1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavutil/hwcontext_vulkan.c
Lynne fe3ea13131
hwcontext_vulkan: remove plane size alignment checks when host importing
The process space is guaranteed to be aligned to the page size, hence we're
never going to map outside of our address space.
There are more optimizations to do with respect to chroma plane alignment and
buffer offsets, but that can be done later.
2020-08-02 22:48:51 +02:00

3330 lines
116 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "pixdesc.h"
#include "avstring.h"
#include "imgutils.h"
#include "hwcontext.h"
#include "hwcontext_internal.h"
#include "hwcontext_vulkan.h"
#if CONFIG_LIBDRM
#include <unistd.h>
#include <xf86drm.h>
#include <drm_fourcc.h>
#include "hwcontext_drm.h"
#if CONFIG_VAAPI
#include <va/va_drmcommon.h>
#include "hwcontext_vaapi.h"
#endif
#endif
#if CONFIG_CUDA
#include "hwcontext_cuda_internal.h"
#include "cuda_check.h"
#define CHECK_CU(x) FF_CUDA_CHECK_DL(cuda_cu, cu, x)
#endif
typedef struct VulkanQueueCtx {
VkFence fence;
VkQueue queue;
int was_synchronous;
/* Buffer dependencies */
AVBufferRef **buf_deps;
int nb_buf_deps;
int buf_deps_alloc_size;
} VulkanQueueCtx;
typedef struct VulkanExecCtx {
VkCommandPool pool;
VkCommandBuffer *bufs;
VulkanQueueCtx *queues;
int nb_queues;
int cur_queue_idx;
} VulkanExecCtx;
typedef struct VulkanDevicePriv {
/* Properties */
VkPhysicalDeviceProperties2 props;
VkPhysicalDeviceMemoryProperties mprops;
VkPhysicalDeviceExternalMemoryHostPropertiesEXT hprops;
/* Queues */
uint32_t qfs[3];
int num_qfs;
/* Debug callback */
VkDebugUtilsMessengerEXT debug_ctx;
/* Extensions */
uint64_t extensions;
/* Settings */
int use_linear_images;
/* Nvidia */
int dev_is_nvidia;
} VulkanDevicePriv;
typedef struct VulkanFramesPriv {
/* Image conversions */
VulkanExecCtx conv_ctx;
/* Image transfers */
VulkanExecCtx upload_ctx;
VulkanExecCtx download_ctx;
} VulkanFramesPriv;
typedef struct AVVkFrameInternal {
#if CONFIG_CUDA
/* Importing external memory into cuda is really expensive so we keep the
* memory imported all the time */
AVBufferRef *cuda_fc_ref; /* Need to keep it around for uninit */
CUexternalMemory ext_mem[AV_NUM_DATA_POINTERS];
CUmipmappedArray cu_mma[AV_NUM_DATA_POINTERS];
CUarray cu_array[AV_NUM_DATA_POINTERS];
CUexternalSemaphore cu_sem[AV_NUM_DATA_POINTERS];
#endif
} AVVkFrameInternal;
#define GET_QUEUE_COUNT(hwctx, graph, comp, tx) ( \
graph ? hwctx->nb_graphics_queues : \
comp ? (hwctx->nb_comp_queues ? \
hwctx->nb_comp_queues : hwctx->nb_graphics_queues) : \
tx ? (hwctx->nb_tx_queues ? hwctx->nb_tx_queues : \
(hwctx->nb_comp_queues ? \
hwctx->nb_comp_queues : hwctx->nb_graphics_queues)) : \
0 \
)
#define VK_LOAD_PFN(inst, name) PFN_##name pfn_##name = (PFN_##name) \
vkGetInstanceProcAddr(inst, #name)
#define DEFAULT_USAGE_FLAGS (VK_IMAGE_USAGE_SAMPLED_BIT | \
VK_IMAGE_USAGE_STORAGE_BIT | \
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | \
VK_IMAGE_USAGE_TRANSFER_DST_BIT)
#define ADD_VAL_TO_LIST(list, count, val) \
do { \
list = av_realloc_array(list, sizeof(*list), ++count); \
if (!list) { \
err = AVERROR(ENOMEM); \
goto fail; \
} \
list[count - 1] = av_strdup(val); \
if (!list[count - 1]) { \
err = AVERROR(ENOMEM); \
goto fail; \
} \
} while(0)
static const struct {
enum AVPixelFormat pixfmt;
const VkFormat vkfmts[3];
} vk_pixfmt_map[] = {
{ AV_PIX_FMT_GRAY8, { VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_GRAY16, { VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_GRAYF32, { VK_FORMAT_R32_SFLOAT } },
{ AV_PIX_FMT_NV12, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } },
{ AV_PIX_FMT_P010, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ AV_PIX_FMT_P016, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ AV_PIX_FMT_YUV420P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV422P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV444P, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ AV_PIX_FMT_YUV420P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_YUV422P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_YUV444P16, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ AV_PIX_FMT_ABGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } },
{ AV_PIX_FMT_BGRA, { VK_FORMAT_B8G8R8A8_UNORM } },
{ AV_PIX_FMT_RGBA, { VK_FORMAT_R8G8B8A8_UNORM } },
{ AV_PIX_FMT_RGB24, { VK_FORMAT_R8G8B8_UNORM } },
{ AV_PIX_FMT_BGR24, { VK_FORMAT_B8G8R8_UNORM } },
{ AV_PIX_FMT_RGB48, { VK_FORMAT_R16G16B16_UNORM } },
{ AV_PIX_FMT_RGBA64, { VK_FORMAT_R16G16B16A16_UNORM } },
{ AV_PIX_FMT_RGB565, { VK_FORMAT_R5G6B5_UNORM_PACK16 } },
{ AV_PIX_FMT_BGR565, { VK_FORMAT_B5G6R5_UNORM_PACK16 } },
{ AV_PIX_FMT_BGR0, { VK_FORMAT_B8G8R8A8_UNORM } },
{ AV_PIX_FMT_0BGR, { VK_FORMAT_A8B8G8R8_UNORM_PACK32 } },
{ AV_PIX_FMT_RGB0, { VK_FORMAT_R8G8B8A8_UNORM } },
{ AV_PIX_FMT_GBRPF32, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } },
};
const VkFormat *av_vkfmt_from_pixfmt(enum AVPixelFormat p)
{
for (enum AVPixelFormat i = 0; i < FF_ARRAY_ELEMS(vk_pixfmt_map); i++)
if (vk_pixfmt_map[i].pixfmt == p)
return vk_pixfmt_map[i].vkfmts;
return NULL;
}
static int pixfmt_is_supported(AVVulkanDeviceContext *hwctx, enum AVPixelFormat p,
int linear)
{
const VkFormat *fmt = av_vkfmt_from_pixfmt(p);
int planes = av_pix_fmt_count_planes(p);
if (!fmt)
return 0;
for (int i = 0; i < planes; i++) {
VkFormatFeatureFlags flags;
VkFormatProperties2 prop = {
.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2,
};
vkGetPhysicalDeviceFormatProperties2(hwctx->phys_dev, fmt[i], &prop);
flags = linear ? prop.formatProperties.linearTilingFeatures :
prop.formatProperties.optimalTilingFeatures;
if (!(flags & DEFAULT_USAGE_FLAGS))
return 0;
}
return 1;
}
enum VulkanExtensions {
EXT_EXTERNAL_DMABUF_MEMORY = 1ULL << 0, /* VK_EXT_external_memory_dma_buf */
EXT_DRM_MODIFIER_FLAGS = 1ULL << 1, /* VK_EXT_image_drm_format_modifier */
EXT_EXTERNAL_FD_MEMORY = 1ULL << 2, /* VK_KHR_external_memory_fd */
EXT_EXTERNAL_FD_SEM = 1ULL << 3, /* VK_KHR_external_semaphore_fd */
EXT_EXTERNAL_HOST_MEMORY = 1ULL << 4, /* VK_EXT_external_memory_host */
EXT_NO_FLAG = 1ULL << 63,
};
typedef struct VulkanOptExtension {
const char *name;
uint64_t flag;
} VulkanOptExtension;
static const VulkanOptExtension optional_instance_exts[] = {
/* For future use */
};
static const VulkanOptExtension optional_device_exts[] = {
{ VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_MEMORY, },
{ VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, EXT_EXTERNAL_DMABUF_MEMORY, },
{ VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, EXT_DRM_MODIFIER_FLAGS, },
{ VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, EXT_EXTERNAL_FD_SEM, },
{ VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, EXT_EXTERNAL_HOST_MEMORY, },
};
/* Converts return values to strings */
static const char *vk_ret2str(VkResult res)
{
#define CASE(VAL) case VAL: return #VAL
switch (res) {
CASE(VK_SUCCESS);
CASE(VK_NOT_READY);
CASE(VK_TIMEOUT);
CASE(VK_EVENT_SET);
CASE(VK_EVENT_RESET);
CASE(VK_INCOMPLETE);
CASE(VK_ERROR_OUT_OF_HOST_MEMORY);
CASE(VK_ERROR_OUT_OF_DEVICE_MEMORY);
CASE(VK_ERROR_INITIALIZATION_FAILED);
CASE(VK_ERROR_DEVICE_LOST);
CASE(VK_ERROR_MEMORY_MAP_FAILED);
CASE(VK_ERROR_LAYER_NOT_PRESENT);
CASE(VK_ERROR_EXTENSION_NOT_PRESENT);
CASE(VK_ERROR_FEATURE_NOT_PRESENT);
CASE(VK_ERROR_INCOMPATIBLE_DRIVER);
CASE(VK_ERROR_TOO_MANY_OBJECTS);
CASE(VK_ERROR_FORMAT_NOT_SUPPORTED);
CASE(VK_ERROR_FRAGMENTED_POOL);
CASE(VK_ERROR_SURFACE_LOST_KHR);
CASE(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR);
CASE(VK_SUBOPTIMAL_KHR);
CASE(VK_ERROR_OUT_OF_DATE_KHR);
CASE(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR);
CASE(VK_ERROR_VALIDATION_FAILED_EXT);
CASE(VK_ERROR_INVALID_SHADER_NV);
CASE(VK_ERROR_OUT_OF_POOL_MEMORY);
CASE(VK_ERROR_INVALID_EXTERNAL_HANDLE);
CASE(VK_ERROR_NOT_PERMITTED_EXT);
CASE(VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT);
CASE(VK_ERROR_INVALID_DEVICE_ADDRESS_EXT);
CASE(VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT);
default: return "Unknown error";
}
#undef CASE
}
static VkBool32 vk_dbg_callback(VkDebugUtilsMessageSeverityFlagBitsEXT severity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *data,
void *priv)
{
int l;
AVHWDeviceContext *ctx = priv;
switch (severity) {
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: l = AV_LOG_VERBOSE; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: l = AV_LOG_INFO; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: l = AV_LOG_WARNING; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: l = AV_LOG_ERROR; break;
default: l = AV_LOG_DEBUG; break;
}
av_log(ctx, l, "%s\n", data->pMessage);
for (int i = 0; i < data->cmdBufLabelCount; i++)
av_log(ctx, l, "\t%i: %s\n", i, data->pCmdBufLabels[i].pLabelName);
return 0;
}
static int check_extensions(AVHWDeviceContext *ctx, int dev, AVDictionary *opts,
const char * const **dst, uint32_t *num, int debug)
{
const char *tstr;
const char **extension_names = NULL;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int err = 0, found, extensions_found = 0;
const char *mod;
int optional_exts_num;
uint32_t sup_ext_count;
char *user_exts_str = NULL;
AVDictionaryEntry *user_exts;
VkExtensionProperties *sup_ext;
const VulkanOptExtension *optional_exts;
if (!dev) {
mod = "instance";
optional_exts = optional_instance_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_instance_exts);
user_exts = av_dict_get(opts, "instance_extensions", NULL, 0);
if (user_exts) {
user_exts_str = av_strdup(user_exts->value);
if (!user_exts_str) {
err = AVERROR(ENOMEM);
goto fail;
}
}
vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vkEnumerateInstanceExtensionProperties(NULL, &sup_ext_count, sup_ext);
} else {
mod = "device";
optional_exts = optional_device_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_device_exts);
user_exts = av_dict_get(opts, "device_extensions", NULL, 0);
if (user_exts) {
user_exts_str = av_strdup(user_exts->value);
if (!user_exts_str) {
err = AVERROR(ENOMEM);
goto fail;
}
}
vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vkEnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, sup_ext);
}
for (int i = 0; i < optional_exts_num; i++) {
tstr = optional_exts[i].name;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (!found)
continue;
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, tstr);
p->extensions |= optional_exts[i].flag;
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
}
if (debug && !dev) {
tstr = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (found) {
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, tstr);
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
} else {
av_log(ctx, AV_LOG_ERROR, "Debug extension \"%s\" not found!\n",
tstr);
err = AVERROR(EINVAL);
goto fail;
}
}
if (user_exts_str) {
char *save, *token = av_strtok(user_exts_str, "+", &save);
while (token) {
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(token, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (found) {
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, token);
ADD_VAL_TO_LIST(extension_names, extensions_found, token);
} else {
av_log(ctx, AV_LOG_WARNING, "%s extension \"%s\" not found, excluding.\n",
mod, token);
}
token = av_strtok(NULL, "+", &save);
}
}
*dst = extension_names;
*num = extensions_found;
av_free(user_exts_str);
av_free(sup_ext);
return 0;
fail:
if (extension_names)
for (int i = 0; i < extensions_found; i++)
av_free((void *)extension_names[i]);
av_free(extension_names);
av_free(user_exts_str);
av_free(sup_ext);
return err;
}
/* Creates a VkInstance */
static int create_instance(AVHWDeviceContext *ctx, AVDictionary *opts)
{
int err = 0;
VkResult ret;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
AVDictionaryEntry *debug_opt = av_dict_get(opts, "debug", NULL, 0);
const int debug_mode = debug_opt && strtol(debug_opt->value, NULL, 10);
VkApplicationInfo application_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pEngineName = "libavutil",
.apiVersion = VK_API_VERSION_1_1,
.engineVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR,
LIBAVUTIL_VERSION_MINOR,
LIBAVUTIL_VERSION_MICRO),
};
VkInstanceCreateInfo inst_props = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &application_info,
};
/* Check for present/missing extensions */
err = check_extensions(ctx, 0, opts, &inst_props.ppEnabledExtensionNames,
&inst_props.enabledExtensionCount, debug_mode);
if (err < 0)
return err;
if (debug_mode) {
static const char *layers[] = { "VK_LAYER_KHRONOS_validation" };
inst_props.ppEnabledLayerNames = layers;
inst_props.enabledLayerCount = FF_ARRAY_ELEMS(layers);
}
/* Try to create the instance */
ret = vkCreateInstance(&inst_props, hwctx->alloc, &hwctx->inst);
/* Check for errors */
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Instance creation failure: %s\n",
vk_ret2str(ret));
for (int i = 0; i < inst_props.enabledExtensionCount; i++)
av_free((void *)inst_props.ppEnabledExtensionNames[i]);
av_free((void *)inst_props.ppEnabledExtensionNames);
return AVERROR_EXTERNAL;
}
if (debug_mode) {
VkDebugUtilsMessengerCreateInfoEXT dbg = {
.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT,
.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
.pfnUserCallback = vk_dbg_callback,
.pUserData = ctx,
};
VK_LOAD_PFN(hwctx->inst, vkCreateDebugUtilsMessengerEXT);
pfn_vkCreateDebugUtilsMessengerEXT(hwctx->inst, &dbg,
hwctx->alloc, &p->debug_ctx);
}
hwctx->enabled_inst_extensions = inst_props.ppEnabledExtensionNames;
hwctx->nb_enabled_inst_extensions = inst_props.enabledExtensionCount;
return 0;
}
typedef struct VulkanDeviceSelection {
uint8_t uuid[VK_UUID_SIZE]; /* Will use this first unless !has_uuid */
int has_uuid;
const char *name; /* Will use this second unless NULL */
uint32_t pci_device; /* Will use this third unless 0x0 */
uint32_t vendor_id; /* Last resort to find something deterministic */
int index; /* Finally fall back to index */
} VulkanDeviceSelection;
static const char *vk_dev_type(enum VkPhysicalDeviceType type)
{
switch (type) {
case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return "integrated";
case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return "discrete";
case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return "virtual";
case VK_PHYSICAL_DEVICE_TYPE_CPU: return "software";
default: return "unknown";
}
}
/* Finds a device */
static int find_device(AVHWDeviceContext *ctx, VulkanDeviceSelection *select)
{
int err = 0, choice = -1;
uint32_t num;
VkResult ret;
VkPhysicalDevice *devices = NULL;
VkPhysicalDeviceIDProperties *idp = NULL;
VkPhysicalDeviceProperties2 *prop = NULL;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, NULL);
if (ret != VK_SUCCESS || !num) {
av_log(ctx, AV_LOG_ERROR, "No devices found: %s!\n", vk_ret2str(ret));
return AVERROR(ENODEV);
}
devices = av_malloc_array(num, sizeof(VkPhysicalDevice));
if (!devices)
return AVERROR(ENOMEM);
ret = vkEnumeratePhysicalDevices(hwctx->inst, &num, devices);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed enumerating devices: %s\n",
vk_ret2str(ret));
err = AVERROR(ENODEV);
goto end;
}
prop = av_mallocz_array(num, sizeof(*prop));
if (!prop) {
err = AVERROR(ENOMEM);
goto end;
}
idp = av_mallocz_array(num, sizeof(*idp));
if (!idp) {
err = AVERROR(ENOMEM);
goto end;
}
av_log(ctx, AV_LOG_VERBOSE, "GPU listing:\n");
for (int i = 0; i < num; i++) {
idp[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
prop[i].pNext = &idp[i];
vkGetPhysicalDeviceProperties2(devices[i], &prop[i]);
av_log(ctx, AV_LOG_VERBOSE, " %d: %s (%s) (0x%x)\n", i,
prop[i].properties.deviceName,
vk_dev_type(prop[i].properties.deviceType),
prop[i].properties.deviceID);
}
if (select->has_uuid) {
for (int i = 0; i < num; i++) {
if (!strncmp(idp[i].deviceUUID, select->uuid, VK_UUID_SIZE)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device by given UUID!\n");
err = AVERROR(ENODEV);
goto end;
} else if (select->name) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: %s\n", select->name);
for (int i = 0; i < num; i++) {
if (strstr(prop[i].properties.deviceName, select->name)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device \"%s\"!\n",
select->name);
err = AVERROR(ENODEV);
goto end;
} else if (select->pci_device) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: 0x%x\n", select->pci_device);
for (int i = 0; i < num; i++) {
if (select->pci_device == prop[i].properties.deviceID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with PCI ID 0x%x!\n",
select->pci_device);
err = AVERROR(EINVAL);
goto end;
} else if (select->vendor_id) {
av_log(ctx, AV_LOG_VERBOSE, "Requested vendor: 0x%x\n", select->vendor_id);
for (int i = 0; i < num; i++) {
if (select->vendor_id == prop[i].properties.vendorID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with Vendor ID 0x%x!\n",
select->vendor_id);
err = AVERROR(ENODEV);
goto end;
} else {
if (select->index < num) {
choice = select->index;
goto end;
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with index %i!\n",
select->index);
err = AVERROR(ENODEV);
goto end;
}
end:
if (choice > -1)
hwctx->phys_dev = devices[choice];
av_free(devices);
av_free(prop);
av_free(idp);
return err;
}
static int search_queue_families(AVHWDeviceContext *ctx, VkDeviceCreateInfo *cd)
{
uint32_t num;
float *weights;
VkQueueFamilyProperties *qs = NULL;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int graph_index = -1, comp_index = -1, tx_index = -1;
VkDeviceQueueCreateInfo *pc = (VkDeviceQueueCreateInfo *)cd->pQueueCreateInfos;
/* First get the number of queue families */
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, NULL);
if (!num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
/* Then allocate memory */
qs = av_malloc_array(num, sizeof(VkQueueFamilyProperties));
if (!qs)
return AVERROR(ENOMEM);
/* Finally retrieve the queue families */
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, qs);
#define SEARCH_FLAGS(expr, out) \
for (int i = 0; i < num; i++) { \
const VkQueueFlagBits flags = qs[i].queueFlags; \
if (expr) { \
out = i; \
break; \
} \
}
SEARCH_FLAGS(flags & VK_QUEUE_GRAPHICS_BIT, graph_index)
SEARCH_FLAGS((flags & VK_QUEUE_COMPUTE_BIT) && (i != graph_index),
comp_index)
SEARCH_FLAGS((flags & VK_QUEUE_TRANSFER_BIT) && (i != graph_index) &&
(i != comp_index), tx_index)
#undef SEARCH_FLAGS
#define ADD_QUEUE(fidx, graph, comp, tx) \
av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i (total queues: %i) for %s%s%s\n", \
fidx, qs[fidx].queueCount, graph ? "graphics " : "", \
comp ? "compute " : "", tx ? "transfers " : ""); \
av_log(ctx, AV_LOG_VERBOSE, " QF %i flags: %s%s%s%s\n", fidx, \
((qs[fidx].queueFlags) & VK_QUEUE_GRAPHICS_BIT) ? "(graphics) " : "", \
((qs[fidx].queueFlags) & VK_QUEUE_COMPUTE_BIT) ? "(compute) " : "", \
((qs[fidx].queueFlags) & VK_QUEUE_TRANSFER_BIT) ? "(transfers) " : "", \
((qs[fidx].queueFlags) & VK_QUEUE_SPARSE_BINDING_BIT) ? "(sparse) " : ""); \
pc[cd->queueCreateInfoCount].queueFamilyIndex = fidx; \
pc[cd->queueCreateInfoCount].queueCount = qs[fidx].queueCount; \
weights = av_malloc(qs[fidx].queueCount * sizeof(float)); \
pc[cd->queueCreateInfoCount].pQueuePriorities = weights; \
if (!weights) \
goto fail; \
for (int i = 0; i < qs[fidx].queueCount; i++) \
weights[i] = 1.0f; \
cd->queueCreateInfoCount++;
ADD_QUEUE(graph_index, 1, comp_index < 0, tx_index < 0 && comp_index < 0)
hwctx->queue_family_index = graph_index;
hwctx->queue_family_comp_index = graph_index;
hwctx->queue_family_tx_index = graph_index;
hwctx->nb_graphics_queues = qs[graph_index].queueCount;
if (comp_index != -1) {
ADD_QUEUE(comp_index, 0, 1, tx_index < 0)
hwctx->queue_family_tx_index = comp_index;
hwctx->queue_family_comp_index = comp_index;
hwctx->nb_comp_queues = qs[comp_index].queueCount;
}
if (tx_index != -1) {
ADD_QUEUE(tx_index, 0, 0, 1)
hwctx->queue_family_tx_index = tx_index;
hwctx->nb_tx_queues = qs[tx_index].queueCount;
}
#undef ADD_QUEUE
av_free(qs);
return 0;
fail:
av_freep(&pc[0].pQueuePriorities);
av_freep(&pc[1].pQueuePriorities);
av_freep(&pc[2].pQueuePriorities);
av_free(qs);
return AVERROR(ENOMEM);
}
static int create_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd,
int queue_family_index, int num_queues)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
VkCommandPoolCreateInfo cqueue_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
.queueFamilyIndex = queue_family_index,
};
VkCommandBufferAllocateInfo cbuf_create = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = num_queues,
};
cmd->nb_queues = num_queues;
cmd->queues = av_mallocz(num_queues * sizeof(*cmd->queues));
if (!cmd->queues)
return AVERROR(ENOMEM);
cmd->bufs = av_mallocz(num_queues * sizeof(*cmd->bufs));
if (!cmd->bufs)
return AVERROR(ENOMEM);
/* Create command pool */
ret = vkCreateCommandPool(hwctx->act_dev, &cqueue_create,
hwctx->alloc, &cmd->pool);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Command pool creation failure: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
cbuf_create.commandPool = cmd->pool;
/* Allocate command buffer */
ret = vkAllocateCommandBuffers(hwctx->act_dev, &cbuf_create, cmd->bufs);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Command buffer alloc failure: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
for (int i = 0; i < num_queues; i++) {
VulkanQueueCtx *q = &cmd->queues[i];
vkGetDeviceQueue(hwctx->act_dev, queue_family_index, i, &q->queue);
q->was_synchronous = 1;
}
return 0;
}
static void free_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd)
{
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
/* Make sure all queues have finished executing */
for (int i = 0; i < cmd->nb_queues; i++) {
VulkanQueueCtx *q = &cmd->queues[i];
if (q->fence && !q->was_synchronous) {
vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX);
vkResetFences(hwctx->act_dev, 1, &q->fence);
}
/* Free the fence */
if (q->fence)
vkDestroyFence(hwctx->act_dev, q->fence, hwctx->alloc);
/* Free buffer dependencies */
for (int j = 0; j < q->nb_buf_deps; j++)
av_buffer_unref(&q->buf_deps[j]);
av_free(q->buf_deps);
}
if (cmd->bufs)
vkFreeCommandBuffers(hwctx->act_dev, cmd->pool, cmd->nb_queues, cmd->bufs);
if (cmd->pool)
vkDestroyCommandPool(hwctx->act_dev, cmd->pool, hwctx->alloc);
av_freep(&cmd->bufs);
av_freep(&cmd->queues);
}
static VkCommandBuffer get_buf_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd)
{
return cmd->bufs[cmd->cur_queue_idx];
}
static void unref_exec_ctx_deps(AVHWFramesContext *hwfc, VulkanExecCtx *cmd)
{
VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx];
for (int j = 0; j < q->nb_buf_deps; j++)
av_buffer_unref(&q->buf_deps[j]);
q->nb_buf_deps = 0;
}
static int wait_start_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx];
VkCommandBufferBeginInfo cmd_start = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
/* Create the fence and don't wait for it initially */
if (!q->fence) {
VkFenceCreateInfo fence_spawn = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
};
ret = vkCreateFence(hwctx->act_dev, &fence_spawn, hwctx->alloc,
&q->fence);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to queue frame fence: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
} else if (!q->was_synchronous) {
vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX);
vkResetFences(hwctx->act_dev, 1, &q->fence);
}
/* Discard queue dependencies */
unref_exec_ctx_deps(hwfc, cmd);
ret = vkBeginCommandBuffer(cmd->bufs[cmd->cur_queue_idx], &cmd_start);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to init command buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
static int add_buf_dep_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd,
AVBufferRef * const *deps, int nb_deps)
{
AVBufferRef **dst;
VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx];
if (!deps || !nb_deps)
return 0;
dst = av_fast_realloc(q->buf_deps, &q->buf_deps_alloc_size,
(q->nb_buf_deps + nb_deps) * sizeof(*dst));
if (!dst)
goto err;
q->buf_deps = dst;
for (int i = 0; i < nb_deps; i++) {
q->buf_deps[q->nb_buf_deps] = av_buffer_ref(deps[i]);
if (!q->buf_deps[q->nb_buf_deps])
goto err;
q->nb_buf_deps++;
}
return 0;
err:
unref_exec_ctx_deps(hwfc, cmd);
return AVERROR(ENOMEM);
}
static int submit_exec_ctx(AVHWFramesContext *hwfc, VulkanExecCtx *cmd,
VkSubmitInfo *s_info, int synchronous)
{
VkResult ret;
VulkanQueueCtx *q = &cmd->queues[cmd->cur_queue_idx];
ret = vkEndCommandBuffer(cmd->bufs[cmd->cur_queue_idx]);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to finish command buffer: %s\n",
vk_ret2str(ret));
unref_exec_ctx_deps(hwfc, cmd);
return AVERROR_EXTERNAL;
}
s_info->pCommandBuffers = &cmd->bufs[cmd->cur_queue_idx];
s_info->commandBufferCount = 1;
ret = vkQueueSubmit(q->queue, 1, s_info, q->fence);
if (ret != VK_SUCCESS) {
unref_exec_ctx_deps(hwfc, cmd);
return AVERROR_EXTERNAL;
}
q->was_synchronous = synchronous;
if (synchronous) {
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
vkWaitForFences(hwctx->act_dev, 1, &q->fence, VK_TRUE, UINT64_MAX);
vkResetFences(hwctx->act_dev, 1, &q->fence);
unref_exec_ctx_deps(hwfc, cmd);
} else { /* Rotate queues */
cmd->cur_queue_idx = (cmd->cur_queue_idx + 1) % cmd->nb_queues;
}
return 0;
}
static void vulkan_device_free(AVHWDeviceContext *ctx)
{
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
vkDestroyDevice(hwctx->act_dev, hwctx->alloc);
if (p->debug_ctx) {
VK_LOAD_PFN(hwctx->inst, vkDestroyDebugUtilsMessengerEXT);
pfn_vkDestroyDebugUtilsMessengerEXT(hwctx->inst, p->debug_ctx,
hwctx->alloc);
}
vkDestroyInstance(hwctx->inst, hwctx->alloc);
for (int i = 0; i < hwctx->nb_enabled_inst_extensions; i++)
av_free((void *)hwctx->enabled_inst_extensions[i]);
av_free((void *)hwctx->enabled_inst_extensions);
for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++)
av_free((void *)hwctx->enabled_dev_extensions[i]);
av_free((void *)hwctx->enabled_dev_extensions);
}
static int vulkan_device_create_internal(AVHWDeviceContext *ctx,
VulkanDeviceSelection *dev_select,
AVDictionary *opts, int flags)
{
int err = 0;
VkResult ret;
AVDictionaryEntry *opt_d;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkPhysicalDeviceFeatures dev_features = { 0 };
VkDeviceQueueCreateInfo queue_create_info[3] = {
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, },
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, },
{ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, },
};
VkDeviceCreateInfo dev_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = &hwctx->device_features,
.pQueueCreateInfos = queue_create_info,
.queueCreateInfoCount = 0,
};
hwctx->device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
ctx->free = vulkan_device_free;
/* Create an instance if not given one */
if ((err = create_instance(ctx, opts)))
goto end;
/* Find a device (if not given one) */
if ((err = find_device(ctx, dev_select)))
goto end;
vkGetPhysicalDeviceFeatures(hwctx->phys_dev, &dev_features);
#define COPY_FEATURE(DST, NAME) (DST).features.NAME = dev_features.NAME;
COPY_FEATURE(hwctx->device_features, shaderImageGatherExtended)
COPY_FEATURE(hwctx->device_features, fragmentStoresAndAtomics)
COPY_FEATURE(hwctx->device_features, vertexPipelineStoresAndAtomics)
COPY_FEATURE(hwctx->device_features, shaderInt64)
#undef COPY_FEATURE
/* Search queue family */
if ((err = search_queue_families(ctx, &dev_info)))
goto end;
if ((err = check_extensions(ctx, 1, opts, &dev_info.ppEnabledExtensionNames,
&dev_info.enabledExtensionCount, 0))) {
av_free((void *)queue_create_info[0].pQueuePriorities);
av_free((void *)queue_create_info[1].pQueuePriorities);
av_free((void *)queue_create_info[2].pQueuePriorities);
goto end;
}
ret = vkCreateDevice(hwctx->phys_dev, &dev_info, hwctx->alloc,
&hwctx->act_dev);
av_free((void *)queue_create_info[0].pQueuePriorities);
av_free((void *)queue_create_info[1].pQueuePriorities);
av_free((void *)queue_create_info[2].pQueuePriorities);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Device creation failure: %s\n",
vk_ret2str(ret));
for (int i = 0; i < dev_info.enabledExtensionCount; i++)
av_free((void *)dev_info.ppEnabledExtensionNames[i]);
av_free((void *)dev_info.ppEnabledExtensionNames);
err = AVERROR_EXTERNAL;
goto end;
}
/* Tiled images setting, use them by default */
opt_d = av_dict_get(opts, "linear_images", NULL, 0);
if (opt_d)
p->use_linear_images = strtol(opt_d->value, NULL, 10);
hwctx->enabled_dev_extensions = dev_info.ppEnabledExtensionNames;
hwctx->nb_enabled_dev_extensions = dev_info.enabledExtensionCount;
end:
return err;
}
static int vulkan_device_init(AVHWDeviceContext *ctx)
{
uint32_t queue_num;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
/* Set device extension flags */
for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++) {
for (int j = 0; j < FF_ARRAY_ELEMS(optional_device_exts); j++) {
if (!strcmp(hwctx->enabled_dev_extensions[i],
optional_device_exts[j].name)) {
av_log(ctx, AV_LOG_VERBOSE, "Using device extension %s\n",
hwctx->enabled_dev_extensions[i]);
p->extensions |= optional_device_exts[j].flag;
break;
}
}
}
p->props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
p->props.pNext = &p->hprops;
p->hprops.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT;
vkGetPhysicalDeviceProperties2(hwctx->phys_dev, &p->props);
av_log(ctx, AV_LOG_VERBOSE, "Using device: %s\n",
p->props.properties.deviceName);
av_log(ctx, AV_LOG_VERBOSE, "Alignments:\n");
av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyRowPitchAlignment: %li\n",
p->props.properties.limits.optimalBufferCopyRowPitchAlignment);
av_log(ctx, AV_LOG_VERBOSE, " minMemoryMapAlignment: %li\n",
p->props.properties.limits.minMemoryMapAlignment);
if (p->extensions & EXT_EXTERNAL_HOST_MEMORY)
av_log(ctx, AV_LOG_VERBOSE, " minImportedHostPointerAlignment: %li\n",
p->hprops.minImportedHostPointerAlignment);
p->dev_is_nvidia = (p->props.properties.vendorID == 0x10de);
vkGetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &queue_num, NULL);
if (!queue_num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
#define CHECK_QUEUE(type, n) \
if (n >= queue_num) { \
av_log(ctx, AV_LOG_ERROR, "Invalid %s queue index %i (device has %i queues)!\n", \
type, n, queue_num); \
return AVERROR(EINVAL); \
}
CHECK_QUEUE("graphics", hwctx->queue_family_index)
CHECK_QUEUE("upload", hwctx->queue_family_tx_index)
CHECK_QUEUE("compute", hwctx->queue_family_comp_index)
#undef CHECK_QUEUE
p->qfs[p->num_qfs++] = hwctx->queue_family_index;
if ((hwctx->queue_family_tx_index != hwctx->queue_family_index) &&
(hwctx->queue_family_tx_index != hwctx->queue_family_comp_index))
p->qfs[p->num_qfs++] = hwctx->queue_family_tx_index;
if ((hwctx->queue_family_comp_index != hwctx->queue_family_index) &&
(hwctx->queue_family_comp_index != hwctx->queue_family_tx_index))
p->qfs[p->num_qfs++] = hwctx->queue_family_comp_index;
/* Get device capabilities */
vkGetPhysicalDeviceMemoryProperties(hwctx->phys_dev, &p->mprops);
return 0;
}
static int vulkan_device_create(AVHWDeviceContext *ctx, const char *device,
AVDictionary *opts, int flags)
{
VulkanDeviceSelection dev_select = { 0 };
if (device && device[0]) {
char *end = NULL;
dev_select.index = strtol(device, &end, 10);
if (end == device) {
dev_select.index = 0;
dev_select.name = device;
}
}
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
static int vulkan_device_derive(AVHWDeviceContext *ctx,
AVHWDeviceContext *src_ctx,
AVDictionary *opts, int flags)
{
av_unused VulkanDeviceSelection dev_select = { 0 };
/* If there's only one device on the system, then even if its not covered
* by the following checks (e.g. non-PCIe ARM GPU), having an empty
* dev_select will mean it'll get picked. */
switch(src_ctx->type) {
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
case AV_HWDEVICE_TYPE_VAAPI: {
AVVAAPIDeviceContext *src_hwctx = src_ctx->hwctx;
const char *vendor = vaQueryVendorString(src_hwctx->display);
if (!vendor) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from VAAPI!\n");
return AVERROR_EXTERNAL;
}
if (strstr(vendor, "Intel"))
dev_select.vendor_id = 0x8086;
if (strstr(vendor, "AMD"))
dev_select.vendor_id = 0x1002;
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
case AV_HWDEVICE_TYPE_DRM: {
AVDRMDeviceContext *src_hwctx = src_ctx->hwctx;
drmDevice *drm_dev_info;
int err = drmGetDevice(src_hwctx->fd, &drm_dev_info);
if (err) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from DRM fd!\n");
return AVERROR_EXTERNAL;
}
if (drm_dev_info->bustype == DRM_BUS_PCI)
dev_select.pci_device = drm_dev_info->deviceinfo.pci->device_id;
drmFreeDevice(&drm_dev_info);
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
#if CONFIG_CUDA
case AV_HWDEVICE_TYPE_CUDA: {
AVHWDeviceContext *cuda_cu = src_ctx;
AVCUDADeviceContext *src_hwctx = src_ctx->hwctx;
AVCUDADeviceContextInternal *cu_internal = src_hwctx->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
int ret = CHECK_CU(cu->cuDeviceGetUuid((CUuuid *)&dev_select.uuid,
cu_internal->cuda_device));
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to get UUID from CUDA!\n");
return AVERROR_EXTERNAL;
}
dev_select.has_uuid = 1;
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
default:
return AVERROR(ENOSYS);
}
}
static int vulkan_frames_get_constraints(AVHWDeviceContext *ctx,
const void *hwconfig,
AVHWFramesConstraints *constraints)
{
int count = 0;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++)
count += pixfmt_is_supported(hwctx, i, p->use_linear_images);
#if CONFIG_CUDA
if (p->dev_is_nvidia)
count++;
#endif
constraints->valid_sw_formats = av_malloc_array(count + 1,
sizeof(enum AVPixelFormat));
if (!constraints->valid_sw_formats)
return AVERROR(ENOMEM);
count = 0;
for (enum AVPixelFormat i = 0; i < AV_PIX_FMT_NB; i++)
if (pixfmt_is_supported(hwctx, i, p->use_linear_images))
constraints->valid_sw_formats[count++] = i;
#if CONFIG_CUDA
if (p->dev_is_nvidia)
constraints->valid_sw_formats[count++] = AV_PIX_FMT_CUDA;
#endif
constraints->valid_sw_formats[count++] = AV_PIX_FMT_NONE;
constraints->min_width = 0;
constraints->min_height = 0;
constraints->max_width = p->props.properties.limits.maxImageDimension2D;
constraints->max_height = p->props.properties.limits.maxImageDimension2D;
constraints->valid_hw_formats = av_malloc_array(2, sizeof(enum AVPixelFormat));
if (!constraints->valid_hw_formats)
return AVERROR(ENOMEM);
constraints->valid_hw_formats[0] = AV_PIX_FMT_VULKAN;
constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE;
return 0;
}
static int alloc_mem(AVHWDeviceContext *ctx, VkMemoryRequirements *req,
VkMemoryPropertyFlagBits req_flags, const void *alloc_extension,
VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem)
{
VkResult ret;
int index = -1;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *dev_hwctx = ctx->hwctx;
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = alloc_extension,
.allocationSize = req->size,
};
/* The vulkan spec requires memory types to be sorted in the "optimal"
* order, so the first matching type we find will be the best/fastest one */
for (int i = 0; i < p->mprops.memoryTypeCount; i++) {
/* The memory type must be supported by the requirements (bitfield) */
if (!(req->memoryTypeBits & (1 << i)))
continue;
/* The memory type flags must include our properties */
if ((p->mprops.memoryTypes[i].propertyFlags & req_flags) != req_flags)
continue;
/* Found a suitable memory type */
index = i;
break;
}
if (index < 0) {
av_log(ctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n",
req_flags);
return AVERROR(EINVAL);
}
alloc_info.memoryTypeIndex = index;
ret = vkAllocateMemory(dev_hwctx->act_dev, &alloc_info,
dev_hwctx->alloc, mem);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n",
vk_ret2str(ret));
return AVERROR(ENOMEM);
}
*mem_flags |= p->mprops.memoryTypes[index].propertyFlags;
return 0;
}
static void vulkan_free_internal(AVVkFrameInternal *internal)
{
if (!internal)
return;
#if CONFIG_CUDA
if (internal->cuda_fc_ref) {
AVHWFramesContext *cuda_fc = (AVHWFramesContext *)internal->cuda_fc_ref->data;
int planes = av_pix_fmt_count_planes(cuda_fc->sw_format);
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
for (int i = 0; i < planes; i++) {
if (internal->cu_sem[i])
CHECK_CU(cu->cuDestroyExternalSemaphore(internal->cu_sem[i]));
if (internal->cu_mma[i])
CHECK_CU(cu->cuMipmappedArrayDestroy(internal->cu_mma[i]));
if (internal->ext_mem[i])
CHECK_CU(cu->cuDestroyExternalMemory(internal->ext_mem[i]));
}
av_buffer_unref(&internal->cuda_fc_ref);
}
#endif
av_free(internal);
}
static void vulkan_frame_free(void *opaque, uint8_t *data)
{
AVVkFrame *f = (AVVkFrame *)data;
AVHWFramesContext *hwfc = opaque;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
int planes = av_pix_fmt_count_planes(hwfc->sw_format);
vulkan_free_internal(f->internal);
for (int i = 0; i < planes; i++) {
vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
vkDestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc);
}
av_free(f);
}
static int alloc_bind_mem(AVHWFramesContext *hwfc, AVVkFrame *f,
void *alloc_pnext, size_t alloc_pnext_stride)
{
int err;
VkResult ret;
AVHWDeviceContext *ctx = hwfc->device_ctx;
VulkanDevicePriv *p = ctx->internal->priv;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { { 0 } };
AVVulkanDeviceContext *hwctx = ctx->hwctx;
for (int i = 0; i < planes; i++) {
int use_ded_mem;
VkImageMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = f->img[i],
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = (void *)(((uint8_t *)alloc_pnext) + i*alloc_pnext_stride),
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
vkGetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req);
if (f->tiling == VK_IMAGE_TILING_LINEAR)
req.memoryRequirements.size = FFALIGN(req.memoryRequirements.size,
p->props.properties.limits.minMemoryMapAlignment);
/* In case the implementation prefers/requires dedicated allocation */
use_ded_mem = ded_req.prefersDedicatedAllocation |
ded_req.requiresDedicatedAllocation;
if (use_ded_mem)
ded_alloc.image = f->img[i];
/* Allocate memory */
if ((err = alloc_mem(ctx, &req.memoryRequirements,
f->tiling == VK_IMAGE_TILING_LINEAR ?
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT :
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext,
&f->flags, &f->mem[i])))
return err;
f->size[i] = req.memoryRequirements.size;
bind_info[i].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[i].image = f->img[i];
bind_info[i].memory = f->mem[i];
}
/* Bind the allocated memory to the images */
ret = vkBindImageMemory2(hwctx->act_dev, planes, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
enum PrepMode {
PREP_MODE_WRITE,
PREP_MODE_RO_SHADER,
PREP_MODE_EXTERNAL_EXPORT,
};
static int prepare_frame(AVHWFramesContext *hwfc, VulkanExecCtx *ectx,
AVVkFrame *frame, enum PrepMode pmode)
{
int err;
uint32_t dst_qf;
VkImageLayout new_layout;
VkAccessFlags new_access;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 };
VkSubmitInfo s_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pSignalSemaphores = frame->sem,
.signalSemaphoreCount = planes,
};
VkPipelineStageFlagBits wait_st[AV_NUM_DATA_POINTERS];
for (int i = 0; i < planes; i++)
wait_st[i] = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
switch (pmode) {
case PREP_MODE_WRITE:
new_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
new_access = VK_ACCESS_TRANSFER_WRITE_BIT;
dst_qf = VK_QUEUE_FAMILY_IGNORED;
break;
case PREP_MODE_RO_SHADER:
new_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
new_access = VK_ACCESS_TRANSFER_READ_BIT;
dst_qf = VK_QUEUE_FAMILY_IGNORED;
break;
case PREP_MODE_EXTERNAL_EXPORT:
new_layout = VK_IMAGE_LAYOUT_GENERAL;
new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
dst_qf = VK_QUEUE_FAMILY_EXTERNAL_KHR;
s_info.pWaitSemaphores = frame->sem;
s_info.pWaitDstStageMask = wait_st;
s_info.waitSemaphoreCount = planes;
break;
}
if ((err = wait_start_exec_ctx(hwfc, ectx)))
return err;
/* Change the image layout to something more optimal for writes.
* This also signals the newly created semaphore, making it usable
* for synchronization */
for (int i = 0; i < planes; i++) {
img_bar[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_bar[i].srcAccessMask = 0x0;
img_bar[i].dstAccessMask = new_access;
img_bar[i].oldLayout = frame->layout[i];
img_bar[i].newLayout = new_layout;
img_bar[i].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[i].dstQueueFamilyIndex = dst_qf;
img_bar[i].image = frame->img[i];
img_bar[i].subresourceRange.levelCount = 1;
img_bar[i].subresourceRange.layerCount = 1;
img_bar[i].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
frame->layout[i] = img_bar[i].newLayout;
frame->access[i] = img_bar[i].dstAccessMask;
}
vkCmdPipelineBarrier(get_buf_exec_ctx(hwfc, ectx),
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, planes, img_bar);
return submit_exec_ctx(hwfc, ectx, &s_info, 0);
}
static int create_frame(AVHWFramesContext *hwfc, AVVkFrame **frame,
VkImageTiling tiling, VkImageUsageFlagBits usage,
void *create_pnext)
{
int err;
VkResult ret;
AVHWDeviceContext *ctx = hwfc->device_ctx;
VulkanDevicePriv *p = ctx->internal->priv;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
enum AVPixelFormat format = hwfc->sw_format;
const VkFormat *img_fmts = av_vkfmt_from_pixfmt(format);
const int planes = av_pix_fmt_count_planes(format);
VkExportSemaphoreCreateInfo ext_sem_info = {
.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO,
.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
};
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = p->extensions & EXT_EXTERNAL_FD_SEM ? &ext_sem_info : NULL,
};
AVVkFrame *f = av_vk_frame_alloc();
if (!f) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
return AVERROR(ENOMEM);
}
/* Create the images */
for (int i = 0; i < planes; i++) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
int w = hwfc->width;
int h = hwfc->height;
const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = create_pnext,
.imageType = VK_IMAGE_TYPE_2D,
.format = img_fmts[i],
.extent.width = p_w,
.extent.height = p_h,
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = 1,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
.tiling = tiling,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.usage = usage,
.samples = VK_SAMPLE_COUNT_1_BIT,
.pQueueFamilyIndices = p->qfs,
.queueFamilyIndexCount = p->num_qfs,
.sharingMode = p->num_qfs > 1 ? VK_SHARING_MODE_CONCURRENT :
VK_SHARING_MODE_EXCLUSIVE,
};
ret = vkCreateImage(hwctx->act_dev, &image_create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
/* Create semaphore */
ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem[i]);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
f->layout[i] = image_create_info.initialLayout;
f->access[i] = 0x0;
}
f->flags = 0x0;
f->tiling = tiling;
*frame = f;
return 0;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return err;
}
/* Checks if an export flag is enabled, and if it is ORs it with *iexp */
static void try_export_flags(AVHWFramesContext *hwfc,
VkExternalMemoryHandleTypeFlags *comp_handle_types,
VkExternalMemoryHandleTypeFlagBits *iexp,
VkExternalMemoryHandleTypeFlagBits exp)
{
VkResult ret;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx;
VkExternalImageFormatProperties eprops = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR,
};
VkImageFormatProperties2 props = {
.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
.pNext = &eprops,
};
VkPhysicalDeviceExternalImageFormatInfo enext = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
.handleType = exp,
};
VkPhysicalDeviceImageFormatInfo2 pinfo = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.pNext = !exp ? NULL : &enext,
.format = av_vkfmt_from_pixfmt(hwfc->sw_format)[0],
.type = VK_IMAGE_TYPE_2D,
.tiling = hwctx->tiling,
.usage = hwctx->usage,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
};
ret = vkGetPhysicalDeviceImageFormatProperties2(dev_hwctx->phys_dev,
&pinfo, &props);
if (ret == VK_SUCCESS) {
*iexp |= exp;
*comp_handle_types |= eprops.externalMemoryProperties.compatibleHandleTypes;
}
}
static AVBufferRef *vulkan_pool_alloc(void *opaque, int size)
{
int err;
AVVkFrame *f;
AVBufferRef *avbuf = NULL;
AVHWFramesContext *hwfc = opaque;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VulkanFramesPriv *fp = hwfc->internal->priv;
VkExportMemoryAllocateInfo eminfo[AV_NUM_DATA_POINTERS];
VkExternalMemoryHandleTypeFlags e = 0x0;
VkExternalMemoryImageCreateInfo eiinfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = hwctx->create_pnext,
};
if (p->extensions & EXT_EXTERNAL_FD_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT);
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
for (int i = 0; i < av_pix_fmt_count_planes(hwfc->sw_format); i++) {
eminfo[i].sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO;
eminfo[i].pNext = hwctx->alloc_pnext[i];
eminfo[i].handleTypes = e;
}
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage,
eiinfo.handleTypes ? &eiinfo : NULL);
if (err)
return NULL;
err = alloc_bind_mem(hwfc, f, eminfo, sizeof(*eminfo));
if (err)
goto fail;
err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_WRITE);
if (err)
goto fail;
avbuf = av_buffer_create((uint8_t *)f, sizeof(AVVkFrame),
vulkan_frame_free, hwfc, 0);
if (!avbuf)
goto fail;
return avbuf;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return NULL;
}
static void vulkan_frames_uninit(AVHWFramesContext *hwfc)
{
VulkanFramesPriv *fp = hwfc->internal->priv;
free_exec_ctx(hwfc, &fp->conv_ctx);
free_exec_ctx(hwfc, &fp->upload_ctx);
free_exec_ctx(hwfc, &fp->download_ctx);
}
static int vulkan_frames_init(AVHWFramesContext *hwfc)
{
int err;
AVVkFrame *f;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanFramesPriv *fp = hwfc->internal->priv;
AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
/* Default pool flags */
hwctx->tiling = hwctx->tiling ? hwctx->tiling : p->use_linear_images ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
if (!hwctx->usage)
hwctx->usage = DEFAULT_USAGE_FLAGS;
err = create_exec_ctx(hwfc, &fp->conv_ctx,
dev_hwctx->queue_family_comp_index,
GET_QUEUE_COUNT(dev_hwctx, 0, 1, 0));
if (err)
goto fail;
err = create_exec_ctx(hwfc, &fp->upload_ctx,
dev_hwctx->queue_family_tx_index,
GET_QUEUE_COUNT(dev_hwctx, 0, 0, 1));
if (err)
goto fail;
err = create_exec_ctx(hwfc, &fp->download_ctx,
dev_hwctx->queue_family_tx_index, 1);
if (err)
goto fail;
/* Test to see if allocation will fail */
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage,
hwctx->create_pnext);
if (err)
goto fail;
vulkan_frame_free(hwfc, (uint8_t *)f);
/* If user did not specify a pool, hwfc->pool will be set to the internal one
* in hwcontext.c just after this gets called */
if (!hwfc->pool) {
hwfc->internal->pool_internal = av_buffer_pool_init2(sizeof(AVVkFrame),
hwfc, vulkan_pool_alloc,
NULL);
if (!hwfc->internal->pool_internal) {
err = AVERROR(ENOMEM);
goto fail;
}
}
return 0;
fail:
free_exec_ctx(hwfc, &fp->conv_ctx);
free_exec_ctx(hwfc, &fp->upload_ctx);
free_exec_ctx(hwfc, &fp->download_ctx);
return err;
}
static int vulkan_get_buffer(AVHWFramesContext *hwfc, AVFrame *frame)
{
frame->buf[0] = av_buffer_pool_get(hwfc->pool);
if (!frame->buf[0])
return AVERROR(ENOMEM);
frame->data[0] = frame->buf[0]->data;
frame->format = AV_PIX_FMT_VULKAN;
frame->width = hwfc->width;
frame->height = hwfc->height;
return 0;
}
static int vulkan_transfer_get_formats(AVHWFramesContext *hwfc,
enum AVHWFrameTransferDirection dir,
enum AVPixelFormat **formats)
{
enum AVPixelFormat *fmts = av_malloc_array(2, sizeof(*fmts));
if (!fmts)
return AVERROR(ENOMEM);
fmts[0] = hwfc->sw_format;
fmts[1] = AV_PIX_FMT_NONE;
*formats = fmts;
return 0;
}
typedef struct VulkanMapping {
AVVkFrame *frame;
int flags;
} VulkanMapping;
static void vulkan_unmap_frame(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
VulkanMapping *map = hwmap->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
/* Check if buffer needs flushing */
if ((map->flags & AV_HWFRAME_MAP_WRITE) &&
!(map->frame->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
VkResult ret;
VkMappedMemoryRange flush_ranges[AV_NUM_DATA_POINTERS] = { { 0 } };
for (int i = 0; i < planes; i++) {
flush_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
flush_ranges[i].memory = map->frame->mem[i];
flush_ranges[i].size = VK_WHOLE_SIZE;
}
ret = vkFlushMappedMemoryRanges(hwctx->act_dev, planes,
flush_ranges);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to flush memory: %s\n",
vk_ret2str(ret));
}
}
for (int i = 0; i < planes; i++)
vkUnmapMemory(hwctx->act_dev, map->frame->mem[i]);
av_free(map);
}
static int vulkan_map_frame_to_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
VkResult ret;
int err, mapped_mem_count = 0;
AVVkFrame *f = (AVVkFrame *)src->data[0];
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VulkanMapping *map = av_mallocz(sizeof(VulkanMapping));
if (!map)
return AVERROR(EINVAL);
if (src->format != AV_PIX_FMT_VULKAN) {
av_log(hwfc, AV_LOG_ERROR, "Cannot map from pixel format %s!\n",
av_get_pix_fmt_name(src->format));
err = AVERROR(EINVAL);
goto fail;
}
if (!(f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) ||
!(f->tiling == VK_IMAGE_TILING_LINEAR)) {
av_log(hwfc, AV_LOG_ERROR, "Unable to map frame, not host visible "
"and linear!\n");
err = AVERROR(EINVAL);
goto fail;
}
dst->width = src->width;
dst->height = src->height;
for (int i = 0; i < planes; i++) {
ret = vkMapMemory(hwctx->act_dev, f->mem[i], 0,
VK_WHOLE_SIZE, 0, (void **)&dst->data[i]);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to map image memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
mapped_mem_count++;
}
/* Check if the memory contents matter */
if (((flags & AV_HWFRAME_MAP_READ) || !(flags & AV_HWFRAME_MAP_OVERWRITE)) &&
!(f->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
VkMappedMemoryRange map_mem_ranges[AV_NUM_DATA_POINTERS] = { { 0 } };
for (int i = 0; i < planes; i++) {
map_mem_ranges[i].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
map_mem_ranges[i].size = VK_WHOLE_SIZE;
map_mem_ranges[i].memory = f->mem[i];
}
ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, planes,
map_mem_ranges);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to invalidate memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
}
for (int i = 0; i < planes; i++) {
VkImageSubresource sub = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
};
VkSubresourceLayout layout;
vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout);
dst->linesize[i] = layout.rowPitch;
}
map->frame = f;
map->flags = flags;
err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src,
&vulkan_unmap_frame, map);
if (err < 0)
goto fail;
return 0;
fail:
for (int i = 0; i < mapped_mem_count; i++)
vkUnmapMemory(hwctx->act_dev, f->mem[i]);
av_free(map);
return err;
}
#if CONFIG_LIBDRM
static void vulkan_unmap_from(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
VulkanMapping *map = hwmap->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
for (int i = 0; i < planes; i++) {
vkDestroyImage(hwctx->act_dev, map->frame->img[i], hwctx->alloc);
vkFreeMemory(hwctx->act_dev, map->frame->mem[i], hwctx->alloc);
vkDestroySemaphore(hwctx->act_dev, map->frame->sem[i], hwctx->alloc);
}
av_freep(&map->frame);
}
static const struct {
uint32_t drm_fourcc;
VkFormat vk_format;
} vulkan_drm_format_map[] = {
{ DRM_FORMAT_R8, VK_FORMAT_R8_UNORM },
{ DRM_FORMAT_R16, VK_FORMAT_R16_UNORM },
{ DRM_FORMAT_GR88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_RG88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_GR1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_RG1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_ARGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_XRGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_ABGR8888, VK_FORMAT_R8G8B8A8_UNORM },
{ DRM_FORMAT_XBGR8888, VK_FORMAT_R8G8B8A8_UNORM },
};
static inline VkFormat drm_to_vulkan_fmt(uint32_t drm_fourcc)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].drm_fourcc == drm_fourcc)
return vulkan_drm_format_map[i].vk_format;
return VK_FORMAT_UNDEFINED;
}
static int vulkan_map_from_drm_frame_desc(AVHWFramesContext *hwfc, AVVkFrame **frame,
AVDRMFrameDescriptor *desc)
{
int err = 0;
VkResult ret;
AVVkFrame *f;
int bind_counts = 0;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
VulkanFramesPriv *fp = hwfc->internal->priv;
AVVulkanFramesContext *frames_hwctx = hwfc->hwctx;
const AVPixFmtDescriptor *fmt_desc = av_pix_fmt_desc_get(hwfc->sw_format);
const int has_modifiers = p->extensions & EXT_DRM_MODIFIER_FLAGS;
VkSubresourceLayout plane_data[AV_NUM_DATA_POINTERS] = { 0 };
VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { 0 };
VkBindImagePlaneMemoryInfo plane_info[AV_NUM_DATA_POINTERS] = { 0 };
VkExternalMemoryHandleTypeFlagBits htype = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT;
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdPropertiesKHR);
for (int i = 0; i < desc->nb_layers; i++) {
if (drm_to_vulkan_fmt(desc->layers[i].format) == VK_FORMAT_UNDEFINED) {
av_log(ctx, AV_LOG_ERROR, "Unsupported DMABUF layer format %#08x!\n",
desc->layers[i].format);
return AVERROR(EINVAL);
}
}
if (!(f = av_vk_frame_alloc())) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
err = AVERROR(ENOMEM);
goto fail;
}
f->tiling = has_modifiers ? VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT :
desc->objects[0].format_modifier == DRM_FORMAT_MOD_LINEAR ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL;
for (int i = 0; i < desc->nb_layers; i++) {
const int planes = desc->layers[i].nb_planes;
VkImageDrmFormatModifierExplicitCreateInfoEXT drm_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT,
.drmFormatModifier = desc->objects[0].format_modifier,
.drmFormatModifierPlaneCount = planes,
.pPlaneLayouts = (const VkSubresourceLayout *)&plane_data,
};
VkExternalMemoryImageCreateInfo einfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = has_modifiers ? &drm_info : NULL,
.handleTypes = htype,
};
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
};
const int p_w = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, fmt_desc->log2_chroma_w) : hwfc->width;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, fmt_desc->log2_chroma_h) : hwfc->height;
VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = &einfo,
.imageType = VK_IMAGE_TYPE_2D,
.format = drm_to_vulkan_fmt(desc->layers[i].format),
.extent.width = p_w,
.extent.height = p_h,
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = 1,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
.tiling = f->tiling,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, /* specs say so */
.usage = frames_hwctx->usage,
.samples = VK_SAMPLE_COUNT_1_BIT,
.pQueueFamilyIndices = p->qfs,
.queueFamilyIndexCount = p->num_qfs,
.sharingMode = p->num_qfs > 1 ? VK_SHARING_MODE_CONCURRENT :
VK_SHARING_MODE_EXCLUSIVE,
};
for (int j = 0; j < planes; j++) {
plane_data[j].offset = desc->layers[i].planes[j].offset;
plane_data[j].rowPitch = desc->layers[i].planes[j].pitch;
plane_data[j].size = 0; /* The specs say so for all 3 */
plane_data[j].arrayPitch = 0;
plane_data[j].depthPitch = 0;
}
/* Create image */
ret = vkCreateImage(hwctx->act_dev, &image_create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
ret = vkCreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem[i]);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* We'd import a semaphore onto the one we created using
* vkImportSemaphoreFdKHR but unfortunately neither DRM nor VAAPI
* offer us anything we could import and sync with, so instead
* just signal the semaphore we created. */
f->layout[i] = image_create_info.initialLayout;
f->access[i] = 0x0;
}
for (int i = 0; i < desc->nb_objects; i++) {
int use_ded_mem = 0;
VkMemoryFdPropertiesKHR fdmp = {
.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR,
};
VkMemoryRequirements req = {
.size = desc->objects[i].size,
};
VkImportMemoryFdInfoKHR idesc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR,
.handleType = htype,
.fd = dup(desc->objects[i].fd),
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = &idesc,
};
ret = pfn_vkGetMemoryFdPropertiesKHR(hwctx->act_dev, htype,
idesc.fd, &fdmp);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to get FD properties: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
close(idesc.fd);
goto fail;
}
req.memoryTypeBits = fdmp.memoryTypeBits;
/* Dedicated allocation only makes sense if there's a one to one mapping
* between images and the memory backing them, so only check in this
* case. */
if (desc->nb_layers == desc->nb_objects) {
VkImageMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = f->img[i],
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req2 = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
vkGetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req2);
use_ded_mem = ded_req.prefersDedicatedAllocation |
ded_req.requiresDedicatedAllocation;
if (use_ded_mem)
ded_alloc.image = f->img[i];
}
err = alloc_mem(ctx, &req, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
use_ded_mem ? &ded_alloc : ded_alloc.pNext,
&f->flags, &f->mem[i]);
if (err) {
close(idesc.fd);
return err;
}
f->size[i] = desc->objects[i].size;
}
for (int i = 0; i < desc->nb_layers; i++) {
const int planes = desc->layers[i].nb_planes;
const int signal_p = has_modifiers && (planes > 1);
for (int j = 0; j < planes; j++) {
VkImageAspectFlagBits aspect = j == 0 ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT :
j == 1 ? VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT :
VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT;
plane_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
plane_info[bind_counts].planeAspect = aspect;
bind_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[bind_counts].pNext = signal_p ? &plane_info[bind_counts] : NULL;
bind_info[bind_counts].image = f->img[i];
bind_info[bind_counts].memory = f->mem[desc->layers[i].planes[j].object_index];
bind_info[bind_counts].memoryOffset = desc->layers[i].planes[j].offset;
bind_counts++;
}
}
/* Bind the allocated memory to the images */
ret = vkBindImageMemory2(hwctx->act_dev, bind_counts, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* NOTE: This is completely uneccesary and unneeded once we can import
* semaphores from DRM. Otherwise we have to activate the semaphores.
* We're reusing the exec context that's also used for uploads/downloads. */
err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_RO_SHADER);
if (err)
goto fail;
*frame = f;
return 0;
fail:
for (int i = 0; i < desc->nb_layers; i++) {
vkDestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vkDestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc);
}
for (int i = 0; i < desc->nb_objects; i++)
vkFreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
av_free(f);
return err;
}
static int vulkan_map_from_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
AVVkFrame *f;
VulkanMapping *map = NULL;
err = vulkan_map_from_drm_frame_desc(hwfc, &f,
(AVDRMFrameDescriptor *)src->data[0]);
if (err)
return err;
/* The unmapping function will free this */
dst->data[0] = (uint8_t *)f;
dst->width = src->width;
dst->height = src->height;
map = av_mallocz(sizeof(VulkanMapping));
if (!map)
goto fail;
map->frame = f;
map->flags = flags;
err = ff_hwframe_map_create(dst->hw_frames_ctx, dst, src,
&vulkan_unmap_from, map);
if (err < 0)
goto fail;
av_log(hwfc, AV_LOG_DEBUG, "Mapped DRM object to Vulkan!\n");
return 0;
fail:
vulkan_frame_free(hwfc->device_ctx->hwctx, (uint8_t *)f);
av_free(map);
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_from_vaapi(AVHWFramesContext *dst_fc,
AVFrame *dst, const AVFrame *src,
int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
AVHWFramesContext *vaapi_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVVAAPIDeviceContext *vaapi_ctx = vaapi_fc->device_ctx->hwctx;
VASurfaceID surface_id = (VASurfaceID)(uintptr_t)src->data[3];
if (!tmp)
return AVERROR(ENOMEM);
/* We have to sync since like the previous comment said, no semaphores */
vaSyncSurface(vaapi_ctx->display, surface_id);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = av_hwframe_map(tmp, src, flags);
if (err < 0)
goto fail;
err = vulkan_map_from_drm(dst_fc, dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
#if CONFIG_CUDA
static int vulkan_export_to_cuda(AVHWFramesContext *hwfc,
AVBufferRef *cuda_hwfc,
const AVFrame *frame)
{
int err;
VkResult ret;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR);
VK_LOAD_PFN(hwctx->inst, vkGetSemaphoreFdKHR);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)cuda_hwfc->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUarray_format cufmt = desc->comp[0].depth > 8 ? CU_AD_FORMAT_UNSIGNED_INT16 :
CU_AD_FORMAT_UNSIGNED_INT8;
dst_f = (AVVkFrame *)frame->data[0];
dst_int = dst_f->internal;
if (!dst_int || !dst_int->cuda_fc_ref) {
if (!dst_f->internal)
dst_f->internal = dst_int = av_mallocz(sizeof(*dst_f->internal));
if (!dst_int) {
err = AVERROR(ENOMEM);
goto fail;
}
dst_int->cuda_fc_ref = av_buffer_ref(cuda_hwfc);
if (!dst_int->cuda_fc_ref) {
err = AVERROR(ENOMEM);
goto fail;
}
for (int i = 0; i < planes; i++) {
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC tex_desc = {
.offset = 0,
.arrayDesc = {
.Width = i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
.Depth = 0,
.Format = cufmt,
.NumChannels = 1 + ((planes == 2) && i),
.Flags = 0,
},
.numLevels = 1,
};
CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = {
.type = CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD,
.size = dst_f->size[i],
};
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = dst_f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
};
VkSemaphoreGetFdInfoKHR sem_export = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR,
.semaphore = dst_f->sem[i],
.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
};
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = {
.type = CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD,
};
ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info,
&ext_desc.handle.fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n");
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuImportExternalMemory(&dst_int->ext_mem[i], &ext_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuExternalMemoryGetMappedMipmappedArray(&dst_int->cu_mma[i],
dst_int->ext_mem[i],
&tex_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuMipmappedArrayGetLevel(&dst_int->cu_array[i],
dst_int->cu_mma[i], 0));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = pfn_vkGetSemaphoreFdKHR(hwctx->act_dev, &sem_export,
&ext_sem_desc.handle.fd);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to export semaphore: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuImportExternalSemaphore(&dst_int->cu_sem[i],
&ext_sem_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
}
return 0;
fail:
return err;
}
static int vulkan_transfer_data_from_cuda(AVHWFramesContext *hwfc,
AVFrame *dst, const AVFrame *src)
{
int err;
VkResult ret;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 };
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 };
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
dst_f = (AVVkFrame *)dst->data[0];
ret = vulkan_export_to_cuda(hwfc, src->hw_frames_ctx, dst);
if (ret < 0) {
goto fail;
}
dst_int = dst_f->internal;
ret = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par,
planes, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.srcMemoryType = CU_MEMORYTYPE_DEVICE,
.srcDevice = (CUdeviceptr)src->data[i],
.srcPitch = src->linesize[i],
.srcY = 0,
.dstMemoryType = CU_MEMORYTYPE_ARRAY,
.dstArray = dst_int->cu_array[i],
.WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width) * desc->comp[i].step,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
};
ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
ret = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par,
planes, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered CUDA image to Vulkan!\n");
return 0;
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_int);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_map_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_from_vaapi(hwfc, dst, src, flags);
#endif
case AV_PIX_FMT_DRM_PRIME:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_from_drm(hwfc, dst, src, flags);
#endif
default:
return AVERROR(ENOSYS);
}
}
#if CONFIG_LIBDRM
typedef struct VulkanDRMMapping {
AVDRMFrameDescriptor drm_desc;
AVVkFrame *source;
} VulkanDRMMapping;
static void vulkan_unmap_to_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
AVDRMFrameDescriptor *drm_desc = hwmap->priv;
for (int i = 0; i < drm_desc->nb_objects; i++)
close(drm_desc->objects[i].fd);
av_free(drm_desc);
}
static inline uint32_t vulkan_fmt_to_drm(VkFormat vkfmt)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].vk_format == vkfmt)
return vulkan_drm_format_map[i].drm_fourcc;
return DRM_FORMAT_INVALID;
}
static int vulkan_map_to_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
VkResult ret;
AVVkFrame *f = (AVVkFrame *)src->data[0];
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VulkanFramesPriv *fp = hwfc->internal->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VK_LOAD_PFN(hwctx->inst, vkGetMemoryFdKHR);
VkImageDrmFormatModifierPropertiesEXT drm_mod = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT,
};
AVDRMFrameDescriptor *drm_desc = av_mallocz(sizeof(*drm_desc));
if (!drm_desc)
return AVERROR(ENOMEM);
err = prepare_frame(hwfc, &fp->conv_ctx, f, PREP_MODE_EXTERNAL_EXPORT);
if (err < 0)
goto end;
err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_to_drm, drm_desc);
if (err < 0)
goto end;
if (p->extensions & EXT_DRM_MODIFIER_FLAGS) {
VK_LOAD_PFN(hwctx->inst, vkGetImageDrmFormatModifierPropertiesEXT);
ret = pfn_vkGetImageDrmFormatModifierPropertiesEXT(hwctx->act_dev, f->img[0],
&drm_mod);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to retrieve DRM format modifier!\n");
err = AVERROR_EXTERNAL;
goto end;
}
}
for (int i = 0; (i < planes) && (f->mem[i]); i++) {
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};
ret = pfn_vkGetMemoryFdKHR(hwctx->act_dev, &export_info,
&drm_desc->objects[i].fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n");
err = AVERROR_EXTERNAL;
goto end;
}
drm_desc->nb_objects++;
drm_desc->objects[i].size = f->size[i];
drm_desc->objects[i].format_modifier = drm_mod.drmFormatModifier;
}
drm_desc->nb_layers = planes;
for (int i = 0; i < drm_desc->nb_layers; i++) {
VkSubresourceLayout layout;
VkImageSubresource sub = {
.aspectMask = p->extensions & EXT_DRM_MODIFIER_FLAGS ?
VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT :
VK_IMAGE_ASPECT_COLOR_BIT,
};
VkFormat plane_vkfmt = av_vkfmt_from_pixfmt(hwfc->sw_format)[i];
drm_desc->layers[i].format = vulkan_fmt_to_drm(plane_vkfmt);
drm_desc->layers[i].nb_planes = 1;
if (drm_desc->layers[i].format == DRM_FORMAT_INVALID) {
av_log(hwfc, AV_LOG_ERROR, "Cannot map to DRM layer, unsupported!\n");
err = AVERROR_PATCHWELCOME;
goto end;
}
drm_desc->layers[i].planes[0].object_index = FFMIN(i, drm_desc->nb_objects - 1);
if (f->tiling == VK_IMAGE_TILING_OPTIMAL)
continue;
vkGetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout);
drm_desc->layers[i].planes[0].offset = layout.offset;
drm_desc->layers[i].planes[0].pitch = layout.rowPitch;
}
dst->width = src->width;
dst->height = src->height;
dst->data[0] = (uint8_t *)drm_desc;
av_log(hwfc, AV_LOG_VERBOSE, "Mapped AVVkFrame to a DRM object!\n");
return 0;
end:
av_free(drm_desc);
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_to_vaapi(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
if (!tmp)
return AVERROR(ENOMEM);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = vulkan_map_to_drm(hwfc, tmp, src, flags);
if (err < 0)
goto fail;
err = av_hwframe_map(dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
static int vulkan_map_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_LIBDRM
case AV_PIX_FMT_DRM_PRIME:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_to_drm(hwfc, dst, src, flags);
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->extensions & EXT_EXTERNAL_DMABUF_MEMORY)
return vulkan_map_to_vaapi(hwfc, dst, src, flags);
#endif
#endif
default:
return vulkan_map_frame_to_mem(hwfc, dst, src, flags);
}
}
typedef struct ImageBuffer {
VkBuffer buf;
VkDeviceMemory mem;
VkMemoryPropertyFlagBits flags;
int mapped_mem;
} ImageBuffer;
static void free_buf(void *opaque, uint8_t *data)
{
AVHWDeviceContext *ctx = opaque;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
ImageBuffer *vkbuf = (ImageBuffer *)data;
if (vkbuf->buf)
vkDestroyBuffer(hwctx->act_dev, vkbuf->buf, hwctx->alloc);
if (vkbuf->mem)
vkFreeMemory(hwctx->act_dev, vkbuf->mem, hwctx->alloc);
av_free(data);
}
static int create_buf(AVHWDeviceContext *ctx, AVBufferRef **buf, size_t imp_size,
int height, int *stride, VkBufferUsageFlags usage,
VkMemoryPropertyFlagBits flags, void *create_pnext,
void *alloc_pnext)
{
int err;
VkResult ret;
int use_ded_mem;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
VkBufferCreateInfo buf_spawn = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = create_pnext,
.usage = usage,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
};
VkBufferMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = alloc_pnext,
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
ImageBuffer *vkbuf = av_mallocz(sizeof(*vkbuf));
if (!vkbuf)
return AVERROR(ENOMEM);
vkbuf->mapped_mem = !!imp_size;
if (!vkbuf->mapped_mem) {
*stride = FFALIGN(*stride, p->props.properties.limits.optimalBufferCopyRowPitchAlignment);
buf_spawn.size = height*(*stride);
buf_spawn.size = FFALIGN(buf_spawn.size, p->props.properties.limits.minMemoryMapAlignment);
} else {
buf_spawn.size = imp_size;
}
ret = vkCreateBuffer(hwctx->act_dev, &buf_spawn, NULL, &vkbuf->buf);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to create buffer: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
req_desc.buffer = vkbuf->buf;
vkGetBufferMemoryRequirements2(hwctx->act_dev, &req_desc, &req);
/* In case the implementation prefers/requires dedicated allocation */
use_ded_mem = ded_req.prefersDedicatedAllocation |
ded_req.requiresDedicatedAllocation;
if (use_ded_mem)
ded_alloc.buffer = vkbuf->buf;
err = alloc_mem(ctx, &req.memoryRequirements, flags,
use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext,
&vkbuf->flags, &vkbuf->mem);
if (err)
return err;
ret = vkBindBufferMemory(hwctx->act_dev, vkbuf->buf, vkbuf->mem, 0);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory to buffer: %s\n",
vk_ret2str(ret));
free_buf(ctx, (uint8_t *)vkbuf);
return AVERROR_EXTERNAL;
}
*buf = av_buffer_create((uint8_t *)vkbuf, sizeof(*vkbuf), free_buf, ctx, 0);
if (!(*buf)) {
free_buf(ctx, (uint8_t *)vkbuf);
return AVERROR(ENOMEM);
}
return 0;
}
/* Skips mapping of host mapped buffers but still invalidates them */
static int map_buffers(AVHWDeviceContext *ctx, AVBufferRef **bufs, uint8_t *mem[],
int nb_buffers, int invalidate)
{
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkMappedMemoryRange invalidate_ctx[AV_NUM_DATA_POINTERS];
int invalidate_count = 0;
for (int i = 0; i < nb_buffers; i++) {
ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data;
if (vkbuf->mapped_mem)
continue;
ret = vkMapMemory(hwctx->act_dev, vkbuf->mem, 0,
VK_WHOLE_SIZE, 0, (void **)&mem[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to map buffer memory: %s\n",
vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
}
if (!invalidate)
return 0;
for (int i = 0; i < nb_buffers; i++) {
ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data;
const VkMappedMemoryRange ival_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = vkbuf->mem,
.size = VK_WHOLE_SIZE,
};
if (vkbuf->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
invalidate_ctx[invalidate_count++] = ival_buf;
}
if (invalidate_count) {
ret = vkInvalidateMappedMemoryRanges(hwctx->act_dev, invalidate_count,
invalidate_ctx);
if (ret != VK_SUCCESS)
av_log(ctx, AV_LOG_WARNING, "Failed to invalidate memory: %s\n",
vk_ret2str(ret));
}
return 0;
}
static int unmap_buffers(AVHWDeviceContext *ctx, AVBufferRef **bufs,
int nb_buffers, int flush)
{
int err = 0;
VkResult ret;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkMappedMemoryRange flush_ctx[AV_NUM_DATA_POINTERS];
int flush_count = 0;
if (flush) {
for (int i = 0; i < nb_buffers; i++) {
ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data;
const VkMappedMemoryRange flush_buf = {
.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE,
.memory = vkbuf->mem,
.size = VK_WHOLE_SIZE,
};
if (vkbuf->flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
flush_ctx[flush_count++] = flush_buf;
}
}
if (flush_count) {
ret = vkFlushMappedMemoryRanges(hwctx->act_dev, flush_count, flush_ctx);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to flush memory: %s\n",
vk_ret2str(ret));
err = AVERROR_EXTERNAL; /* We still want to try to unmap them */
}
}
for (int i = 0; i < nb_buffers; i++) {
ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data;
if (vkbuf->mapped_mem)
continue;
vkUnmapMemory(hwctx->act_dev, vkbuf->mem);
}
return err;
}
static int transfer_image_buf(AVHWFramesContext *hwfc, const AVFrame *f,
AVBufferRef **bufs, const int *buf_stride, int w,
int h, enum AVPixelFormat pix_fmt, int to_buf)
{
int err;
AVVkFrame *frame = (AVVkFrame *)f->data[0];
VulkanFramesPriv *fp = hwfc->internal->priv;
int bar_num = 0;
VkPipelineStageFlagBits sem_wait_dst[AV_NUM_DATA_POINTERS];
const int planes = av_pix_fmt_count_planes(pix_fmt);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
VkImageMemoryBarrier img_bar[AV_NUM_DATA_POINTERS] = { 0 };
VulkanExecCtx *ectx = to_buf ? &fp->download_ctx : &fp->upload_ctx;
VkCommandBuffer cmd_buf = get_buf_exec_ctx(hwfc, ectx);
VkSubmitInfo s_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pSignalSemaphores = frame->sem,
.pWaitSemaphores = frame->sem,
.pWaitDstStageMask = sem_wait_dst,
.signalSemaphoreCount = planes,
.waitSemaphoreCount = planes,
};
if ((err = wait_start_exec_ctx(hwfc, ectx)))
return err;
/* Change the image layout to something more optimal for transfers */
for (int i = 0; i < planes; i++) {
VkImageLayout new_layout = to_buf ? VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL :
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
VkAccessFlags new_access = to_buf ? VK_ACCESS_TRANSFER_READ_BIT :
VK_ACCESS_TRANSFER_WRITE_BIT;
sem_wait_dst[i] = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
/* If the layout matches and we have read access skip the barrier */
if ((frame->layout[i] == new_layout) && (frame->access[i] & new_access))
continue;
img_bar[bar_num].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
img_bar[bar_num].srcAccessMask = 0x0;
img_bar[bar_num].dstAccessMask = new_access;
img_bar[bar_num].oldLayout = frame->layout[i];
img_bar[bar_num].newLayout = new_layout;
img_bar[bar_num].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[bar_num].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
img_bar[bar_num].image = frame->img[i];
img_bar[bar_num].subresourceRange.levelCount = 1;
img_bar[bar_num].subresourceRange.layerCount = 1;
img_bar[bar_num].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
frame->layout[i] = img_bar[bar_num].newLayout;
frame->access[i] = img_bar[bar_num].dstAccessMask;
bar_num++;
}
if (bar_num)
vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
0, NULL, 0, NULL, bar_num, img_bar);
/* Schedule a copy for each plane */
for (int i = 0; i < planes; i++) {
ImageBuffer *vkbuf = (ImageBuffer *)bufs[i]->data;
const int p_w = i > 0 ? AV_CEIL_RSHIFT(w, desc->log2_chroma_w) : w;
const int p_h = i > 0 ? AV_CEIL_RSHIFT(h, desc->log2_chroma_h) : h;
VkBufferImageCopy buf_reg = {
.bufferOffset = 0,
/* Buffer stride isn't in bytes, it's in samples, the implementation
* uses the image's VkFormat to know how many bytes per sample
* the buffer has. So we have to convert by dividing. Stupid.
* Won't work with YUVA or other planar formats with alpha. */
.bufferRowLength = buf_stride[i] / desc->comp[i].step,
.bufferImageHeight = p_h,
.imageSubresource.layerCount = 1,
.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.imageOffset = { 0, 0, 0, },
.imageExtent = { p_w, p_h, 1, },
};
if (to_buf)
vkCmdCopyImageToBuffer(cmd_buf, frame->img[i], frame->layout[i],
vkbuf->buf, 1, &buf_reg);
else
vkCmdCopyBufferToImage(cmd_buf, vkbuf->buf, frame->img[i],
frame->layout[i], 1, &buf_reg);
}
/* When uploading, do this asynchronously if the source is refcounted by
* keeping the buffers as a submission dependency.
* The hwcontext is guaranteed to not be freed until all frames are freed
* in the frames_unint function.
* When downloading to buffer, do this synchronously and wait for the
* queue submission to finish executing */
if (!to_buf) {
int ref;
for (ref = 0; ref < AV_NUM_DATA_POINTERS; ref++) {
if (!f->buf[ref])
break;
if ((err = add_buf_dep_exec_ctx(hwfc, ectx, &f->buf[ref], 1)))
return err;
}
if (ref && (err = add_buf_dep_exec_ctx(hwfc, ectx, bufs, planes)))
return err;
return submit_exec_ctx(hwfc, ectx, &s_info, !ref);
} else {
return submit_exec_ctx(hwfc, ectx, &s_info, 1);
}
}
static int vulkan_transfer_data_from_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err = 0;
AVFrame tmp;
AVVkFrame *f = (AVVkFrame *)dst->data[0];
AVHWDeviceContext *dev_ctx = hwfc->device_ctx;
AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 };
const int planes = av_pix_fmt_count_planes(src->format);
int log2_chroma = av_pix_fmt_desc_get(src->format)->log2_chroma_h;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
int host_mapped[AV_NUM_DATA_POINTERS] = { 0 };
int map_host = p->extensions & EXT_EXTERNAL_HOST_MEMORY;
if ((src->format != AV_PIX_FMT_NONE && !av_vkfmt_from_pixfmt(src->format))) {
av_log(hwfc, AV_LOG_ERROR, "Unsupported source pixel format!\n");
return AVERROR(EINVAL);
}
if (src->width > hwfc->width || src->height > hwfc->height)
return AVERROR(EINVAL);
/* For linear, host visiable images */
if (f->tiling == VK_IMAGE_TILING_LINEAR &&
f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
AVFrame *map = av_frame_alloc();
if (!map)
return AVERROR(ENOMEM);
map->format = src->format;
err = vulkan_map_frame_to_mem(hwfc, map, dst, AV_HWFRAME_MAP_WRITE);
if (err)
return err;
err = av_frame_copy(map, src);
av_frame_free(&map);
return err;
}
/* Create buffers */
for (int i = 0; i < planes; i++) {
int h = src->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
size_t p_size = FFALIGN(FFABS(src->linesize[i]) * p_height,
p->hprops.minImportedHostPointerAlignment);
VkImportMemoryHostPointerInfoEXT import_desc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT,
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT,
.pHostPointer = src->data[i],
};
/* We can only map images with positive stride and alignment appropriate
* for the device. */
host_mapped[i] = map_host && src->linesize[i] > 0 &&
!(((uintptr_t)import_desc.pHostPointer) %
p->hprops.minImportedHostPointerAlignment);
p_size = host_mapped[i] ? p_size : 0;
tmp.linesize[i] = FFABS(src->linesize[i]);
err = create_buf(dev_ctx, &bufs[i], p_size, p_height, &tmp.linesize[i],
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL,
host_mapped[i] ? &import_desc : NULL);
if (err)
goto end;
}
/* Map, copy image to buffer, unmap */
if ((err = map_buffers(dev_ctx, bufs, tmp.data, planes, 0)))
goto end;
for (int i = 0; i < planes; i++) {
int h = src->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
if (host_mapped[i])
continue;
av_image_copy_plane(tmp.data[i], tmp.linesize[i],
(const uint8_t *)src->data[i], src->linesize[i],
FFMIN(tmp.linesize[i], FFABS(src->linesize[i])),
p_height);
}
if ((err = unmap_buffers(dev_ctx, bufs, planes, 1)))
goto end;
/* Copy buffers to image */
err = transfer_image_buf(hwfc, dst, bufs, tmp.linesize,
src->width, src->height, src->format, 0);
end:
for (int i = 0; i < planes; i++)
av_buffer_unref(&bufs[i]);
return err;
}
static int vulkan_transfer_data_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) &&
(p->extensions & EXT_EXTERNAL_FD_SEM))
return vulkan_transfer_data_from_cuda(hwfc, dst, src);
#endif
default:
if (src->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data_from_mem(hwfc, dst, src);
}
}
#if CONFIG_CUDA
static int vulkan_transfer_data_to_cuda(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err;
VkResult ret;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)dst->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
dst_f = (AVVkFrame *)src->data[0];
err = vulkan_export_to_cuda(hwfc, dst->hw_frames_ctx, src);
if (err < 0) {
goto fail;
}
dst_int = dst_f->internal;
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.dstMemoryType = CU_MEMORYTYPE_DEVICE,
.dstDevice = (CUdeviceptr)dst->data[i],
.dstPitch = dst->linesize[i],
.dstY = 0,
.srcMemoryType = CU_MEMORYTYPE_ARRAY,
.srcArray = dst_int->cu_array[i],
.WidthInBytes = (i > 0 ? AV_CEIL_RSHIFT(hwfc->width, desc->log2_chroma_w)
: hwfc->width) * desc->comp[i].step,
.Height = i > 0 ? AV_CEIL_RSHIFT(hwfc->height, desc->log2_chroma_h)
: hwfc->height,
};
ret = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
}
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered Vulkan image to CUDA!\n");
return 0;
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_int);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_transfer_data_to_mem(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err = 0;
AVFrame tmp;
AVVkFrame *f = (AVVkFrame *)src->data[0];
AVHWDeviceContext *dev_ctx = hwfc->device_ctx;
AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 };
const int planes = av_pix_fmt_count_planes(dst->format);
int log2_chroma = av_pix_fmt_desc_get(dst->format)->log2_chroma_h;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
int host_mapped[AV_NUM_DATA_POINTERS] = { 0 };
int map_host = p->extensions & EXT_EXTERNAL_HOST_MEMORY;
if (dst->width > hwfc->width || dst->height > hwfc->height)
return AVERROR(EINVAL);
/* For linear, host visiable images */
if (f->tiling == VK_IMAGE_TILING_LINEAR &&
f->flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
AVFrame *map = av_frame_alloc();
if (!map)
return AVERROR(ENOMEM);
map->format = dst->format;
err = vulkan_map_frame_to_mem(hwfc, map, src, AV_HWFRAME_MAP_READ);
if (err)
return err;
err = av_frame_copy(dst, map);
av_frame_free(&map);
return err;
}
/* Create buffers */
for (int i = 0; i < planes; i++) {
int h = dst->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
size_t p_size = FFALIGN(FFABS(dst->linesize[i]) * p_height,
p->hprops.minImportedHostPointerAlignment);
VkImportMemoryHostPointerInfoEXT import_desc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT,
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT,
.pHostPointer = dst->data[i],
};
/* We can only map images with positive stride and alignment appropriate
* for the device. */
host_mapped[i] = map_host && dst->linesize[i] > 0 &&
!(((uintptr_t)import_desc.pHostPointer) %
p->hprops.minImportedHostPointerAlignment);
p_size = host_mapped[i] ? p_size : 0;
tmp.linesize[i] = FFABS(dst->linesize[i]);
err = create_buf(dev_ctx, &bufs[i], p_size, p_height,
&tmp.linesize[i], VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, NULL,
host_mapped[i] ? &import_desc : NULL);
if (err)
goto end;
}
/* Copy image to buffer */
if ((err = transfer_image_buf(hwfc, src, bufs, tmp.linesize,
dst->width, dst->height, dst->format, 1)))
goto end;
/* Map, copy buffer to frame, unmap */
if ((err = map_buffers(dev_ctx, bufs, tmp.data, planes, 1)))
goto end;
for (int i = 0; i < planes; i++) {
int h = dst->height;
int p_height = i > 0 ? AV_CEIL_RSHIFT(h, log2_chroma) : h;
if (host_mapped[i])
continue;
av_image_copy_plane(dst->data[i], dst->linesize[i],
(const uint8_t *)tmp.data[i], tmp.linesize[i],
FFMIN(tmp.linesize[i], FFABS(dst->linesize[i])),
p_height);
}
err = unmap_buffers(dev_ctx, bufs, planes, 0);
end:
for (int i = 0; i < planes; i++)
av_buffer_unref(&bufs[i]);
return err;
}
static int vulkan_transfer_data_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
if ((p->extensions & EXT_EXTERNAL_FD_MEMORY) &&
(p->extensions & EXT_EXTERNAL_FD_SEM))
return vulkan_transfer_data_to_cuda(hwfc, dst, src);
#endif
default:
if (dst->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data_to_mem(hwfc, dst, src);
}
}
static int vulkan_frames_derive_to(AVHWFramesContext *dst_fc,
AVHWFramesContext *src_fc, int flags)
{
return vulkan_frames_init(dst_fc);
}
AVVkFrame *av_vk_frame_alloc(void)
{
return av_mallocz(sizeof(AVVkFrame));
}
const HWContextType ff_hwcontext_type_vulkan = {
.type = AV_HWDEVICE_TYPE_VULKAN,
.name = "Vulkan",
.device_hwctx_size = sizeof(AVVulkanDeviceContext),
.device_priv_size = sizeof(VulkanDevicePriv),
.frames_hwctx_size = sizeof(AVVulkanFramesContext),
.frames_priv_size = sizeof(VulkanFramesPriv),
.device_init = &vulkan_device_init,
.device_create = &vulkan_device_create,
.device_derive = &vulkan_device_derive,
.frames_get_constraints = &vulkan_frames_get_constraints,
.frames_init = vulkan_frames_init,
.frames_get_buffer = vulkan_get_buffer,
.frames_uninit = vulkan_frames_uninit,
.transfer_get_formats = vulkan_transfer_get_formats,
.transfer_data_to = vulkan_transfer_data_to,
.transfer_data_from = vulkan_transfer_data_from,
.map_to = vulkan_map_to,
.map_from = vulkan_map_from,
.frames_derive_to = &vulkan_frames_derive_to,
.pix_fmts = (const enum AVPixelFormat []) {
AV_PIX_FMT_VULKAN,
AV_PIX_FMT_NONE
},
};