1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavdevice/timefilter.c
Diego Biurrun d12b5b2f13 build: Split test programs off into separate files
This avoids spurious library rebuilds when only the test program
code is changed and simplifies the build system.
2016-04-07 16:14:42 +02:00

80 lines
2.4 KiB
C

/*
* Delay Locked Loop based time filter
* Copyright (c) 2009 Samalyse
* Copyright (c) 2009 Michael Niedermayer
* Author: Olivier Guilyardi <olivier samalyse com>
* Michael Niedermayer <michaelni gmx at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "timefilter.h"
struct TimeFilter {
// Delay Locked Loop data. These variables refer to mathematical
// concepts described in: http://www.kokkinizita.net/papers/usingdll.pdf
double cycle_time;
double feedback2_factor;
double feedback3_factor;
double clock_period;
int count;
};
TimeFilter *ff_timefilter_new(double clock_period,
double feedback2_factor,
double feedback3_factor)
{
TimeFilter *self = av_mallocz(sizeof(TimeFilter));
if (!self)
return NULL;
self->clock_period = clock_period;
self->feedback2_factor = feedback2_factor;
self->feedback3_factor = feedback3_factor;
return self;
}
void ff_timefilter_destroy(TimeFilter *self)
{
av_freep(&self);
}
void ff_timefilter_reset(TimeFilter *self)
{
self->count = 0;
}
double ff_timefilter_update(TimeFilter *self, double system_time, double period)
{
self->count++;
if (self->count == 1) {
self->cycle_time = system_time;
} else {
double loop_error;
self->cycle_time += self->clock_period * period;
loop_error = system_time - self->cycle_time;
self->cycle_time += FFMAX(self->feedback2_factor, 1.0 / self->count) * loop_error;
self->clock_period += self->feedback3_factor * loop_error / period;
}
return self->cycle_time;
}