1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/af_astats.c
2023-05-25 19:51:39 +02:00

886 lines
40 KiB
C

/*
* Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
* Copyright (c) 2013 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"
#define HISTOGRAM_SIZE 8192
#define HISTOGRAM_MAX (HISTOGRAM_SIZE-1)
#define MEASURE_ALL UINT_MAX
#define MEASURE_NONE 0
#define MEASURE_DC_OFFSET (1 << 0)
#define MEASURE_MIN_LEVEL (1 << 1)
#define MEASURE_MAX_LEVEL (1 << 2)
#define MEASURE_MIN_DIFFERENCE (1 << 3)
#define MEASURE_MAX_DIFFERENCE (1 << 4)
#define MEASURE_MEAN_DIFFERENCE (1 << 5)
#define MEASURE_RMS_DIFFERENCE (1 << 6)
#define MEASURE_PEAK_LEVEL (1 << 7)
#define MEASURE_RMS_LEVEL (1 << 8)
#define MEASURE_RMS_PEAK (1 << 9)
#define MEASURE_RMS_TROUGH (1 << 10)
#define MEASURE_CREST_FACTOR (1 << 11)
#define MEASURE_FLAT_FACTOR (1 << 12)
#define MEASURE_PEAK_COUNT (1 << 13)
#define MEASURE_BIT_DEPTH (1 << 14)
#define MEASURE_DYNAMIC_RANGE (1 << 15)
#define MEASURE_ZERO_CROSSINGS (1 << 16)
#define MEASURE_ZERO_CROSSINGS_RATE (1 << 17)
#define MEASURE_NUMBER_OF_SAMPLES (1 << 18)
#define MEASURE_NUMBER_OF_NANS (1 << 19)
#define MEASURE_NUMBER_OF_INFS (1 << 20)
#define MEASURE_NUMBER_OF_DENORMALS (1 << 21)
#define MEASURE_NOISE_FLOOR (1 << 22)
#define MEASURE_NOISE_FLOOR_COUNT (1 << 23)
#define MEASURE_ENTROPY (1 << 24)
#define MEASURE_ABS_PEAK_COUNT (1 << 25)
#define MEASURE_MINMAXPEAK (MEASURE_MIN_LEVEL | MEASURE_MAX_LEVEL | MEASURE_PEAK_LEVEL)
typedef struct ChannelStats {
double last;
double last_non_zero;
double min_non_zero;
double sigma_x, sigma_x2;
double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
double min, max;
double nmin, nmax;
double min_run, max_run;
double min_runs, max_runs;
double min_diff, max_diff;
double diff1_sum;
double diff1_sum_x2;
double abs_peak;
uint64_t mask, imask;
uint64_t min_count, max_count;
uint64_t abs_peak_count;
uint64_t noise_floor_count;
uint64_t zero_runs;
uint64_t nb_samples;
uint64_t nb_nans;
uint64_t nb_infs;
uint64_t nb_denormals;
double *win_samples;
uint64_t histogram[HISTOGRAM_SIZE];
uint64_t ehistogram[HISTOGRAM_SIZE];
int win_pos;
int max_index;
double noise_floor;
double entropy;
} ChannelStats;
typedef struct AudioStatsContext {
const AVClass *class;
ChannelStats *chstats;
int nb_channels;
uint64_t tc_samples;
double time_constant;
double mult;
int metadata;
int used;
int reset_count;
int nb_frames;
int maxbitdepth;
int measure_perchannel;
int measure_overall;
int is_float;
int is_double;
} AudioStatsContext;
#define OFFSET(x) offsetof(AudioStatsContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption astats_options[] = {
{ "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, 0, 10, FLAGS },
{ "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "reset", "Set the number of frames over which cumulative stats are calculated before being reset", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
{ "measure_perchannel", "Select the parameters which are measured per channel", OFFSET(measure_perchannel), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
{ "none" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE }, 0, 0, FLAGS, "measure" },
{ "all" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL }, 0, 0, FLAGS, "measure" },
{ "Bit_depth" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_BIT_DEPTH }, 0, 0, FLAGS, "measure" },
{ "Crest_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST_FACTOR }, 0, 0, FLAGS, "measure" },
{ "DC_offset" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DC_OFFSET }, 0, 0, FLAGS, "measure" },
{ "Dynamic_range" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DYNAMIC_RANGE }, 0, 0, FLAGS, "measure" },
{ "Entropy" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, FLAGS, "measure" },
{ "Flat_factor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLAT_FACTOR }, 0, 0, FLAGS, "measure" },
{ "Max_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_DIFFERENCE }, 0, 0, FLAGS, "measure" },
{ "Max_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MAX_LEVEL }, 0, 0, FLAGS, "measure" },
{ "Mean_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
{ "Min_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_DIFFERENCE }, 0, 0, FLAGS, "measure" },
{ "Min_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MIN_LEVEL }, 0, 0, FLAGS, "measure" },
{ "Noise_floor" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR }, 0, 0, FLAGS, "measure" },
{ "Noise_floor_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NOISE_FLOOR_COUNT }, 0, 0, FLAGS, "measure" },
{ "Number_of_Infs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_INFS }, 0, 0, FLAGS, "measure" },
{ "Number_of_NaNs" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_NANS }, 0, 0, FLAGS, "measure" },
{ "Number_of_denormals" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_DENORMALS }, 0, 0, FLAGS, "measure" },
{ "Number_of_samples" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NUMBER_OF_SAMPLES }, 0, 0, FLAGS, "measure" },
{ "Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_COUNT }, 0, 0, FLAGS, "measure" },
{ "Peak_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_PEAK_LEVEL }, 0, 0, FLAGS, "measure" },
{ "RMS_difference" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_DIFFERENCE }, 0, 0, FLAGS, "measure" },
{ "RMS_level" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_LEVEL }, 0, 0, FLAGS, "measure" },
{ "RMS_peak" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_PEAK }, 0, 0, FLAGS, "measure" },
{ "RMS_trough" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_RMS_TROUGH }, 0, 0, FLAGS, "measure" },
{ "Zero_crossings" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS }, 0, 0, FLAGS, "measure" },
{ "Zero_crossings_rate" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ZERO_CROSSINGS_RATE }, 0, 0, FLAGS, "measure" },
{ "Abs_Peak_count" , "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ABS_PEAK_COUNT }, 0, 0, FLAGS, "measure" },
{ "measure_overall", "Select the parameters which are measured overall", OFFSET(measure_overall), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, FLAGS, "measure" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(astats);
static void reset_stats(AudioStatsContext *s)
{
int c;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
p->max = p->nmax = p->max_sigma_x2 =-DBL_MAX;
p->abs_peak = 0;
p->min_non_zero = DBL_MAX;
p->min_diff = DBL_MAX;
p->max_diff = 0;
p->sigma_x = 0;
p->sigma_x2 = 0;
p->avg_sigma_x2 = 0;
p->min_run = 0;
p->max_run = 0;
p->min_runs = 0;
p->max_runs = 0;
p->diff1_sum = 0;
p->diff1_sum_x2 = 0;
p->mask = 0;
p->imask = 0xFFFFFFFFFFFFFFFF;
p->min_count = 0;
p->max_count = 0;
p->abs_peak_count = 0;
p->zero_runs = 0;
p->nb_samples = 0;
p->nb_nans = 0;
p->nb_infs = 0;
p->nb_denormals = 0;
p->last = NAN;
p->noise_floor = NAN;
p->noise_floor_count = 0;
p->entropy = 0;
p->win_pos = 0;
memset(p->win_samples, 0, s->tc_samples * sizeof(*p->win_samples));
memset(p->histogram, 0, sizeof(p->histogram));
memset(p->ehistogram, 0, sizeof(p->ehistogram));
}
}
static int config_output(AVFilterLink *outlink)
{
AudioStatsContext *s = outlink->src->priv;
s->chstats = av_calloc(sizeof(*s->chstats), outlink->ch_layout.nb_channels);
if (!s->chstats)
return AVERROR(ENOMEM);
s->tc_samples = FFMAX(s->time_constant * outlink->sample_rate + .5, 1);
s->nb_channels = outlink->ch_layout.nb_channels;
for (int i = 0; i < s->nb_channels; i++) {
ChannelStats *p = &s->chstats[i];
p->win_samples = av_calloc(s->tc_samples, sizeof(*p->win_samples));
if (!p->win_samples)
return AVERROR(ENOMEM);
}
s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
s->nb_frames = 0;
s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
s->is_double = outlink->format == AV_SAMPLE_FMT_DBL ||
outlink->format == AV_SAMPLE_FMT_DBLP;
s->is_float = outlink->format == AV_SAMPLE_FMT_FLT ||
outlink->format == AV_SAMPLE_FMT_FLTP;
reset_stats(s);
return 0;
}
static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
{
unsigned result = s->maxbitdepth;
mask = mask & (~imask);
for (; result && !(mask & 1); --result, mask >>= 1);
depth->den = result;
depth->num = 0;
for (; result; --result, mask >>= 1)
if (mask & 1)
depth->num++;
}
static double calc_entropy(AudioStatsContext *s, ChannelStats *p)
{
double entropy = 0.;
for (int i = 0; i < HISTOGRAM_SIZE; i++) {
double entry = p->ehistogram[i] / ((double)p->nb_samples);
if (entry > 1e-8)
entropy += entry * log2(entry);
}
return -entropy / log2(HISTOGRAM_SIZE);
}
static inline void update_minmax(AudioStatsContext *s, ChannelStats *p, double d)
{
if (d < p->min)
p->min = d;
if (d > p->max)
p->max = d;
}
static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
{
double abs_d = FFABS(d);
double drop;
int index;
if (p->abs_peak < abs_d) {
p->abs_peak = abs_d;
p->abs_peak_count = 1;
} else if (p->abs_peak == abs_d) {
p->abs_peak_count++;
}
if (d < p->min) {
p->min = d;
p->nmin = nd;
p->min_run = 1;
p->min_runs = 0;
p->min_count = 1;
} else if (d == p->min) {
p->min_count++;
p->min_run = d == p->last ? p->min_run + 1 : 1;
} else if (p->last == p->min) {
p->min_runs += p->min_run * p->min_run;
}
if (d != 0 && FFABS(d) < p->min_non_zero)
p->min_non_zero = FFABS(d);
if (d > p->max) {
p->max = d;
p->nmax = nd;
p->max_run = 1;
p->max_runs = 0;
p->max_count = 1;
} else if (d == p->max) {
p->max_count++;
p->max_run = d == p->last ? p->max_run + 1 : 1;
} else if (p->last == p->max) {
p->max_runs += p->max_run * p->max_run;
}
if (d != 0) {
p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
p->last_non_zero = d;
}
p->sigma_x += nd;
p->sigma_x2 += nd * nd;
p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
if (!isnan(p->last)) {
p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
p->diff1_sum += fabs(d - p->last);
p->diff1_sum_x2 += (d - p->last) * (d - p->last);
}
p->last = d;
p->mask |= i;
p->imask &= i;
drop = p->win_samples[p->win_pos];
p->win_samples[p->win_pos] = nd;
index = av_clip(lrint(av_clipd(FFABS(nd), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX);
p->max_index = FFMAX(p->max_index, index);
p->histogram[index]++;
p->ehistogram[index]++;
if (!isnan(p->noise_floor))
p->histogram[av_clip(lrint(av_clipd(FFABS(drop), 0.0, 1.0) * HISTOGRAM_MAX), 0, HISTOGRAM_MAX)]--;
p->win_pos++;
while (p->histogram[p->max_index] == 0)
p->max_index--;
if (p->win_pos >= s->tc_samples || !isnan(p->noise_floor)) {
double noise_floor = 1.;
for (int i = p->max_index; i >= 0; i--) {
if (p->histogram[i]) {
noise_floor = i / (double)HISTOGRAM_MAX;
break;
}
}
if (isnan(p->noise_floor)) {
p->noise_floor = noise_floor;
p->noise_floor_count = 1;
} else {
if (noise_floor < p->noise_floor) {
p->noise_floor = noise_floor;
p->noise_floor_count = 1;
} else if (noise_floor == p->noise_floor) {
p->noise_floor_count++;
}
}
}
if (p->win_pos >= s->tc_samples) {
p->win_pos = 0;
}
if (p->nb_samples >= s->tc_samples) {
p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
}
p->nb_samples++;
}
static inline void update_float_stat(AudioStatsContext *s, ChannelStats *p, float d)
{
int type = fpclassify(d);
p->nb_nans += type == FP_NAN;
p->nb_infs += type == FP_INFINITE;
p->nb_denormals += type == FP_SUBNORMAL;
}
static inline void update_double_stat(AudioStatsContext *s, ChannelStats *p, double d)
{
int type = fpclassify(d);
p->nb_nans += type == FP_NAN;
p->nb_infs += type == FP_INFINITE;
p->nb_denormals += type == FP_SUBNORMAL;
}
static void set_meta(AVDictionary **metadata, int chan, const char *key,
const char *fmt, double val)
{
uint8_t value[128];
uint8_t key2[128];
snprintf(value, sizeof(value), fmt, val);
if (chan)
snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
else
snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
av_dict_set(metadata, key2, value, 0);
}
#define LINEAR_TO_DB(x) (log10(x) * 20)
static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
{
uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0;
uint64_t abs_peak_count = 0;
double min_runs = 0, max_runs = 0,
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
nmin = DBL_MAX, nmax =-DBL_MAX,
max_sigma_x = 0,
diff1_sum = 0,
diff1_sum_x2 = 0,
sigma_x2 = 0,
noise_floor = 0,
entropy = 0,
min_sigma_x2 = DBL_MAX,
max_sigma_x2 =-DBL_MAX;
AVRational depth;
int c;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
if (p->nb_samples < s->tc_samples)
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
min = FFMIN(min, p->min);
max = FFMAX(max, p->max);
nmin = FFMIN(nmin, p->nmin);
nmax = FFMAX(nmax, p->nmax);
min_diff = FFMIN(min_diff, p->min_diff);
max_diff = FFMAX(max_diff, p->max_diff);
diff1_sum += p->diff1_sum;
diff1_sum_x2 += p->diff1_sum_x2;
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
sigma_x2 += p->sigma_x2;
noise_floor = FFMAX(noise_floor, p->noise_floor);
noise_floor_count += p->noise_floor_count;
p->entropy = calc_entropy(s, p);
entropy += p->entropy;
min_count += p->min_count;
max_count += p->max_count;
abs_peak_count += p->abs_peak_count;
min_runs += p->min_runs;
max_runs += p->max_runs;
mask |= p->mask;
imask &= p->imask;
nb_samples += p->nb_samples;
nb_nans += p->nb_nans;
nb_infs += p->nb_infs;
nb_denormals += p->nb_denormals;
if (fabs(p->sigma_x) > fabs(max_sigma_x))
max_sigma_x = p->sigma_x;
if (s->measure_perchannel & MEASURE_DC_OFFSET)
set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
if (s->measure_perchannel & MEASURE_MIN_LEVEL)
set_meta(metadata, c + 1, "Min_level", "%f", p->min);
if (s->measure_perchannel & MEASURE_MAX_LEVEL)
set_meta(metadata, c + 1, "Max_level", "%f", p->max);
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
if (s->measure_perchannel & MEASURE_RMS_LEVEL)
set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
if (s->measure_perchannel & MEASURE_RMS_PEAK)
set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
if (s->measure_perchannel & MEASURE_RMS_TROUGH)
set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
if (s->measure_perchannel & MEASURE_CREST_FACTOR)
set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
if (s->measure_perchannel & MEASURE_PEAK_COUNT)
set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT)
set_meta(metadata, c + 1, "Peak_count", "%f", p->abs_peak_count);
if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
set_meta(metadata, c + 1, "Noise_floor", "%f", LINEAR_TO_DB(p->noise_floor));
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
set_meta(metadata, c + 1, "Noise_floor_count", "%f", p->noise_floor_count);
if (s->measure_perchannel & MEASURE_ENTROPY)
set_meta(metadata, c + 1, "Entropy", "%f", p->entropy);
if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
bit_depth(s, p->mask, p->imask, &depth);
set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
}
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
set_meta(metadata, c + 1, "Number of NaNs", "%f", p->nb_nans);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
set_meta(metadata, c + 1, "Number of Infs", "%f", p->nb_infs);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
set_meta(metadata, c + 1, "Number of denormals", "%f", p->nb_denormals);
}
if (s->measure_overall & MEASURE_DC_OFFSET)
set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
if (s->measure_overall & MEASURE_MIN_LEVEL)
set_meta(metadata, 0, "Overall.Min_level", "%f", min);
if (s->measure_overall & MEASURE_MAX_LEVEL)
set_meta(metadata, 0, "Overall.Max_level", "%f", max);
if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
if (s->measure_overall & MEASURE_PEAK_LEVEL)
set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
if (s->measure_overall & MEASURE_RMS_LEVEL)
set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
if (s->measure_overall & MEASURE_RMS_PEAK)
set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
if (s->measure_overall & MEASURE_RMS_TROUGH)
set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
if (s->measure_overall & MEASURE_FLAT_FACTOR)
set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
if (s->measure_overall & MEASURE_PEAK_COUNT)
set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT)
set_meta(metadata, 0, "Overall.Abs_Peak_count", "%f", (float)(abs_peak_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_NOISE_FLOOR)
set_meta(metadata, 0, "Overall.Noise_floor", "%f", LINEAR_TO_DB(noise_floor));
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
set_meta(metadata, 0, "Overall.Noise_floor_count", "%f", noise_floor_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ENTROPY)
set_meta(metadata, 0, "Overall.Entropy", "%f", entropy / (double)s->nb_channels);
if (s->measure_overall & MEASURE_BIT_DEPTH) {
bit_depth(s, mask, imask, &depth);
set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
}
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
set_meta(metadata, 0, "Number of NaNs", "%f", nb_nans / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
set_meta(metadata, 0, "Number of Infs", "%f", nb_infs / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
set_meta(metadata, 0, "Number of denormals", "%f", nb_denormals / (float)s->nb_channels);
}
#define UPDATE_STATS_P(type, update_func, update_float, channel_func) \
for (int c = start; c < end; c++) { \
ChannelStats *p = &s->chstats[c]; \
const type *src = (const type *)data[c]; \
const type * const srcend = src + samples; \
for (; src < srcend; src++) { \
update_func; \
update_float; \
} \
channel_func; \
}
#define UPDATE_STATS_I(type, update_func, update_float, channel_func) \
for (int c = start; c < end; c++) { \
ChannelStats *p = &s->chstats[c]; \
const type *src = (const type *)data[0]; \
const type * const srcend = src + samples * channels; \
for (src += c; src < srcend; src += channels) { \
update_func; \
update_float; \
} \
channel_func; \
}
#define UPDATE_STATS(planar, type, sample, normalizer_suffix, int_sample) \
if ((s->measure_overall | s->measure_perchannel) & ~MEASURE_MINMAXPEAK) { \
UPDATE_STATS_##planar(type, update_stat(s, p, sample, sample normalizer_suffix, int_sample), s->is_float ? update_float_stat(s, p, sample) : s->is_double ? update_double_stat(s, p, sample) : (void)NULL, ); \
} else { \
UPDATE_STATS_##planar(type, update_minmax(s, p, sample), , p->nmin = p->min normalizer_suffix; p->nmax = p->max normalizer_suffix;); \
}
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
AudioStatsContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
AVFrame *buf = arg;
const uint8_t * const * const data = (const uint8_t * const *)buf->extended_data;
const int channels = s->nb_channels;
const int samples = buf->nb_samples;
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs;
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
switch (inlink->format) {
case AV_SAMPLE_FMT_DBLP:
UPDATE_STATS(P, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
break;
case AV_SAMPLE_FMT_DBL:
UPDATE_STATS(I, double, *src, , llrint(*src * (UINT64_C(1) << 63)));
break;
case AV_SAMPLE_FMT_FLTP:
UPDATE_STATS(P, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
break;
case AV_SAMPLE_FMT_FLT:
UPDATE_STATS(I, float, *src, , llrint(*src * (UINT64_C(1) << 31)));
break;
case AV_SAMPLE_FMT_S64P:
UPDATE_STATS(P, int64_t, *src, / (double)INT64_MAX, *src);
break;
case AV_SAMPLE_FMT_S64:
UPDATE_STATS(I, int64_t, *src, / (double)INT64_MAX, *src);
break;
case AV_SAMPLE_FMT_S32P:
UPDATE_STATS(P, int32_t, *src, / (double)INT32_MAX, *src);
break;
case AV_SAMPLE_FMT_S32:
UPDATE_STATS(I, int32_t, *src, / (double)INT32_MAX, *src);
break;
case AV_SAMPLE_FMT_S16P:
UPDATE_STATS(P, int16_t, *src, / (double)INT16_MAX, *src);
break;
case AV_SAMPLE_FMT_S16:
UPDATE_STATS(I, int16_t, *src, / (double)INT16_MAX, *src);
break;
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
AudioStatsContext *s = ctx->priv;
AVDictionary **metadata = &buf->metadata;
if (s->reset_count > 0) {
if (s->nb_frames >= s->reset_count) {
reset_stats(s);
s->nb_frames = 0;
}
s->nb_frames++;
}
if (s->used == 0)
s->used = buf->nb_samples > 0;
ff_filter_execute(ctx, filter_channel, buf, NULL,
FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
if (s->metadata)
set_metadata(s, metadata);
return ff_filter_frame(inlink->dst->outputs[0], buf);
}
static void print_stats(AVFilterContext *ctx)
{
AudioStatsContext *s = ctx->priv;
uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0, noise_floor_count = 0;
uint64_t nb_nans = 0, nb_infs = 0, nb_denormals = 0, abs_peak_count = 0;
double min_runs = 0, max_runs = 0,
min = DBL_MAX, max =-DBL_MAX, min_diff = DBL_MAX, max_diff = 0,
nmin = DBL_MAX, nmax =-DBL_MAX,
max_sigma_x = 0,
diff1_sum_x2 = 0,
diff1_sum = 0,
sigma_x2 = 0,
noise_floor = 0,
entropy = 0,
min_sigma_x2 = DBL_MAX,
max_sigma_x2 =-DBL_MAX;
AVRational depth;
int c;
for (c = 0; c < s->nb_channels; c++) {
ChannelStats *p = &s->chstats[c];
if (p->nb_samples == 0 && !s->used)
continue;
if (p->nb_samples < s->tc_samples)
p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
min = FFMIN(min, p->min);
max = FFMAX(max, p->max);
nmin = FFMIN(nmin, p->nmin);
nmax = FFMAX(nmax, p->nmax);
min_diff = FFMIN(min_diff, p->min_diff);
max_diff = FFMAX(max_diff, p->max_diff);
diff1_sum_x2 += p->diff1_sum_x2;
diff1_sum += p->diff1_sum;
min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
sigma_x2 += p->sigma_x2;
noise_floor = FFMAX(noise_floor, p->noise_floor);
p->entropy = calc_entropy(s, p);
entropy += p->entropy;
min_count += p->min_count;
max_count += p->max_count;
abs_peak_count += p->abs_peak_count;
noise_floor_count += p->noise_floor_count;
min_runs += p->min_runs;
max_runs += p->max_runs;
mask |= p->mask;
imask &= p->imask;
nb_samples += p->nb_samples;
nb_nans += p->nb_nans;
nb_infs += p->nb_infs;
nb_denormals += p->nb_denormals;
if (fabs(p->sigma_x) > fabs(max_sigma_x))
max_sigma_x = p->sigma_x;
if (s->measure_perchannel != MEASURE_NONE)
av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
if (s->measure_perchannel & MEASURE_DC_OFFSET)
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
if (s->measure_perchannel & MEASURE_MIN_LEVEL)
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
if (s->measure_perchannel & MEASURE_MAX_LEVEL)
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
if (s->measure_perchannel & MEASURE_MIN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
if (s->measure_perchannel & MEASURE_MAX_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
if (s->measure_perchannel & MEASURE_MEAN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
if (s->measure_perchannel & MEASURE_RMS_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
if (s->measure_perchannel & MEASURE_PEAK_LEVEL)
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
if (s->measure_perchannel & MEASURE_RMS_LEVEL)
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
if (s->measure_perchannel & MEASURE_RMS_PEAK)
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
if (s->measure_perchannel & MEASURE_RMS_TROUGH)
if (p->min_sigma_x2 != 1)
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
if (s->measure_perchannel & MEASURE_CREST_FACTOR)
av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
if (s->measure_perchannel & MEASURE_FLAT_FACTOR)
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
if (s->measure_perchannel & MEASURE_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
if (s->measure_perchannel & MEASURE_ABS_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %"PRId64"\n", p->abs_peak_count);
if (s->measure_perchannel & MEASURE_NOISE_FLOOR)
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(p->noise_floor));
if (s->measure_perchannel & MEASURE_NOISE_FLOOR_COUNT)
av_log(ctx, AV_LOG_INFO, "Noise floor count: %"PRId64"\n", p->noise_floor_count);
if (s->measure_perchannel & MEASURE_ENTROPY)
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", p->entropy);
if (s->measure_perchannel & MEASURE_BIT_DEPTH) {
bit_depth(s, p->mask, p->imask, &depth);
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
}
if (s->measure_perchannel & MEASURE_DYNAMIC_RANGE)
av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS)
av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
if (s->measure_perchannel & MEASURE_ZERO_CROSSINGS_RATE)
av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_NANS)
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %"PRId64"\n", p->nb_nans);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_INFS)
av_log(ctx, AV_LOG_INFO, "Number of Infs: %"PRId64"\n", p->nb_infs);
if ((s->is_float || s->is_double) && s->measure_perchannel & MEASURE_NUMBER_OF_DENORMALS)
av_log(ctx, AV_LOG_INFO, "Number of denormals: %"PRId64"\n", p->nb_denormals);
}
if (nb_samples == 0 && !s->used)
return;
if (s->measure_overall != MEASURE_NONE)
av_log(ctx, AV_LOG_INFO, "Overall\n");
if (s->measure_overall & MEASURE_DC_OFFSET)
av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
if (s->measure_overall & MEASURE_MIN_LEVEL)
av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
if (s->measure_overall & MEASURE_MAX_LEVEL)
av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
if (s->measure_overall & MEASURE_MIN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
if (s->measure_overall & MEASURE_MAX_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
if (s->measure_overall & MEASURE_MEAN_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
if (s->measure_overall & MEASURE_RMS_DIFFERENCE)
av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
if (s->measure_overall & MEASURE_PEAK_LEVEL)
av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
if (s->measure_overall & MEASURE_RMS_LEVEL)
av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
if (s->measure_overall & MEASURE_RMS_PEAK)
av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
if (s->measure_overall & MEASURE_RMS_TROUGH)
if (min_sigma_x2 != 1)
av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
if (s->measure_overall & MEASURE_FLAT_FACTOR)
av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
if (s->measure_overall & MEASURE_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ABS_PEAK_COUNT)
av_log(ctx, AV_LOG_INFO, "Abs Peak count: %f\n", abs_peak_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_NOISE_FLOOR)
av_log(ctx, AV_LOG_INFO, "Noise floor dB: %f\n", LINEAR_TO_DB(noise_floor));
if (s->measure_overall & MEASURE_NOISE_FLOOR_COUNT)
av_log(ctx, AV_LOG_INFO, "Noise floor count: %f\n", noise_floor_count / (double)s->nb_channels);
if (s->measure_overall & MEASURE_ENTROPY)
av_log(ctx, AV_LOG_INFO, "Entropy: %f\n", entropy / (double)s->nb_channels);
if (s->measure_overall & MEASURE_BIT_DEPTH) {
bit_depth(s, mask, imask, &depth);
av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
}
if (s->measure_overall & MEASURE_NUMBER_OF_SAMPLES)
av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_NANS)
av_log(ctx, AV_LOG_INFO, "Number of NaNs: %f\n", nb_nans / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_INFS)
av_log(ctx, AV_LOG_INFO, "Number of Infs: %f\n", nb_infs / (float)s->nb_channels);
if ((s->is_float || s->is_double) && s->measure_overall & MEASURE_NUMBER_OF_DENORMALS)
av_log(ctx, AV_LOG_INFO, "Number of denormals: %f\n", nb_denormals / (float)s->nb_channels);
}
static av_cold void uninit(AVFilterContext *ctx)
{
AudioStatsContext *s = ctx->priv;
if (s->nb_channels)
print_stats(ctx);
if (s->chstats) {
for (int i = 0; i < s->nb_channels; i++) {
ChannelStats *p = &s->chstats[i];
av_freep(&p->win_samples);
}
}
av_freep(&s->chstats);
}
static const AVFilterPad astats_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
};
static const AVFilterPad astats_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
};
const AVFilter ff_af_astats = {
.name = "astats",
.description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
.priv_size = sizeof(AudioStatsContext),
.priv_class = &astats_class,
.uninit = uninit,
FILTER_INPUTS(astats_inputs),
FILTER_OUTPUTS(astats_outputs),
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP),
.flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY,
};