->cur_decoding_params;
MatrixParams *mp = &dp->matrix_params;
unsigned int shift = 0;
unsigned int channel;
int mat;
enum MLPChMode mode;
/* No decorrelation for non-stereo. */
if (ctx->num_channels - 2 != 2) {
mp->count = 0;
return;
}
mode = estimate_stereo_mode(ctx);
switch(mode) {
/* TODO: add matrix for MID_SIDE */
case MLP_CHMODE_MID_SIDE:
case MLP_CHMODE_LEFT_RIGHT:
mp->count = 0;
break;
case MLP_CHMODE_LEFT_SIDE:
mp->count = 1;
mp->outch[0] = 1;
mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = -(1 << 14);
mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
break;
case MLP_CHMODE_RIGHT_SIDE:
mp->count = 1;
mp->outch[0] = 0;
mp->coeff[0][0] = 1 << 14; mp->coeff[0][1] = 1 << 14;
mp->coeff[0][2] = 0 << 14; mp->coeff[0][2] = 0 << 14;
mp->forco[0][0] = 1 << 14; mp->forco[0][1] = -(1 << 14);
mp->forco[0][2] = 0 << 14; mp->forco[0][2] = 0 << 14;
break;
}
for (mat = 0; mat < mp->count; mat++)
code_matrix_coeffs(ctx, mat);
for (channel = 0; channel < ctx->num_channels; channel++)
mp->shift[channel] = shift;
}
/** Min and max values that can be encoded with each codebook. The values for
* the third codebook take into account the fact that the sign shift for this
* codebook is outside the coded value, so it has one more bit of precision.
* It should actually be -7 -> 7, shifted down by 0.5.
*/
static const int codebook_extremes[3][2] = {
{-9, 8}, {-8, 7}, {-15, 14},
};
/** Determines the amount of bits needed to encode the samples using no
* codebooks and a specified offset.
*/
static void no_codebook_bits_offset(MLPEncodeContext *ctx,
unsigned int channel, int16_t offset,
int32_t min, int32_t max,
BestOffset *bo)
{
DecodingParams *dp = ctx->cur_decoding_params;
int32_t unsign = 0;
int lsb_bits;
min -= offset;
max -= offset;
lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
lsb_bits += !!lsb_bits;
if (lsb_bits > 0)
unsign = 1 << (lsb_bits - 1);
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize;
bo->min = offset - unsign + 1;
bo->max = offset + unsign;
}
/** Determines the least amount of bits needed to encode the samples using no
* codebooks.
*/
static void no_codebook_bits(MLPEncodeContext *ctx,
unsigned int channel,
int32_t min, int32_t max,
BestOffset *bo)
{
DecodingParams *dp = ctx->cur_decoding_params;
int16_t offset;
int32_t unsign = 0;
uint32_t diff;
int lsb_bits;
/* Set offset inside huffoffset's boundaries by adjusting extremes
* so that more bits are used, thus shifting the offset. */
if (min < HUFF_OFFSET_MIN)
max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
if (max > HUFF_OFFSET_MAX)
min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
/* Determine offset and minimum number of bits. */
diff = max - min;
lsb_bits = number_sbits(diff) - 1;
if (lsb_bits > 0)
unsign = 1 << (lsb_bits - 1);
/* If all samples are the same (lsb_bits == 0), offset must be
* adjusted because of sign_shift. */
offset = min + diff / 2 + !!lsb_bits;
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize;
bo->min = max - unsign + 1;
bo->max = min + unsign;
}
/** Determines the least amount of bits needed to encode the samples using a
* given codebook and a given offset.
*/
static inline void codebook_bits_offset(MLPEncodeContext *ctx,
unsigned int channel, int codebook,
int32_t sample_min, int32_t sample_max,
int16_t offset, BestOffset *bo)
{
int32_t codebook_min = codebook_extremes[codebook][0];
int32_t codebook_max = codebook_extremes[codebook][1];
int32_t *sample_buffer = ctx->sample_buffer + channel;
DecodingParams *dp = ctx->cur_decoding_params;
int codebook_offset = 7 + (2 - codebook);
int32_t unsign_offset = offset;
int lsb_bits = 0, bitcount = 0;
int offset_min = INT_MAX, offset_max = INT_MAX;
int unsign, mask;
int i;
sample_min -= offset;
sample_max -= offset;
while (sample_min < codebook_min || sample_max > codebook_max) {
lsb_bits++;
sample_min >>= 1;
sample_max >>= 1;
}
unsign = 1 << lsb_bits;
mask = unsign - 1;
if (codebook == 2) {
unsign_offset -= unsign;
lsb_bits++;
}
for (i = 0; i < dp->blocksize; i++) {
int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
int temp_min, temp_max;
sample -= unsign_offset;
temp_min = sample & mask;
if (temp_min < offset_min)
offset_min = temp_min;
temp_max = unsign - temp_min - 1;
if (temp_max < offset_max)
offset_max = temp_max;
sample >>= lsb_bits;
bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
sample_buffer += ctx->num_channels;
}
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize + bitcount;
bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
}
/** Determines the least amount of bits needed to encode the samples using a
* given codebook. Searches for the best offset to minimize the bits.
*/
static inline void codebook_bits(MLPEncodeContext *ctx,
unsigned int channel, int codebook,
int offset, int32_t min, int32_t max,
BestOffset *bo, int direction)
{
int previous_count = INT_MAX;
int offset_min, offset_max;
int is_greater = 0;
offset_min = FFMAX(min, HUFF_OFFSET_MIN);
offset_max = FFMIN(max, HUFF_OFFSET_MAX);
while (offset <= offset_max && offset >= offset_min) {
BestOffset temp_bo;
codebook_bits_offset(ctx, channel, codebook,
min, max, offset,
&temp_bo);
if (temp_bo.bitcount < previous_count) {
if (temp_bo.bitcount < bo->bitcount)
*bo = temp_bo;
is_greater = 0;
} else if (++is_greater >= ctx->max_codebook_search)
break;
previous_count = temp_bo.bitcount;
if (direction) {
offset = temp_bo.max + 1;
} else {
offset = temp_bo.min - 1;
}
}
}
/** Determines the least amount of bits needed to encode the samples using
* any or no codebook.
*/
static void determine_bits(MLPEncodeContext *ctx)
{
DecodingParams *dp = ctx->cur_decoding_params;
RestartHeader *rh = ctx->cur_restart_header;
unsigned int channel;
for (channel = 0; channel <= rh->max_channel; channel++) {
ChannelParams *cp = &ctx->cur_channel_params[channel];
int32_t *sample_buffer = ctx->sample_buffer + channel;
int32_t min = INT32_MAX, max = INT32_MIN;
int no_filters_used = !cp->filter_params[FIR].order;
int average = 0;
int offset = 0;
int i;
/* Determine extremes and average. */
for (i = 0; i < dp->blocksize; i++) {
int32_t sample = *sample_buffer >> dp->quant_step_size[channel];
if (sample < min)
min = sample;
if (sample > max)
max = sample;
average += sample;
sample_buffer += ctx->num_channels;
}
average /= dp->blocksize;
/* If filtering is used, we always set the offset to zero, otherwise
* we search for the offset that minimizes the bitcount. */
if (no_filters_used) {
no_codebook_bits(ctx, channel, min, max, &ctx->cur_best_offset[channel][0]);
offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
} else {
no_codebook_bits_offset(ctx, channel, offset, min, max, &ctx->cur_best_offset[channel][0]);
}
for (i = 1; i < NUM_CODEBOOKS; i++) {
BestOffset temp_bo = { 0, INT_MAX, 0, 0, 0, };
int16_t offset_max;
codebook_bits_offset(ctx, channel, i - 1,
min, max, offset,
&temp_bo);
if (no_filters_used) {
offset_max = temp_bo.max;
codebook_bits(ctx, channel, i - 1, temp_bo.min - 1,
min, max, &temp_bo, 0);
codebook_bits(ctx, channel, i - 1, offset_max + 1,
min, max, &temp_bo, 1);
}
ctx->cur_best_offset[channel][i] = temp_bo;
}
}
}
/****************************************************************************
*************** Functions that process the data in some way ****************
****************************************************************************/
#define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
#define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
#define MSB_MASK(bits) (-(int)(1u << (bits)))
/** Applies the filter to the current samples, and saves the residual back
* into the samples buffer. If the filter is too bad and overflows the
* maximum amount of bits allowed (24), the samples buffer is left as is and
* the function returns -1.
*/
static int apply_filter(MLPEncodeContext *ctx, unsigned int channel)
{
FilterParams *fp[NUM_FILTERS] = { &ctx->cur_channel_params[channel].filter_params[FIR],
&ctx->cur_channel_params[channel].filter_params[IIR], };
int32_t *filter_state_buffer[NUM_FILTERS] = { NULL };
int32_t mask = MSB_MASK(ctx->cur_decoding_params->quant_step_size[channel]);
int32_t *sample_buffer = ctx->sample_buffer + channel;
unsigned int number_of_samples = ctx->number_of_samples;
unsigned int filter_shift = fp[FIR]->shift;
int filter;
int i, ret = 0;
for (i = 0; i < NUM_FILTERS; i++) {
unsigned int size = ctx->number_of_samples;
filter_state_buffer[i] = av_malloc(size*sizeof(int32_t));
if (!filter_state_buffer[i]) {
av_log(ctx->avctx, AV_LOG_ERROR,
"Not enough memory for applying filters.\n");
ret = AVERROR(ENOMEM);
goto free_and_return;
}
}
for (i = 0; i < 8; i++) {
filter_state_buffer[FIR][i] = *sample_buffer;
filter_state_buffer[IIR][i] = *sample_buffer;
sample_buffer += ctx->num_channels;
}
for (i = 8; i < number_of_samples; i++) {
int32_t sample = *sample_buffer;
unsigned int order;
int64_t accum = 0;
int64_t residual;
for (filter = 0; filter < NUM_FILTERS; filter++) {
int32_t *fcoeff = ctx->cur_channel_params[channel].coeff[filter];
for (order = 0; order < fp[filter]->order; order++)
accum += (int64_t)filter_state_buffer[filter][i - 1 - order] *
fcoeff[order];
}
accum >>= filter_shift;
residual = sample - (accum & mask);
if (residual < SAMPLE_MIN(24) || residual > SAMPLE_MAX(24)) {
ret = AVERROR_INVALIDDATA;
goto free_and_return;
}
filter_state_buffer[FIR][i] = sample;
filter_state_buffer[IIR][i] = (int32_t) residual;
sample_buffer += ctx->num_channels;
}
sample_buffer = ctx->sample_buffer + channel;
for (i = 0; i < number_of_samples; i++) {
*sample_buffer = filter_state_buffer[IIR][i];
sample_buffer += ctx->num_channels;
}
free_and_return:
for (i = 0; i < NUM_FILTERS; i++) {
av_freep(&filter_state_buffer[i]);
}
return ret;
}
static void apply_filters(MLPEncodeContext *ctx)
{
RestartHeader *rh = ctx->cur_restart_header;
int channel;
for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
if (apply_filter(ctx, channel) < 0) {
/* Filter is horribly wrong.
* Clear filter params and update state. */
set_filter_params(ctx, channel, FIR, 1);
set_filter_params(ctx, channel, IIR, 1);
apply_filter(ctx, channel);
}
}
}
/** Generates two noise channels worth of data. */
static void generate_2_noise_channels(MLPEncodeContext *ctx)
{
int32_t *sample_buffer = ctx->sample_buffer + ctx->num_channels - 2;
RestartHeader *rh = ctx->cur_restart_header;
unsigned int i;
uint32_t seed = rh->noisegen_seed;
for (i = 0; i < ctx->number_of_samples; i++) {
uint16_t seed_shr7 = seed >> 7;
*sample_buffer++ = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift);
*sample_buffer++ = ((int8_t) seed_shr7) * (1 << rh->noise_shift);
seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
sample_buffer += ctx->num_channels - 2;
}
rh->noisegen_seed = seed & ((1 << 24)-1);
}
/** Rematrixes all channels using chosen coefficients. */
static void rematrix_channels(MLPEncodeContext *ctx)
{
DecodingParams *dp = ctx->cur_decoding_params;
MatrixParams *mp = &dp->matrix_params;
int32_t *sample_buffer = ctx->sample_buffer;
unsigned int mat, i, maxchan;
maxchan = ctx->num_channels;
for (mat = 0; mat < mp->count; mat++) {
unsigned int msb_mask_bits = (ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S16 ? 8 : 0) - mp->shift[mat];
int32_t mask = MSB_MASK(msb_mask_bits);
unsigned int outch = mp->outch[mat];
sample_buffer = ctx->sample_buffer;
for (i = 0; i < ctx->number_of_samples; i++) {
unsigned int src_ch;
int64_t accum = 0;
for (src_ch = 0; src_ch < maxchan; src_ch++) {
int32_t sample = *(sample_buffer + src_ch);
accum += (int64_t) sample * mp->forco[mat][src_ch];
}
sample_buffer[outch] = (accum >> 14) & mask;
sample_buffer += ctx->num_channels;
}
}
}
/****************************************************************************
**** Functions that deal with determining the best parameters and output ***
****************************************************************************/
typedef struct {
char path[MAJOR_HEADER_INTERVAL + 2];
int cur_idx;
int bitcount;
} PathCounter;
#define CODEBOOK_CHANGE_BITS 21
static void clear_path_counter(PathCounter *path_counter)
{
memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter));
}
static int compare_best_offset(BestOffset *prev, BestOffset *cur)
{
if (prev->lsb_bits != cur->lsb_bits)
return 1;
return 0;
}
static int best_codebook_path_cost(MLPEncodeContext *ctx, unsigned int channel,
PathCounter *src, int cur_codebook)
{
int idx = src->cur_idx;
BestOffset *cur_bo = ctx->best_offset[idx][channel],
*prev_bo = idx ? ctx->best_offset[idx - 1][channel] : restart_best_offset;
int bitcount = src->bitcount;
int prev_codebook = src->path[idx];
bitcount += cur_bo[cur_codebook].bitcount;
if (prev_codebook != cur_codebook ||
compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
bitcount += CODEBOOK_CHANGE_BITS;
return bitcount;
}
static void set_best_codebook(MLPEncodeContext *ctx)
{
DecodingParams *dp = ctx->cur_decoding_params;
RestartHeader *rh = ctx->cur_restart_header;
unsigned int channel;
for (channel = rh->min_channel; channel <= rh->max_channel; channel++) {
BestOffset *cur_bo, *prev_bo = restart_best_offset;
PathCounter path_counter[NUM_CODEBOOKS + 1];
unsigned int best_codebook;
unsigned int index;
char *best_path;
clear_path_counter(path_counter);
for (index = 0; index < ctx->number_of_subblocks; index++) {
unsigned int best_bitcount = INT_MAX;
unsigned int codebook;
cur_bo = ctx->best_offset[index][channel];
for (codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
int prev_best_bitcount = INT_MAX;
int last_best;
for (last_best = 0; last_best < 2; last_best++) {
PathCounter *dst_path = &path_counter[codebook];
PathCounter *src_path;
int temp_bitcount;
/* First test last path with same headers,
* then with last best. */
if (last_best) {
src_path = &path_counter[NUM_CODEBOOKS];
} else {
if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
continue;
else
src_path = &path_counter[codebook];
}
temp_bitcount = best_codebook_path_cost(ctx, channel, src_path, codebook);
if (temp_bitcount < best_bitcount) {
best_bitcount = temp_bitcount;
best_codebook = codebook;
}
if (temp_bitcount < prev_best_bitcount) {
prev_best_bitcount = temp_bitcount;
if (src_path != dst_path)
memcpy(dst_path, src_path, sizeof(PathCounter));
if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1)
dst_path->path[++dst_path->cur_idx] = codebook;
dst_path->bitcount = temp_bitcount;
}
}
}
prev_bo = cur_bo;
memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
}
best_path = path_counter[NUM_CODEBOOKS].path + 1;
/* Update context. */
for (index = 0; index < ctx->number_of_subblocks; index++) {
ChannelParams *cp = ctx->seq_channel_params + index*(ctx->avctx->channels) + channel;
best_codebook = *best_path++;
cur_bo = &ctx->best_offset[index][channel][best_codebook];
cp->huff_offset = cur_bo->offset;
cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel];
cp->codebook = best_codebook;
}
}
}
/** Analyzes all collected bitcounts and selects the best parameters for each
* individual access unit.
* TODO This is just a stub!
*/
static void set_major_params(MLPEncodeContext *ctx)
{
RestartHeader *rh = ctx->cur_restart_header;
unsigned int index;
unsigned int substr;
uint8_t max_huff_lsbs = 0;
uint8_t max_output_bits = 0;
for (substr = 0; substr < ctx->num_substreams; substr++) {
DecodingParams *seq_dp = (DecodingParams *) ctx->decoding_params+
(ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
(ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
ChannelParams *seq_cp = (ChannelParams *) ctx->channel_params +
(ctx->restart_intervals - 1)*(ctx->sequence_size)*(ctx->avctx->channels) +
(ctx->seq_offset[ctx->restart_intervals - 1])*(ctx->avctx->channels);
unsigned int channel;
for (index = 0; index < ctx->seq_size[ctx->restart_intervals-1]; index++) {
memcpy(&ctx->major_decoding_params[index][substr], seq_dp + index*(ctx->num_substreams) + substr, sizeof(DecodingParams));
for (channel = 0; channel < ctx->avctx->channels; channel++) {
uint8_t huff_lsbs = (seq_cp + index*(ctx->avctx->channels) + channel)->huff_lsbs;
if (max_huff_lsbs < huff_lsbs)
max_huff_lsbs = huff_lsbs;
memcpy(&ctx->major_channel_params[index][channel],
(seq_cp + index*(ctx->avctx->channels) + channel),
sizeof(ChannelParams));
}
}
}
rh->max_huff_lsbs = max_huff_lsbs;
for (index = 0; index < ctx->number_of_frames; index++)
if (max_output_bits < ctx->max_output_bits[index])
max_output_bits = ctx->max_output_bits[index];
rh->max_output_bits = max_output_bits;
for (substr = 0; substr < ctx->num_substreams; substr++) {
ctx->cur_restart_header = &ctx->restart_header[substr];
ctx->prev_decoding_params = &restart_decoding_params[substr];
ctx->prev_channel_params = restart_channel_params;
for (index = 0; index < MAJOR_HEADER_INTERVAL + 1; index++) {
ctx->cur_decoding_params = &ctx->major_decoding_params[index][substr];
ctx->cur_channel_params = ctx->major_channel_params[index];
ctx->major_params_changed[index][substr] = compare_decoding_params(ctx);
ctx->prev_decoding_params = ctx->cur_decoding_params;
ctx->prev_channel_params = ctx->cur_channel_params;
}
}
ctx->major_number_of_subblocks = ctx->number_of_subblocks;
ctx->major_filter_state_subblock = 1;
ctx->major_cur_subblock_index = 0;
}
static void analyze_sample_buffer(MLPEncodeContext *ctx)
{
ChannelParams *seq_cp = ctx->seq_channel_params;
DecodingParams *seq_dp = ctx->seq_decoding_params;
unsigned int index;
unsigned int substr;
for (substr = 0; substr < ctx->num_substreams; substr++) {
ctx->cur_restart_header = &ctx->restart_header[substr];
ctx->cur_decoding_params = seq_dp + 1*(ctx->num_substreams) + substr;
ctx->cur_channel_params = seq_cp + 1*(ctx->avctx->channels);
determine_quant_step_size(ctx);
generate_2_noise_channels(ctx);
lossless_matrix_coeffs (ctx);
rematrix_channels (ctx);
determine_filters (ctx);
apply_filters (ctx);
copy_restart_frame_params(ctx, substr);
/* Copy frame_size from frames 0...max to decoding_params 1...max + 1
* decoding_params[0] is for the filter state subblock.
*/
for (index = 0; index < ctx->number_of_frames; index++) {
DecodingParams *dp = seq_dp + (index + 1)*(ctx->num_substreams) + substr;
dp->blocksize = ctx->frame_size[index];
}
/* The official encoder seems to always encode a filter state subblock
* even if there are no filters. TODO check if it is possible to skip
* the filter state subblock for no filters.
*/
(seq_dp + substr)->blocksize = 8;
(seq_dp + 1*(ctx->num_substreams) + substr)->blocksize -= 8;
for (index = 0; index < ctx->number_of_subblocks; index++) {
ctx->cur_decoding_params = seq_dp + index*(ctx->num_substreams) + substr;
ctx->cur_channel_params = seq_cp + index*(ctx->avctx->channels);
ctx->cur_best_offset = ctx->best_offset[index];
determine_bits(ctx);
ctx->sample_buffer += ctx->cur_decoding_params->blocksize * ctx->num_channels;
}
set_best_codebook(ctx);
}
}
static void process_major_frame(MLPEncodeContext *ctx)
{
unsigned int substr;
ctx->sample_buffer = ctx->major_inout_buffer;
ctx->starting_frame_index = 0;
ctx->number_of_frames = ctx->major_number_of_frames;
ctx->number_of_samples = ctx->major_frame_size;
for (substr = 0; substr < ctx->num_substreams; substr++) {
ctx->cur_restart_header = &ctx->restart_header[substr];
ctx->cur_decoding_params = &ctx->major_decoding_params[1][substr];
ctx->cur_channel_params = ctx->major_channel_params[1];
generate_2_noise_channels(ctx);
rematrix_channels (ctx);
apply_filters(ctx);
}
}
/****************************************************************************/
static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet)
{
MLPEncodeContext *ctx = avctx->priv_data;
unsigned int bytes_written = 0;
int restart_frame, ret;
uint8_t *data;
if ((ret = ff_alloc_packet2(avctx, avpkt, 87500 * avctx->channels, 0)) < 0)
return ret;
/* add current frame to queue */
if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
return ret;
data = frame->data[0];
ctx->frame_index = avctx->frame_number % ctx->max_restart_interval;
ctx->inout_buffer = ctx->major_inout_buffer
+ ctx->frame_index * ctx->one_sample_buffer_size;
if (ctx->last_frame == ctx->inout_buffer) {
return 0;
}
ctx->sample_buffer = ctx->major_scratch_buffer
+ ctx->frame_index * ctx->one_sample_buffer_size;
ctx->write_buffer = ctx->inout_buffer;
if (avctx->frame_number < ctx->max_restart_interval) {
if (data) {
goto input_and_return;
} else {
/* There are less frames than the requested major header interval.
* Update the context to reflect this.
*/
ctx->max_restart_interval = avctx->frame_number;
ctx->frame_index = 0;
ctx->sample_buffer = ctx->major_scratch_buffer;
ctx->inout_buffer = ctx->major_inout_buffer;
}
}
if (ctx->frame_size[ctx->frame_index] > MAX_BLOCKSIZE) {
av_log(avctx, AV_LOG_ERROR, "Invalid frame size (%d > %d)\n",
ctx->frame_size[ctx->frame_index], MAX_BLOCKSIZE);
return AVERROR_INVALIDDATA;
}
restart_frame = !ctx->frame_index;
if (restart_frame) {
set_major_params(ctx);
if (ctx->min_restart_interval != ctx->max_restart_interval)
process_major_frame(ctx);
}
if (ctx->min_restart_interval == ctx->max_restart_interval)
ctx->write_buffer = ctx->sample_buffer;
bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
ctx->timestamp += ctx->frame_size[ctx->frame_index];
ctx->dts += ctx->frame_size[ctx->frame_index];
input_and_return:
if (data) {
ctx->frame_size[ctx->frame_index] = avctx->frame_size;
ctx->next_major_frame_size += avctx->frame_size;
ctx->next_major_number_of_frames++;
input_data(ctx, data);
} else if (!ctx->last_frame) {
ctx->last_frame = ctx->inout_buffer;
}
restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
if (!restart_frame) {
int seq_index;
for (seq_index = 0;
seq_index < ctx->restart_intervals && (seq_index * ctx->min_restart_interval) <= ctx->avctx->frame_number;
seq_index++) {
unsigned int number_of_samples = 0;
unsigned int index;
ctx->sample_buffer = ctx->major_scratch_buffer;
ctx->inout_buffer = ctx->major_inout_buffer;
ctx->seq_index = seq_index;
ctx->starting_frame_index = (ctx->avctx->frame_number - (ctx->avctx->frame_number % ctx->min_restart_interval)
- (seq_index * ctx->min_restart_interval)) % ctx->max_restart_interval;
ctx->number_of_frames = ctx->next_major_number_of_frames;
ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
ctx->seq_channel_params = (ChannelParams *) ctx->channel_params +
(ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->avctx->channels) +
(ctx->seq_offset[seq_index])*(ctx->avctx->channels);
ctx->seq_decoding_params = (DecodingParams *) ctx->decoding_params +
(ctx->frame_index / ctx->min_restart_interval)*(ctx->sequence_size)*(ctx->num_substreams) +
(ctx->seq_offset[seq_index])*(ctx->num_substreams);
for (index = 0; index < ctx->number_of_frames; index++) {
number_of_samples += ctx->frame_size[(ctx->starting_frame_index + index) % ctx->max_restart_interval];
}
ctx->number_of_samples = number_of_samples;
for (index = 0; index < ctx->seq_size[seq_index]; index++) {
clear_channel_params(ctx, ctx->seq_channel_params + index*(ctx->avctx->channels));
default_decoding_params(ctx, ctx->seq_decoding_params + index*(ctx->num_substreams));
}
input_to_sample_buffer(ctx);
analyze_sample_buffer(ctx);
}
if (ctx->frame_index == (ctx->max_restart_interval - 1)) {
ctx->major_frame_size = ctx->next_major_frame_size;
ctx->next_major_frame_size = 0;
ctx->major_number_of_frames = ctx->next_major_number_of_frames;
ctx->next_major_number_of_frames = 0;
if (!ctx->major_frame_size)
goto no_data_left;
}
}
no_data_left:
ff_af_queue_remove(&ctx->afq, avctx->frame_size, &avpkt->pts,
&avpkt->duration);
avpkt->size = bytes_written;
*got_packet = 1;
return 0;
}
static av_cold int mlp_encode_close(AVCodecContext *avctx)
{
MLPEncodeContext *ctx = avctx->priv_data;
ff_lpc_end(&ctx->lpc_ctx);
av_freep(&ctx->lossless_check_data);
av_freep(&ctx->major_scratch_buffer);
av_freep(&ctx->major_inout_buffer);
av_freep(&ctx->lpc_sample_buffer);
av_freep(&ctx->decoding_params);
av_freep(&ctx->channel_params);
av_freep(&ctx->frame_size);
av_freep(&ctx->max_output_bits);
ff_af_queue_close(&ctx->afq);
return 0;
}
#if CONFIG_MLP_ENCODER
AVCodec ff_mlp_encoder = {
.name ="mlp",
.long_name = NULL_IF_CONFIG_SMALL("MLP (Meridian Lossless Packing)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_MLP,
.priv_data_size = sizeof(MLPEncodeContext),
.init = mlp_encode_init,
.encode2 = mlp_encode_frame,
.close = mlp_encode_close,
.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL,
.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
.channel_layouts = ff_mlp_channel_layouts,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#endif
#if CONFIG_TRUEHD_ENCODER
AVCodec ff_truehd_encoder = {
.name ="truehd",
.long_name = NULL_IF_CONFIG_SMALL("TrueHD"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_TRUEHD,
.priv_data_size = sizeof(MLPEncodeContext),
.init = mlp_encode_init,
.encode2 = mlp_encode_frame,
.close = mlp_encode_close,
.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL,
.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE},
.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
.channel_layouts = (const uint64_t[]) {AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_5POINT1_BACK, 0},
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#endif