1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/nvenc.c
Miroslav Slugen 9b425bd24c avcodec/nvenc: Add bluray_compat basic implementation
Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
2017-01-01 14:47:25 +01:00

1738 lines
58 KiB
C

/*
* H.264/HEVC hardware encoding using nvidia nvenc
* Copyright (c) 2016 Timo Rothenpieler <timo@rothenpieler.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "nvenc.h"
#include "libavutil/hwcontext_cuda.h"
#include "libavutil/hwcontext.h"
#include "libavutil/imgutils.h"
#include "libavutil/avassert.h"
#include "libavutil/mem.h"
#include "libavutil/pixdesc.h"
#include "internal.h"
#define NVENC_CAP 0x30
#define IS_CBR(rc) (rc == NV_ENC_PARAMS_RC_CBR || \
rc == NV_ENC_PARAMS_RC_2_PASS_QUALITY || \
rc == NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP)
const enum AVPixelFormat ff_nvenc_pix_fmts[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_P010,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_0RGB32,
AV_PIX_FMT_0BGR32,
AV_PIX_FMT_CUDA,
AV_PIX_FMT_NONE
};
#define IS_10BIT(pix_fmt) (pix_fmt == AV_PIX_FMT_P010 || \
pix_fmt == AV_PIX_FMT_YUV444P16)
#define IS_YUV444(pix_fmt) (pix_fmt == AV_PIX_FMT_YUV444P || \
pix_fmt == AV_PIX_FMT_YUV444P16)
static const struct {
NVENCSTATUS nverr;
int averr;
const char *desc;
} nvenc_errors[] = {
{ NV_ENC_SUCCESS, 0, "success" },
{ NV_ENC_ERR_NO_ENCODE_DEVICE, AVERROR(ENOENT), "no encode device" },
{ NV_ENC_ERR_UNSUPPORTED_DEVICE, AVERROR(ENOSYS), "unsupported device" },
{ NV_ENC_ERR_INVALID_ENCODERDEVICE, AVERROR(EINVAL), "invalid encoder device" },
{ NV_ENC_ERR_INVALID_DEVICE, AVERROR(EINVAL), "invalid device" },
{ NV_ENC_ERR_DEVICE_NOT_EXIST, AVERROR(EIO), "device does not exist" },
{ NV_ENC_ERR_INVALID_PTR, AVERROR(EFAULT), "invalid ptr" },
{ NV_ENC_ERR_INVALID_EVENT, AVERROR(EINVAL), "invalid event" },
{ NV_ENC_ERR_INVALID_PARAM, AVERROR(EINVAL), "invalid param" },
{ NV_ENC_ERR_INVALID_CALL, AVERROR(EINVAL), "invalid call" },
{ NV_ENC_ERR_OUT_OF_MEMORY, AVERROR(ENOMEM), "out of memory" },
{ NV_ENC_ERR_ENCODER_NOT_INITIALIZED, AVERROR(EINVAL), "encoder not initialized" },
{ NV_ENC_ERR_UNSUPPORTED_PARAM, AVERROR(ENOSYS), "unsupported param" },
{ NV_ENC_ERR_LOCK_BUSY, AVERROR(EAGAIN), "lock busy" },
{ NV_ENC_ERR_NOT_ENOUGH_BUFFER, AVERROR_BUFFER_TOO_SMALL, "not enough buffer"},
{ NV_ENC_ERR_INVALID_VERSION, AVERROR(EINVAL), "invalid version" },
{ NV_ENC_ERR_MAP_FAILED, AVERROR(EIO), "map failed" },
{ NV_ENC_ERR_NEED_MORE_INPUT, AVERROR(EAGAIN), "need more input" },
{ NV_ENC_ERR_ENCODER_BUSY, AVERROR(EAGAIN), "encoder busy" },
{ NV_ENC_ERR_EVENT_NOT_REGISTERD, AVERROR(EBADF), "event not registered" },
{ NV_ENC_ERR_GENERIC, AVERROR_UNKNOWN, "generic error" },
{ NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY, AVERROR(EINVAL), "incompatible client key" },
{ NV_ENC_ERR_UNIMPLEMENTED, AVERROR(ENOSYS), "unimplemented" },
{ NV_ENC_ERR_RESOURCE_REGISTER_FAILED, AVERROR(EIO), "resource register failed" },
{ NV_ENC_ERR_RESOURCE_NOT_REGISTERED, AVERROR(EBADF), "resource not registered" },
{ NV_ENC_ERR_RESOURCE_NOT_MAPPED, AVERROR(EBADF), "resource not mapped" },
};
static int nvenc_map_error(NVENCSTATUS err, const char **desc)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(nvenc_errors); i++) {
if (nvenc_errors[i].nverr == err) {
if (desc)
*desc = nvenc_errors[i].desc;
return nvenc_errors[i].averr;
}
}
if (desc)
*desc = "unknown error";
return AVERROR_UNKNOWN;
}
static int nvenc_print_error(void *log_ctx, NVENCSTATUS err,
const char *error_string)
{
const char *desc;
int ret;
ret = nvenc_map_error(err, &desc);
av_log(log_ctx, AV_LOG_ERROR, "%s: %s (%d)\n", error_string, desc, err);
return ret;
}
static av_cold int nvenc_load_libraries(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NVENCSTATUS err;
uint32_t nvenc_max_ver;
int ret;
ret = cuda_load_functions(&dl_fn->cuda_dl);
if (ret < 0)
return ret;
ret = nvenc_load_functions(&dl_fn->nvenc_dl);
if (ret < 0)
return ret;
err = dl_fn->nvenc_dl->NvEncodeAPIGetMaxSupportedVersion(&nvenc_max_ver);
if (err != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, err, "Failed to query nvenc max version");
av_log(avctx, AV_LOG_VERBOSE, "Loaded Nvenc version %d.%d\n", nvenc_max_ver >> 4, nvenc_max_ver & 0xf);
if ((NVENCAPI_MAJOR_VERSION << 4 | NVENCAPI_MINOR_VERSION) > nvenc_max_ver) {
av_log(avctx, AV_LOG_ERROR, "Driver does not support the required nvenc API version. "
"Required: %d.%d Found: %d.%d\n",
NVENCAPI_MAJOR_VERSION, NVENCAPI_MINOR_VERSION,
nvenc_max_ver >> 4, nvenc_max_ver & 0xf);
return AVERROR(ENOSYS);
}
dl_fn->nvenc_funcs.version = NV_ENCODE_API_FUNCTION_LIST_VER;
err = dl_fn->nvenc_dl->NvEncodeAPICreateInstance(&dl_fn->nvenc_funcs);
if (err != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, err, "Failed to create nvenc instance");
av_log(avctx, AV_LOG_VERBOSE, "Nvenc initialized successfully\n");
return 0;
}
static av_cold int nvenc_open_session(AVCodecContext *avctx)
{
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS params = { 0 };
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
NVENCSTATUS ret;
params.version = NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS_VER;
params.apiVersion = NVENCAPI_VERSION;
params.device = ctx->cu_context;
params.deviceType = NV_ENC_DEVICE_TYPE_CUDA;
ret = p_nvenc->nvEncOpenEncodeSessionEx(&params, &ctx->nvencoder);
if (ret != NV_ENC_SUCCESS) {
ctx->nvencoder = NULL;
return nvenc_print_error(avctx, ret, "OpenEncodeSessionEx failed");
}
return 0;
}
static int nvenc_check_codec_support(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
int i, ret, count = 0;
GUID *guids = NULL;
ret = p_nvenc->nvEncGetEncodeGUIDCount(ctx->nvencoder, &count);
if (ret != NV_ENC_SUCCESS || !count)
return AVERROR(ENOSYS);
guids = av_malloc(count * sizeof(GUID));
if (!guids)
return AVERROR(ENOMEM);
ret = p_nvenc->nvEncGetEncodeGUIDs(ctx->nvencoder, guids, count, &count);
if (ret != NV_ENC_SUCCESS) {
ret = AVERROR(ENOSYS);
goto fail;
}
ret = AVERROR(ENOSYS);
for (i = 0; i < count; i++) {
if (!memcmp(&guids[i], &ctx->init_encode_params.encodeGUID, sizeof(*guids))) {
ret = 0;
break;
}
}
fail:
av_free(guids);
return ret;
}
static int nvenc_check_cap(AVCodecContext *avctx, NV_ENC_CAPS cap)
{
NvencContext *ctx = avctx->priv_data;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &ctx->nvenc_dload_funcs.nvenc_funcs;
NV_ENC_CAPS_PARAM params = { 0 };
int ret, val = 0;
params.version = NV_ENC_CAPS_PARAM_VER;
params.capsToQuery = cap;
ret = p_nvenc->nvEncGetEncodeCaps(ctx->nvencoder, ctx->init_encode_params.encodeGUID, &params, &val);
if (ret == NV_ENC_SUCCESS)
return val;
return 0;
}
static int nvenc_check_capabilities(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int ret;
ret = nvenc_check_codec_support(avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_VERBOSE, "Codec not supported\n");
return ret;
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_YUV444_ENCODE);
if (IS_YUV444(ctx->data_pix_fmt) && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "YUV444P not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOSSLESS_ENCODE);
if (ctx->preset >= PRESET_LOSSLESS_DEFAULT && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "Lossless encoding not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_WIDTH_MAX);
if (ret < avctx->width) {
av_log(avctx, AV_LOG_VERBOSE, "Width %d exceeds %d\n",
avctx->width, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_HEIGHT_MAX);
if (ret < avctx->height) {
av_log(avctx, AV_LOG_VERBOSE, "Height %d exceeds %d\n",
avctx->height, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_NUM_MAX_BFRAMES);
if (ret < avctx->max_b_frames) {
av_log(avctx, AV_LOG_VERBOSE, "Max B-frames %d exceed %d\n",
avctx->max_b_frames, ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_FIELD_ENCODING);
if (ret < 1 && avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
av_log(avctx, AV_LOG_VERBOSE,
"Interlaced encoding is not supported. Supported level: %d\n",
ret);
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_10BIT_ENCODE);
if (IS_10BIT(ctx->data_pix_fmt) && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "10 bit encode not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_LOOKAHEAD);
if (ctx->rc_lookahead > 0 && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "RC lookahead not supported\n");
return AVERROR(ENOSYS);
}
ret = nvenc_check_cap(avctx, NV_ENC_CAPS_SUPPORT_TEMPORAL_AQ);
if (ctx->temporal_aq > 0 && ret <= 0) {
av_log(avctx, AV_LOG_VERBOSE, "Temporal AQ not supported\n");
return AVERROR(ENOSYS);
}
return 0;
}
static av_cold int nvenc_check_device(AVCodecContext *avctx, int idx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
char name[128] = { 0};
int major, minor, ret;
CUresult cu_res;
CUdevice cu_device;
CUcontext dummy;
int loglevel = AV_LOG_VERBOSE;
if (ctx->device == LIST_DEVICES)
loglevel = AV_LOG_INFO;
cu_res = dl_fn->cuda_dl->cuDeviceGet(&cu_device, idx);
if (cu_res != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot access the CUDA device %d\n",
idx);
return -1;
}
cu_res = dl_fn->cuda_dl->cuDeviceGetName(name, sizeof(name), cu_device);
if (cu_res != CUDA_SUCCESS)
return -1;
cu_res = dl_fn->cuda_dl->cuDeviceComputeCapability(&major, &minor, cu_device);
if (cu_res != CUDA_SUCCESS)
return -1;
av_log(avctx, loglevel, "[ GPU #%d - < %s > has Compute SM %d.%d ]\n", idx, name, major, minor);
if (((major << 4) | minor) < NVENC_CAP) {
av_log(avctx, loglevel, "does not support NVENC\n");
goto fail;
}
cu_res = dl_fn->cuda_dl->cuCtxCreate(&ctx->cu_context_internal, 0, cu_device);
if (cu_res != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "Failed creating CUDA context for NVENC: 0x%x\n", (int)cu_res);
goto fail;
}
ctx->cu_context = ctx->cu_context_internal;
cu_res = dl_fn->cuda_dl->cuCtxPopCurrent(&dummy);
if (cu_res != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_FATAL, "Failed popping CUDA context: 0x%x\n", (int)cu_res);
goto fail2;
}
if ((ret = nvenc_open_session(avctx)) < 0)
goto fail2;
if ((ret = nvenc_check_capabilities(avctx)) < 0)
goto fail3;
av_log(avctx, loglevel, "supports NVENC\n");
dl_fn->nvenc_device_count++;
if (ctx->device == dl_fn->nvenc_device_count - 1 || ctx->device == ANY_DEVICE)
return 0;
fail3:
p_nvenc->nvEncDestroyEncoder(ctx->nvencoder);
ctx->nvencoder = NULL;
fail2:
dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal);
ctx->cu_context_internal = NULL;
fail:
return AVERROR(ENOSYS);
}
static av_cold int nvenc_setup_device(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_H264_GUID;
break;
case AV_CODEC_ID_HEVC:
ctx->init_encode_params.encodeGUID = NV_ENC_CODEC_HEVC_GUID;
break;
default:
return AVERROR_BUG;
}
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
AVHWFramesContext *frames_ctx;
AVCUDADeviceContext *device_hwctx;
int ret;
if (!avctx->hw_frames_ctx)
return AVERROR(EINVAL);
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
device_hwctx = frames_ctx->device_ctx->hwctx;
ctx->cu_context = device_hwctx->cuda_ctx;
ret = nvenc_open_session(avctx);
if (ret < 0)
return ret;
ret = nvenc_check_capabilities(avctx);
if (ret < 0) {
av_log(avctx, AV_LOG_FATAL, "Provided device doesn't support required NVENC features\n");
return ret;
}
} else {
int i, nb_devices = 0;
if ((dl_fn->cuda_dl->cuInit(0)) != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot init CUDA\n");
return AVERROR_UNKNOWN;
}
if ((dl_fn->cuda_dl->cuDeviceGetCount(&nb_devices)) != CUDA_SUCCESS) {
av_log(avctx, AV_LOG_ERROR,
"Cannot enumerate the CUDA devices\n");
return AVERROR_UNKNOWN;
}
if (!nb_devices) {
av_log(avctx, AV_LOG_FATAL, "No CUDA capable devices found\n");
return AVERROR_EXTERNAL;
}
av_log(avctx, AV_LOG_VERBOSE, "%d CUDA capable devices found\n", nb_devices);
dl_fn->nvenc_device_count = 0;
for (i = 0; i < nb_devices; ++i) {
if ((nvenc_check_device(avctx, i)) >= 0 && ctx->device != LIST_DEVICES)
return 0;
}
if (ctx->device == LIST_DEVICES)
return AVERROR_EXIT;
if (!dl_fn->nvenc_device_count) {
av_log(avctx, AV_LOG_FATAL, "No NVENC capable devices found\n");
return AVERROR_EXTERNAL;
}
av_log(avctx, AV_LOG_FATAL, "Requested GPU %d, but only %d GPUs are available!\n", ctx->device, dl_fn->nvenc_device_count);
return AVERROR(EINVAL);
}
return 0;
}
typedef struct GUIDTuple {
const GUID guid;
int flags;
} GUIDTuple;
#define PRESET_ALIAS(alias, name, ...) \
[PRESET_ ## alias] = { NV_ENC_PRESET_ ## name ## _GUID, __VA_ARGS__ }
#define PRESET(name, ...) PRESET_ALIAS(name, name, __VA_ARGS__)
static void nvenc_map_preset(NvencContext *ctx)
{
GUIDTuple presets[] = {
PRESET(DEFAULT),
PRESET(HP),
PRESET(HQ),
PRESET(BD),
PRESET_ALIAS(SLOW, HQ, NVENC_TWO_PASSES),
PRESET_ALIAS(MEDIUM, HQ, NVENC_ONE_PASS),
PRESET_ALIAS(FAST, HP, NVENC_ONE_PASS),
PRESET(LOW_LATENCY_DEFAULT, NVENC_LOWLATENCY),
PRESET(LOW_LATENCY_HP, NVENC_LOWLATENCY),
PRESET(LOW_LATENCY_HQ, NVENC_LOWLATENCY),
PRESET(LOSSLESS_DEFAULT, NVENC_LOSSLESS),
PRESET(LOSSLESS_HP, NVENC_LOSSLESS),
};
GUIDTuple *t = &presets[ctx->preset];
ctx->init_encode_params.presetGUID = t->guid;
ctx->flags = t->flags;
}
#undef PRESET
#undef PRESET_ALIAS
static av_cold void set_constqp(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
rc->constQP.qpInterB = avctx->global_quality;
rc->constQP.qpInterP = avctx->global_quality;
rc->constQP.qpIntra = avctx->global_quality;
avctx->qmin = -1;
avctx->qmax = -1;
}
static av_cold void set_vbr(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
int qp_inter_p;
if (avctx->qmin >= 0 && avctx->qmax >= 0) {
rc->enableMinQP = 1;
rc->enableMaxQP = 1;
rc->minQP.qpInterB = avctx->qmin;
rc->minQP.qpInterP = avctx->qmin;
rc->minQP.qpIntra = avctx->qmin;
rc->maxQP.qpInterB = avctx->qmax;
rc->maxQP.qpInterP = avctx->qmax;
rc->maxQP.qpIntra = avctx->qmax;
qp_inter_p = (avctx->qmax + 3 * avctx->qmin) / 4; // biased towards Qmin
} else if (avctx->qmin >= 0) {
rc->enableMinQP = 1;
rc->minQP.qpInterB = avctx->qmin;
rc->minQP.qpInterP = avctx->qmin;
rc->minQP.qpIntra = avctx->qmin;
qp_inter_p = avctx->qmin;
} else {
qp_inter_p = 26; // default to 26
}
rc->enableInitialRCQP = 1;
rc->initialRCQP.qpInterP = qp_inter_p;
if (avctx->i_quant_factor != 0.0 && avctx->b_quant_factor != 0.0) {
rc->initialRCQP.qpIntra = av_clip(
qp_inter_p * fabs(avctx->i_quant_factor) + avctx->i_quant_offset + 0.5, 0, 51);
rc->initialRCQP.qpInterB = av_clip(
qp_inter_p * fabs(avctx->b_quant_factor) + avctx->b_quant_offset + 0.5, 0, 51);
} else {
rc->initialRCQP.qpIntra = qp_inter_p;
rc->initialRCQP.qpInterB = qp_inter_p;
}
}
static av_cold void set_lossless(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
rc->rateControlMode = NV_ENC_PARAMS_RC_CONSTQP;
rc->constQP.qpInterB = 0;
rc->constQP.qpInterP = 0;
rc->constQP.qpIntra = 0;
avctx->qmin = -1;
avctx->qmax = -1;
}
static void nvenc_override_rate_control(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_RC_PARAMS *rc = &ctx->encode_config.rcParams;
switch (ctx->rc) {
case NV_ENC_PARAMS_RC_CONSTQP:
if (avctx->global_quality <= 0) {
av_log(avctx, AV_LOG_WARNING,
"The constant quality rate-control requires "
"the 'global_quality' option set.\n");
return;
}
set_constqp(avctx);
return;
case NV_ENC_PARAMS_RC_2_PASS_VBR:
case NV_ENC_PARAMS_RC_VBR:
if (avctx->qmin < 0 && avctx->qmax < 0) {
av_log(avctx, AV_LOG_WARNING,
"The variable bitrate rate-control requires "
"the 'qmin' and/or 'qmax' option set.\n");
set_vbr(avctx);
return;
}
/* fall through */
case NV_ENC_PARAMS_RC_VBR_MINQP:
if (avctx->qmin < 0) {
av_log(avctx, AV_LOG_WARNING,
"The variable bitrate rate-control requires "
"the 'qmin' option set.\n");
set_vbr(avctx);
return;
}
set_vbr(avctx);
break;
case NV_ENC_PARAMS_RC_CBR:
case NV_ENC_PARAMS_RC_2_PASS_QUALITY:
case NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP:
break;
}
rc->rateControlMode = ctx->rc;
}
static av_cold int nvenc_recalc_surfaces(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int nb_surfaces = 0;
if (ctx->rc_lookahead > 0) {
nb_surfaces = ctx->rc_lookahead + ((ctx->encode_config.frameIntervalP > 0) ? ctx->encode_config.frameIntervalP : 0) + 1 + 4;
if (ctx->nb_surfaces < nb_surfaces) {
av_log(avctx, AV_LOG_WARNING,
"Defined rc_lookahead requires more surfaces, "
"increasing used surfaces %d -> %d\n", ctx->nb_surfaces, nb_surfaces);
ctx->nb_surfaces = nb_surfaces;
}
}
ctx->nb_surfaces = FFMAX(1, FFMIN(MAX_REGISTERED_FRAMES, ctx->nb_surfaces));
ctx->async_depth = FFMIN(ctx->async_depth, ctx->nb_surfaces - 1);
return 0;
}
static av_cold void nvenc_setup_rate_control(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
if (avctx->bit_rate > 0) {
ctx->encode_config.rcParams.averageBitRate = avctx->bit_rate;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
ctx->encode_config.rcParams.maxBitRate = ctx->encode_config.rcParams.averageBitRate;
}
if (avctx->rc_max_rate > 0)
ctx->encode_config.rcParams.maxBitRate = avctx->rc_max_rate;
if (ctx->rc < 0) {
if (ctx->flags & NVENC_ONE_PASS)
ctx->twopass = 0;
if (ctx->flags & NVENC_TWO_PASSES)
ctx->twopass = 1;
if (ctx->twopass < 0)
ctx->twopass = (ctx->flags & NVENC_LOWLATENCY) != 0;
if (ctx->cbr) {
if (ctx->twopass) {
ctx->rc = NV_ENC_PARAMS_RC_2_PASS_QUALITY;
} else {
ctx->rc = NV_ENC_PARAMS_RC_CBR;
}
} else if (avctx->global_quality > 0) {
ctx->rc = NV_ENC_PARAMS_RC_CONSTQP;
} else if (ctx->twopass) {
ctx->rc = NV_ENC_PARAMS_RC_2_PASS_VBR;
} else if (avctx->qmin >= 0 && avctx->qmax >= 0) {
ctx->rc = NV_ENC_PARAMS_RC_VBR_MINQP;
}
}
if (ctx->flags & NVENC_LOSSLESS) {
set_lossless(avctx);
} else if (ctx->rc >= 0) {
nvenc_override_rate_control(avctx);
} else {
ctx->encode_config.rcParams.rateControlMode = NV_ENC_PARAMS_RC_VBR;
set_vbr(avctx);
}
if (avctx->rc_buffer_size > 0) {
ctx->encode_config.rcParams.vbvBufferSize = avctx->rc_buffer_size;
} else if (ctx->encode_config.rcParams.averageBitRate > 0) {
ctx->encode_config.rcParams.vbvBufferSize = 2 * ctx->encode_config.rcParams.averageBitRate;
}
if (ctx->aq) {
ctx->encode_config.rcParams.enableAQ = 1;
ctx->encode_config.rcParams.aqStrength = ctx->aq_strength;
av_log(avctx, AV_LOG_VERBOSE, "AQ enabled.\n");
}
if (ctx->temporal_aq) {
ctx->encode_config.rcParams.enableTemporalAQ = 1;
av_log(avctx, AV_LOG_VERBOSE, "Temporal AQ enabled.\n");
}
if (ctx->rc_lookahead > 0) {
int lkd_bound = FFMIN(ctx->nb_surfaces, ctx->async_depth) -
ctx->encode_config.frameIntervalP - 4;
if (lkd_bound < 0) {
av_log(avctx, AV_LOG_WARNING,
"Lookahead not enabled. Increase buffer delay (-delay).\n");
} else {
ctx->encode_config.rcParams.enableLookahead = 1;
ctx->encode_config.rcParams.lookaheadDepth = av_clip(ctx->rc_lookahead, 0, lkd_bound);
ctx->encode_config.rcParams.disableIadapt = ctx->no_scenecut;
ctx->encode_config.rcParams.disableBadapt = !ctx->b_adapt;
av_log(avctx, AV_LOG_VERBOSE,
"Lookahead enabled: depth %d, scenecut %s, B-adapt %s.\n",
ctx->encode_config.rcParams.lookaheadDepth,
ctx->encode_config.rcParams.disableIadapt ? "disabled" : "enabled",
ctx->encode_config.rcParams.disableBadapt ? "disabled" : "enabled");
}
}
if (ctx->strict_gop) {
ctx->encode_config.rcParams.strictGOPTarget = 1;
av_log(avctx, AV_LOG_VERBOSE, "Strict GOP target enabled.\n");
}
if (ctx->nonref_p)
ctx->encode_config.rcParams.enableNonRefP = 1;
if (ctx->zerolatency)
ctx->encode_config.rcParams.zeroReorderDelay = 1;
if (ctx->quality)
ctx->encode_config.rcParams.targetQuality = ctx->quality;
}
static av_cold int nvenc_setup_h264_config(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->encode_config;
NV_ENC_CONFIG_H264 *h264 = &cc->encodeCodecConfig.h264Config;
NV_ENC_CONFIG_H264_VUI_PARAMETERS *vui = &h264->h264VUIParameters;
vui->colourMatrix = avctx->colorspace;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P);
vui->colourDescriptionPresentFlag =
(avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2);
vui->videoSignalTypePresentFlag =
(vui->colourDescriptionPresentFlag
|| vui->videoFormat != 5
|| vui->videoFullRangeFlag != 0);
h264->sliceMode = 3;
h264->sliceModeData = 1;
h264->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
h264->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
h264->outputAUD = ctx->aud;
if (avctx->refs >= 0) {
/* 0 means "let the hardware decide" */
h264->maxNumRefFrames = avctx->refs;
}
if (avctx->gop_size >= 0) {
h264->idrPeriod = cc->gopLength;
}
if (IS_CBR(cc->rcParams.rateControlMode)) {
h264->outputBufferingPeriodSEI = 1;
h264->outputPictureTimingSEI = 1;
}
if (cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_QUALITY ||
cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_FRAMESIZE_CAP ||
cc->rcParams.rateControlMode == NV_ENC_PARAMS_RC_2_PASS_VBR) {
h264->adaptiveTransformMode = NV_ENC_H264_ADAPTIVE_TRANSFORM_ENABLE;
h264->fmoMode = NV_ENC_H264_FMO_DISABLE;
}
if (ctx->flags & NVENC_LOSSLESS) {
h264->qpPrimeYZeroTransformBypassFlag = 1;
} else {
switch(ctx->profile) {
case NV_ENC_H264_PROFILE_BASELINE:
cc->profileGUID = NV_ENC_H264_PROFILE_BASELINE_GUID;
avctx->profile = FF_PROFILE_H264_BASELINE;
break;
case NV_ENC_H264_PROFILE_MAIN:
cc->profileGUID = NV_ENC_H264_PROFILE_MAIN_GUID;
avctx->profile = FF_PROFILE_H264_MAIN;
break;
case NV_ENC_H264_PROFILE_HIGH:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_GUID;
avctx->profile = FF_PROFILE_H264_HIGH;
break;
case NV_ENC_H264_PROFILE_HIGH_444P:
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE;
break;
}
}
// force setting profile as high444p if input is AV_PIX_FMT_YUV444P
if (ctx->data_pix_fmt == AV_PIX_FMT_YUV444P) {
cc->profileGUID = NV_ENC_H264_PROFILE_HIGH_444_GUID;
avctx->profile = FF_PROFILE_H264_HIGH_444_PREDICTIVE;
}
h264->chromaFormatIDC = avctx->profile == FF_PROFILE_H264_HIGH_444_PREDICTIVE ? 3 : 1;
h264->level = ctx->level;
return 0;
}
static av_cold int nvenc_setup_hevc_config(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NV_ENC_CONFIG *cc = &ctx->encode_config;
NV_ENC_CONFIG_HEVC *hevc = &cc->encodeCodecConfig.hevcConfig;
NV_ENC_CONFIG_HEVC_VUI_PARAMETERS *vui = &hevc->hevcVUIParameters;
vui->colourMatrix = avctx->colorspace;
vui->colourPrimaries = avctx->color_primaries;
vui->transferCharacteristics = avctx->color_trc;
vui->videoFullRangeFlag = (avctx->color_range == AVCOL_RANGE_JPEG
|| ctx->data_pix_fmt == AV_PIX_FMT_YUVJ420P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ422P || ctx->data_pix_fmt == AV_PIX_FMT_YUVJ444P);
vui->colourDescriptionPresentFlag =
(avctx->colorspace != 2 || avctx->color_primaries != 2 || avctx->color_trc != 2);
vui->videoSignalTypePresentFlag =
(vui->colourDescriptionPresentFlag
|| vui->videoFormat != 5
|| vui->videoFullRangeFlag != 0);
hevc->sliceMode = 3;
hevc->sliceModeData = 1;
hevc->disableSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 1 : 0;
hevc->repeatSPSPPS = (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) ? 0 : 1;
hevc->outputAUD = ctx->aud;
if (avctx->refs >= 0) {
/* 0 means "let the hardware decide" */
hevc->maxNumRefFramesInDPB = avctx->refs;
}
if (avctx->gop_size >= 0) {
hevc->idrPeriod = cc->gopLength;
}
if (IS_CBR(cc->rcParams.rateControlMode)) {
hevc->outputBufferingPeriodSEI = 1;
hevc->outputPictureTimingSEI = 1;
}
switch(ctx->profile) {
case NV_ENC_HEVC_PROFILE_MAIN:
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN_GUID;
avctx->profile = FF_PROFILE_HEVC_MAIN;
break;
case NV_ENC_HEVC_PROFILE_MAIN_10:
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID;
avctx->profile = FF_PROFILE_HEVC_MAIN_10;
break;
case NV_ENC_HEVC_PROFILE_REXT:
cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID;
avctx->profile = FF_PROFILE_HEVC_REXT;
break;
}
// force setting profile as main10 if input is 10 bit
if (IS_10BIT(ctx->data_pix_fmt)) {
cc->profileGUID = NV_ENC_HEVC_PROFILE_MAIN10_GUID;
avctx->profile = FF_PROFILE_HEVC_MAIN_10;
}
// force setting profile as rext if input is yuv444
if (IS_YUV444(ctx->data_pix_fmt)) {
cc->profileGUID = NV_ENC_HEVC_PROFILE_FREXT_GUID;
avctx->profile = FF_PROFILE_HEVC_REXT;
}
hevc->chromaFormatIDC = IS_YUV444(ctx->data_pix_fmt) ? 3 : 1;
hevc->pixelBitDepthMinus8 = IS_10BIT(ctx->data_pix_fmt) ? 2 : 0;
hevc->level = ctx->level;
hevc->tier = ctx->tier;
return 0;
}
static av_cold int nvenc_setup_codec_config(AVCodecContext *avctx)
{
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
return nvenc_setup_h264_config(avctx);
case AV_CODEC_ID_HEVC:
return nvenc_setup_hevc_config(avctx);
/* Earlier switch/case will return if unknown codec is passed. */
}
return 0;
}
static av_cold int nvenc_setup_encoder(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NV_ENC_PRESET_CONFIG preset_config = { 0 };
NVENCSTATUS nv_status = NV_ENC_SUCCESS;
AVCPBProperties *cpb_props;
int res = 0;
int dw, dh;
ctx->encode_config.version = NV_ENC_CONFIG_VER;
ctx->init_encode_params.version = NV_ENC_INITIALIZE_PARAMS_VER;
ctx->init_encode_params.encodeHeight = avctx->height;
ctx->init_encode_params.encodeWidth = avctx->width;
ctx->init_encode_params.encodeConfig = &ctx->encode_config;
nvenc_map_preset(ctx);
preset_config.version = NV_ENC_PRESET_CONFIG_VER;
preset_config.presetCfg.version = NV_ENC_CONFIG_VER;
nv_status = p_nvenc->nvEncGetEncodePresetConfig(ctx->nvencoder,
ctx->init_encode_params.encodeGUID,
ctx->init_encode_params.presetGUID,
&preset_config);
if (nv_status != NV_ENC_SUCCESS)
return nvenc_print_error(avctx, nv_status, "Cannot get the preset configuration");
memcpy(&ctx->encode_config, &preset_config.presetCfg, sizeof(ctx->encode_config));
ctx->encode_config.version = NV_ENC_CONFIG_VER;
dw = avctx->width;
dh = avctx->height;
if (avctx->sample_aspect_ratio.num > 0 && avctx->sample_aspect_ratio.den > 0) {
dw*= avctx->sample_aspect_ratio.num;
dh*= avctx->sample_aspect_ratio.den;
}
av_reduce(&dw, &dh, dw, dh, 1024 * 1024);
ctx->init_encode_params.darHeight = dh;
ctx->init_encode_params.darWidth = dw;
ctx->init_encode_params.frameRateNum = avctx->time_base.den;
ctx->init_encode_params.frameRateDen = avctx->time_base.num * avctx->ticks_per_frame;
ctx->init_encode_params.enableEncodeAsync = 0;
ctx->init_encode_params.enablePTD = 1;
if (ctx->bluray_compat) {
ctx->aud = 1;
avctx->refs = FFMIN(FFMAX(avctx->refs, 0), 6);
avctx->max_b_frames = FFMIN(avctx->max_b_frames, 3);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
/* maximum level depends on used resolution */
break;
case AV_CODEC_ID_HEVC:
ctx->level = NV_ENC_LEVEL_HEVC_51;
ctx->tier = NV_ENC_TIER_HEVC_HIGH;
break;
}
}
if (avctx->gop_size > 0) {
if (avctx->max_b_frames >= 0) {
/* 0 is intra-only, 1 is I/P only, 2 is one B-Frame, 3 two B-frames, and so on. */
ctx->encode_config.frameIntervalP = avctx->max_b_frames + 1;
}
ctx->encode_config.gopLength = avctx->gop_size;
} else if (avctx->gop_size == 0) {
ctx->encode_config.frameIntervalP = 0;
ctx->encode_config.gopLength = 1;
}
ctx->initial_pts[0] = AV_NOPTS_VALUE;
ctx->initial_pts[1] = AV_NOPTS_VALUE;
nvenc_recalc_surfaces(avctx);
nvenc_setup_rate_control(avctx);
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FIELD;
} else {
ctx->encode_config.frameFieldMode = NV_ENC_PARAMS_FRAME_FIELD_MODE_FRAME;
}
res = nvenc_setup_codec_config(avctx);
if (res)
return res;
nv_status = p_nvenc->nvEncInitializeEncoder(ctx->nvencoder, &ctx->init_encode_params);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "InitializeEncoder failed");
}
if (ctx->encode_config.frameIntervalP > 1)
avctx->has_b_frames = 2;
if (ctx->encode_config.rcParams.averageBitRate > 0)
avctx->bit_rate = ctx->encode_config.rcParams.averageBitRate;
cpb_props = ff_add_cpb_side_data(avctx);
if (!cpb_props)
return AVERROR(ENOMEM);
cpb_props->max_bitrate = ctx->encode_config.rcParams.maxBitRate;
cpb_props->avg_bitrate = avctx->bit_rate;
cpb_props->buffer_size = ctx->encode_config.rcParams.vbvBufferSize;
return 0;
}
static NV_ENC_BUFFER_FORMAT nvenc_map_buffer_format(enum AVPixelFormat pix_fmt)
{
switch (pix_fmt) {
case AV_PIX_FMT_YUV420P:
return NV_ENC_BUFFER_FORMAT_YV12_PL;
case AV_PIX_FMT_NV12:
return NV_ENC_BUFFER_FORMAT_NV12_PL;
case AV_PIX_FMT_P010:
return NV_ENC_BUFFER_FORMAT_YUV420_10BIT;
case AV_PIX_FMT_YUV444P:
return NV_ENC_BUFFER_FORMAT_YUV444_PL;
case AV_PIX_FMT_YUV444P16:
return NV_ENC_BUFFER_FORMAT_YUV444_10BIT;
case AV_PIX_FMT_0RGB32:
return NV_ENC_BUFFER_FORMAT_ARGB;
case AV_PIX_FMT_0BGR32:
return NV_ENC_BUFFER_FORMAT_ABGR;
default:
return NV_ENC_BUFFER_FORMAT_UNDEFINED;
}
}
static av_cold int nvenc_alloc_surface(AVCodecContext *avctx, int idx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NVENCSTATUS nv_status;
NV_ENC_CREATE_BITSTREAM_BUFFER allocOut = { 0 };
allocOut.version = NV_ENC_CREATE_BITSTREAM_BUFFER_VER;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
ctx->surfaces[idx].in_ref = av_frame_alloc();
if (!ctx->surfaces[idx].in_ref)
return AVERROR(ENOMEM);
} else {
NV_ENC_CREATE_INPUT_BUFFER allocSurf = { 0 };
ctx->surfaces[idx].format = nvenc_map_buffer_format(ctx->data_pix_fmt);
if (ctx->surfaces[idx].format == NV_ENC_BUFFER_FORMAT_UNDEFINED) {
av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n",
av_get_pix_fmt_name(ctx->data_pix_fmt));
return AVERROR(EINVAL);
}
allocSurf.version = NV_ENC_CREATE_INPUT_BUFFER_VER;
allocSurf.width = (avctx->width + 31) & ~31;
allocSurf.height = (avctx->height + 31) & ~31;
allocSurf.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
allocSurf.bufferFmt = ctx->surfaces[idx].format;
nv_status = p_nvenc->nvEncCreateInputBuffer(ctx->nvencoder, &allocSurf);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "CreateInputBuffer failed");
}
ctx->surfaces[idx].input_surface = allocSurf.inputBuffer;
ctx->surfaces[idx].width = allocSurf.width;
ctx->surfaces[idx].height = allocSurf.height;
}
ctx->surfaces[idx].lockCount = 0;
/* 1MB is large enough to hold most output frames.
* NVENC increases this automaticaly if it is not enough. */
allocOut.size = 1024 * 1024;
allocOut.memoryHeap = NV_ENC_MEMORY_HEAP_SYSMEM_CACHED;
nv_status = p_nvenc->nvEncCreateBitstreamBuffer(ctx->nvencoder, &allocOut);
if (nv_status != NV_ENC_SUCCESS) {
int err = nvenc_print_error(avctx, nv_status, "CreateBitstreamBuffer failed");
if (avctx->pix_fmt != AV_PIX_FMT_CUDA)
p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[idx].input_surface);
av_frame_free(&ctx->surfaces[idx].in_ref);
return err;
}
ctx->surfaces[idx].output_surface = allocOut.bitstreamBuffer;
ctx->surfaces[idx].size = allocOut.size;
return 0;
}
static av_cold int nvenc_setup_surfaces(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int i, res;
ctx->surfaces = av_mallocz_array(ctx->nb_surfaces, sizeof(*ctx->surfaces));
if (!ctx->surfaces)
return AVERROR(ENOMEM);
ctx->timestamp_list = av_fifo_alloc(ctx->nb_surfaces * sizeof(int64_t));
if (!ctx->timestamp_list)
return AVERROR(ENOMEM);
ctx->output_surface_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*));
if (!ctx->output_surface_queue)
return AVERROR(ENOMEM);
ctx->output_surface_ready_queue = av_fifo_alloc(ctx->nb_surfaces * sizeof(NvencSurface*));
if (!ctx->output_surface_ready_queue)
return AVERROR(ENOMEM);
for (i = 0; i < ctx->nb_surfaces; i++) {
if ((res = nvenc_alloc_surface(avctx, i)) < 0)
return res;
}
return 0;
}
static av_cold int nvenc_setup_extradata(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NVENCSTATUS nv_status;
uint32_t outSize = 0;
char tmpHeader[256];
NV_ENC_SEQUENCE_PARAM_PAYLOAD payload = { 0 };
payload.version = NV_ENC_SEQUENCE_PARAM_PAYLOAD_VER;
payload.spsppsBuffer = tmpHeader;
payload.inBufferSize = sizeof(tmpHeader);
payload.outSPSPPSPayloadSize = &outSize;
nv_status = p_nvenc->nvEncGetSequenceParams(ctx->nvencoder, &payload);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "GetSequenceParams failed");
}
avctx->extradata_size = outSize;
avctx->extradata = av_mallocz(outSize + AV_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
return AVERROR(ENOMEM);
}
memcpy(avctx->extradata, tmpHeader, outSize);
return 0;
}
av_cold int ff_nvenc_encode_close(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
int i;
/* the encoder has to be flushed before it can be closed */
if (ctx->nvencoder) {
NV_ENC_PIC_PARAMS params = { .version = NV_ENC_PIC_PARAMS_VER,
.encodePicFlags = NV_ENC_PIC_FLAG_EOS };
p_nvenc->nvEncEncodePicture(ctx->nvencoder, &params);
}
av_fifo_freep(&ctx->timestamp_list);
av_fifo_freep(&ctx->output_surface_ready_queue);
av_fifo_freep(&ctx->output_surface_queue);
if (ctx->surfaces && avctx->pix_fmt == AV_PIX_FMT_CUDA) {
for (i = 0; i < ctx->nb_surfaces; ++i) {
if (ctx->surfaces[i].input_surface) {
p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, ctx->surfaces[i].in_map.mappedResource);
}
}
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (ctx->registered_frames[i].regptr)
p_nvenc->nvEncUnregisterResource(ctx->nvencoder, ctx->registered_frames[i].regptr);
}
ctx->nb_registered_frames = 0;
}
if (ctx->surfaces) {
for (i = 0; i < ctx->nb_surfaces; ++i) {
if (avctx->pix_fmt != AV_PIX_FMT_CUDA)
p_nvenc->nvEncDestroyInputBuffer(ctx->nvencoder, ctx->surfaces[i].input_surface);
av_frame_free(&ctx->surfaces[i].in_ref);
p_nvenc->nvEncDestroyBitstreamBuffer(ctx->nvencoder, ctx->surfaces[i].output_surface);
}
}
av_freep(&ctx->surfaces);
ctx->nb_surfaces = 0;
if (ctx->nvencoder)
p_nvenc->nvEncDestroyEncoder(ctx->nvencoder);
ctx->nvencoder = NULL;
if (ctx->cu_context_internal)
dl_fn->cuda_dl->cuCtxDestroy(ctx->cu_context_internal);
ctx->cu_context = ctx->cu_context_internal = NULL;
nvenc_free_functions(&dl_fn->nvenc_dl);
cuda_free_functions(&dl_fn->cuda_dl);
dl_fn->nvenc_device_count = 0;
av_log(avctx, AV_LOG_VERBOSE, "Nvenc unloaded\n");
return 0;
}
av_cold int ff_nvenc_encode_init(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
int ret;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
AVHWFramesContext *frames_ctx;
if (!avctx->hw_frames_ctx) {
av_log(avctx, AV_LOG_ERROR,
"hw_frames_ctx must be set when using GPU frames as input\n");
return AVERROR(EINVAL);
}
frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
ctx->data_pix_fmt = frames_ctx->sw_format;
} else {
ctx->data_pix_fmt = avctx->pix_fmt;
}
if ((ret = nvenc_load_libraries(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_device(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_encoder(avctx)) < 0)
return ret;
if ((ret = nvenc_setup_surfaces(avctx)) < 0)
return ret;
if (avctx->flags & AV_CODEC_FLAG_GLOBAL_HEADER) {
if ((ret = nvenc_setup_extradata(avctx)) < 0)
return ret;
}
return 0;
}
static NvencSurface *get_free_frame(NvencContext *ctx)
{
int i;
for (i = 0; i < ctx->nb_surfaces; ++i) {
if (!ctx->surfaces[i].lockCount) {
ctx->surfaces[i].lockCount = 1;
return &ctx->surfaces[i];
}
}
return NULL;
}
static int nvenc_copy_frame(AVCodecContext *avctx, NvencSurface *nv_surface,
NV_ENC_LOCK_INPUT_BUFFER *lock_buffer_params, const AVFrame *frame)
{
int dst_linesize[4] = {
lock_buffer_params->pitch,
lock_buffer_params->pitch,
lock_buffer_params->pitch,
lock_buffer_params->pitch
};
uint8_t *dst_data[4];
int ret;
if (frame->format == AV_PIX_FMT_YUV420P)
dst_linesize[1] = dst_linesize[2] >>= 1;
ret = av_image_fill_pointers(dst_data, frame->format, nv_surface->height,
lock_buffer_params->bufferDataPtr, dst_linesize);
if (ret < 0)
return ret;
if (frame->format == AV_PIX_FMT_YUV420P)
FFSWAP(uint8_t*, dst_data[1], dst_data[2]);
av_image_copy(dst_data, dst_linesize,
(const uint8_t**)frame->data, frame->linesize, frame->format,
avctx->width, avctx->height);
return 0;
}
static int nvenc_find_free_reg_resource(AVCodecContext *avctx)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
int i;
if (ctx->nb_registered_frames == FF_ARRAY_ELEMS(ctx->registered_frames)) {
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (!ctx->registered_frames[i].mapped) {
if (ctx->registered_frames[i].regptr) {
p_nvenc->nvEncUnregisterResource(ctx->nvencoder,
ctx->registered_frames[i].regptr);
ctx->registered_frames[i].regptr = NULL;
}
return i;
}
}
} else {
return ctx->nb_registered_frames++;
}
av_log(avctx, AV_LOG_ERROR, "Too many registered CUDA frames\n");
return AVERROR(ENOMEM);
}
static int nvenc_register_frame(AVCodecContext *avctx, const AVFrame *frame)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
NV_ENC_REGISTER_RESOURCE reg;
int i, idx, ret;
for (i = 0; i < ctx->nb_registered_frames; i++) {
if (ctx->registered_frames[i].ptr == (CUdeviceptr)frame->data[0])
return i;
}
idx = nvenc_find_free_reg_resource(avctx);
if (idx < 0)
return idx;
reg.version = NV_ENC_REGISTER_RESOURCE_VER;
reg.resourceType = NV_ENC_INPUT_RESOURCE_TYPE_CUDADEVICEPTR;
reg.width = frames_ctx->width;
reg.height = frames_ctx->height;
reg.pitch = frame->linesize[0];
reg.resourceToRegister = frame->data[0];
reg.bufferFormat = nvenc_map_buffer_format(frames_ctx->sw_format);
if (reg.bufferFormat == NV_ENC_BUFFER_FORMAT_UNDEFINED) {
av_log(avctx, AV_LOG_FATAL, "Invalid input pixel format: %s\n",
av_get_pix_fmt_name(frames_ctx->sw_format));
return AVERROR(EINVAL);
}
ret = p_nvenc->nvEncRegisterResource(ctx->nvencoder, &reg);
if (ret != NV_ENC_SUCCESS) {
nvenc_print_error(avctx, ret, "Error registering an input resource");
return AVERROR_UNKNOWN;
}
ctx->registered_frames[idx].ptr = (CUdeviceptr)frame->data[0];
ctx->registered_frames[idx].regptr = reg.registeredResource;
return idx;
}
static int nvenc_upload_frame(AVCodecContext *avctx, const AVFrame *frame,
NvencSurface *nvenc_frame)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
int res;
NVENCSTATUS nv_status;
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
int reg_idx = nvenc_register_frame(avctx, frame);
if (reg_idx < 0) {
av_log(avctx, AV_LOG_ERROR, "Could not register an input CUDA frame\n");
return reg_idx;
}
res = av_frame_ref(nvenc_frame->in_ref, frame);
if (res < 0)
return res;
nvenc_frame->in_map.version = NV_ENC_MAP_INPUT_RESOURCE_VER;
nvenc_frame->in_map.registeredResource = ctx->registered_frames[reg_idx].regptr;
nv_status = p_nvenc->nvEncMapInputResource(ctx->nvencoder, &nvenc_frame->in_map);
if (nv_status != NV_ENC_SUCCESS) {
av_frame_unref(nvenc_frame->in_ref);
return nvenc_print_error(avctx, nv_status, "Error mapping an input resource");
}
ctx->registered_frames[reg_idx].mapped = 1;
nvenc_frame->reg_idx = reg_idx;
nvenc_frame->input_surface = nvenc_frame->in_map.mappedResource;
nvenc_frame->pitch = frame->linesize[0];
return 0;
} else {
NV_ENC_LOCK_INPUT_BUFFER lockBufferParams = { 0 };
lockBufferParams.version = NV_ENC_LOCK_INPUT_BUFFER_VER;
lockBufferParams.inputBuffer = nvenc_frame->input_surface;
nv_status = p_nvenc->nvEncLockInputBuffer(ctx->nvencoder, &lockBufferParams);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "Failed locking nvenc input buffer");
}
nvenc_frame->pitch = lockBufferParams.pitch;
res = nvenc_copy_frame(avctx, nvenc_frame, &lockBufferParams, frame);
nv_status = p_nvenc->nvEncUnlockInputBuffer(ctx->nvencoder, nvenc_frame->input_surface);
if (nv_status != NV_ENC_SUCCESS) {
return nvenc_print_error(avctx, nv_status, "Failed unlocking input buffer!");
}
return res;
}
}
static void nvenc_codec_specific_pic_params(AVCodecContext *avctx,
NV_ENC_PIC_PARAMS *params)
{
NvencContext *ctx = avctx->priv_data;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
params->codecPicParams.h264PicParams.sliceMode =
ctx->encode_config.encodeCodecConfig.h264Config.sliceMode;
params->codecPicParams.h264PicParams.sliceModeData =
ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData;
break;
case AV_CODEC_ID_HEVC:
params->codecPicParams.hevcPicParams.sliceMode =
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceMode;
params->codecPicParams.hevcPicParams.sliceModeData =
ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData;
break;
}
}
static inline void timestamp_queue_enqueue(AVFifoBuffer* queue, int64_t timestamp)
{
av_fifo_generic_write(queue, &timestamp, sizeof(timestamp), NULL);
}
static inline int64_t timestamp_queue_dequeue(AVFifoBuffer* queue)
{
int64_t timestamp = AV_NOPTS_VALUE;
if (av_fifo_size(queue) > 0)
av_fifo_generic_read(queue, &timestamp, sizeof(timestamp), NULL);
return timestamp;
}
static int nvenc_set_timestamp(AVCodecContext *avctx,
NV_ENC_LOCK_BITSTREAM *params,
AVPacket *pkt)
{
NvencContext *ctx = avctx->priv_data;
pkt->pts = params->outputTimeStamp;
/* generate the first dts by linearly extrapolating the
* first two pts values to the past */
if (avctx->max_b_frames > 0 && !ctx->first_packet_output &&
ctx->initial_pts[1] != AV_NOPTS_VALUE) {
int64_t ts0 = ctx->initial_pts[0], ts1 = ctx->initial_pts[1];
int64_t delta;
if ((ts0 < 0 && ts1 > INT64_MAX + ts0) ||
(ts0 > 0 && ts1 < INT64_MIN + ts0))
return AVERROR(ERANGE);
delta = ts1 - ts0;
if ((delta < 0 && ts0 > INT64_MAX + delta) ||
(delta > 0 && ts0 < INT64_MIN + delta))
return AVERROR(ERANGE);
pkt->dts = ts0 - delta;
ctx->first_packet_output = 1;
return 0;
}
pkt->dts = timestamp_queue_dequeue(ctx->timestamp_list);
return 0;
}
static int process_output_surface(AVCodecContext *avctx, AVPacket *pkt, NvencSurface *tmpoutsurf)
{
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
uint32_t slice_mode_data;
uint32_t *slice_offsets = NULL;
NV_ENC_LOCK_BITSTREAM lock_params = { 0 };
NVENCSTATUS nv_status;
int res = 0;
enum AVPictureType pict_type;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
slice_mode_data = ctx->encode_config.encodeCodecConfig.h264Config.sliceModeData;
break;
case AV_CODEC_ID_H265:
slice_mode_data = ctx->encode_config.encodeCodecConfig.hevcConfig.sliceModeData;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown codec name\n");
res = AVERROR(EINVAL);
goto error;
}
slice_offsets = av_mallocz(slice_mode_data * sizeof(*slice_offsets));
if (!slice_offsets)
goto error;
lock_params.version = NV_ENC_LOCK_BITSTREAM_VER;
lock_params.doNotWait = 0;
lock_params.outputBitstream = tmpoutsurf->output_surface;
lock_params.sliceOffsets = slice_offsets;
nv_status = p_nvenc->nvEncLockBitstream(ctx->nvencoder, &lock_params);
if (nv_status != NV_ENC_SUCCESS) {
res = nvenc_print_error(avctx, nv_status, "Failed locking bitstream buffer");
goto error;
}
if (res = ff_alloc_packet2(avctx, pkt, lock_params.bitstreamSizeInBytes,0)) {
p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface);
goto error;
}
memcpy(pkt->data, lock_params.bitstreamBufferPtr, lock_params.bitstreamSizeInBytes);
nv_status = p_nvenc->nvEncUnlockBitstream(ctx->nvencoder, tmpoutsurf->output_surface);
if (nv_status != NV_ENC_SUCCESS)
nvenc_print_error(avctx, nv_status, "Failed unlocking bitstream buffer, expect the gates of mordor to open");
if (avctx->pix_fmt == AV_PIX_FMT_CUDA) {
p_nvenc->nvEncUnmapInputResource(ctx->nvencoder, tmpoutsurf->in_map.mappedResource);
av_frame_unref(tmpoutsurf->in_ref);
ctx->registered_frames[tmpoutsurf->reg_idx].mapped = 0;
tmpoutsurf->input_surface = NULL;
}
switch (lock_params.pictureType) {
case NV_ENC_PIC_TYPE_IDR:
pkt->flags |= AV_PKT_FLAG_KEY;
case NV_ENC_PIC_TYPE_I:
pict_type = AV_PICTURE_TYPE_I;
break;
case NV_ENC_PIC_TYPE_P:
pict_type = AV_PICTURE_TYPE_P;
break;
case NV_ENC_PIC_TYPE_B:
pict_type = AV_PICTURE_TYPE_B;
break;
case NV_ENC_PIC_TYPE_BI:
pict_type = AV_PICTURE_TYPE_BI;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown picture type encountered, expect the output to be broken.\n");
av_log(avctx, AV_LOG_ERROR, "Please report this error and include as much information on how to reproduce it as possible.\n");
res = AVERROR_EXTERNAL;
goto error;
}
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
avctx->coded_frame->pict_type = pict_type;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
ff_side_data_set_encoder_stats(pkt,
(lock_params.frameAvgQP - 1) * FF_QP2LAMBDA, NULL, 0, pict_type);
res = nvenc_set_timestamp(avctx, &lock_params, pkt);
if (res < 0)
goto error2;
av_free(slice_offsets);
return 0;
error:
timestamp_queue_dequeue(ctx->timestamp_list);
error2:
av_free(slice_offsets);
return res;
}
static int output_ready(AVCodecContext *avctx, int flush)
{
NvencContext *ctx = avctx->priv_data;
int nb_ready, nb_pending;
/* when B-frames are enabled, we wait for two initial timestamps to
* calculate the first dts */
if (!flush && avctx->max_b_frames > 0 &&
(ctx->initial_pts[0] == AV_NOPTS_VALUE || ctx->initial_pts[1] == AV_NOPTS_VALUE))
return 0;
nb_ready = av_fifo_size(ctx->output_surface_ready_queue) / sizeof(NvencSurface*);
nb_pending = av_fifo_size(ctx->output_surface_queue) / sizeof(NvencSurface*);
if (flush)
return nb_ready > 0;
return (nb_ready > 0) && (nb_ready + nb_pending >= ctx->async_depth);
}
int ff_nvenc_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
NVENCSTATUS nv_status;
NvencSurface *tmpoutsurf, *inSurf;
int res;
NvencContext *ctx = avctx->priv_data;
NvencDynLoadFunctions *dl_fn = &ctx->nvenc_dload_funcs;
NV_ENCODE_API_FUNCTION_LIST *p_nvenc = &dl_fn->nvenc_funcs;
NV_ENC_PIC_PARAMS pic_params = { 0 };
pic_params.version = NV_ENC_PIC_PARAMS_VER;
if (frame) {
inSurf = get_free_frame(ctx);
if (!inSurf) {
av_log(avctx, AV_LOG_ERROR, "No free surfaces\n");
return AVERROR_BUG;
}
res = nvenc_upload_frame(avctx, frame, inSurf);
if (res) {
inSurf->lockCount = 0;
return res;
}
pic_params.inputBuffer = inSurf->input_surface;
pic_params.bufferFmt = inSurf->format;
pic_params.inputWidth = avctx->width;
pic_params.inputHeight = avctx->height;
pic_params.inputPitch = inSurf->pitch;
pic_params.outputBitstream = inSurf->output_surface;
if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
if (frame->top_field_first)
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_TOP_BOTTOM;
else
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FIELD_BOTTOM_TOP;
} else {
pic_params.pictureStruct = NV_ENC_PIC_STRUCT_FRAME;
}
if (ctx->forced_idr >= 0 && frame->pict_type == AV_PICTURE_TYPE_I) {
pic_params.encodePicFlags =
ctx->forced_idr ? NV_ENC_PIC_FLAG_FORCEIDR : NV_ENC_PIC_FLAG_FORCEINTRA;
} else {
pic_params.encodePicFlags = 0;
}
pic_params.inputTimeStamp = frame->pts;
nvenc_codec_specific_pic_params(avctx, &pic_params);
} else {
pic_params.encodePicFlags = NV_ENC_PIC_FLAG_EOS;
}
nv_status = p_nvenc->nvEncEncodePicture(ctx->nvencoder, &pic_params);
if (nv_status != NV_ENC_SUCCESS &&
nv_status != NV_ENC_ERR_NEED_MORE_INPUT)
return nvenc_print_error(avctx, nv_status, "EncodePicture failed!");
if (frame) {
av_fifo_generic_write(ctx->output_surface_queue, &inSurf, sizeof(inSurf), NULL);
timestamp_queue_enqueue(ctx->timestamp_list, frame->pts);
if (ctx->initial_pts[0] == AV_NOPTS_VALUE)
ctx->initial_pts[0] = frame->pts;
else if (ctx->initial_pts[1] == AV_NOPTS_VALUE)
ctx->initial_pts[1] = frame->pts;
}
/* all the pending buffers are now ready for output */
if (nv_status == NV_ENC_SUCCESS) {
while (av_fifo_size(ctx->output_surface_queue) > 0) {
av_fifo_generic_read(ctx->output_surface_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL);
av_fifo_generic_write(ctx->output_surface_ready_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL);
}
}
if (output_ready(avctx, !frame)) {
av_fifo_generic_read(ctx->output_surface_ready_queue, &tmpoutsurf, sizeof(tmpoutsurf), NULL);
res = process_output_surface(avctx, pkt, tmpoutsurf);
if (res)
return res;
av_assert0(tmpoutsurf->lockCount);
tmpoutsurf->lockCount--;
*got_packet = 1;
} else {
*got_packet = 0;
}
return 0;
}