1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/rv34.c
Oskar Arvidsson 19a0729b4c Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
This patch lets e.g. dsputil_init chose dsp functions with respect to
the bit depth to decode. The naming scheme of bit depth dependent
functions is <base name>_<bit depth>[_<prefix>] (i.e. the old
clear_blocks_c is now named clear_blocks_8_c).

Note: Some of the functions for high bit depth is not dependent on the
bit depth, but only on the pixel size. This leaves some room for
optimizing binary size.

Preparatory patch for high bit depth h264 decoding support.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2011-05-10 07:24:36 -04:00

1527 lines
54 KiB
C

/*
* RV30/40 decoder common data
* Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* RV30/40 decoder common data
*/
#include "avcodec.h"
#include "dsputil.h"
#include "mpegvideo.h"
#include "golomb.h"
#include "mathops.h"
#include "rectangle.h"
#include "rv34vlc.h"
#include "rv34data.h"
#include "rv34.h"
//#define DEBUG
static inline void ZERO8x2(void* dst, int stride)
{
fill_rectangle(dst, 1, 2, stride, 0, 4);
fill_rectangle(((uint8_t*)(dst))+4, 1, 2, stride, 0, 4);
}
/** translation of RV30/40 macroblock types to lavc ones */
static const int rv34_mb_type_to_lavc[12] = {
MB_TYPE_INTRA,
MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
MB_TYPE_16x16 | MB_TYPE_L0,
MB_TYPE_8x8 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L1,
MB_TYPE_SKIP,
MB_TYPE_DIRECT2 | MB_TYPE_16x16,
MB_TYPE_16x8 | MB_TYPE_L0,
MB_TYPE_8x16 | MB_TYPE_L0,
MB_TYPE_16x16 | MB_TYPE_L0L1,
MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
};
static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
/**
* @defgroup vlc RV30/40 VLC generating functions
* @{
*/
static const int table_offs[] = {
0, 1818, 3622, 4144, 4698, 5234, 5804, 5868, 5900, 5932,
5996, 6252, 6316, 6348, 6380, 7674, 8944, 10274, 11668, 12250,
14060, 15846, 16372, 16962, 17512, 18148, 18180, 18212, 18244, 18308,
18564, 18628, 18660, 18692, 20036, 21314, 22648, 23968, 24614, 26384,
28190, 28736, 29366, 29938, 30608, 30640, 30672, 30704, 30768, 31024,
31088, 31120, 31184, 32570, 33898, 35236, 36644, 37286, 39020, 40802,
41368, 42052, 42692, 43348, 43380, 43412, 43444, 43476, 43604, 43668,
43700, 43732, 45100, 46430, 47778, 49160, 49802, 51550, 53340, 53972,
54648, 55348, 55994, 56122, 56154, 56186, 56218, 56346, 56410, 56442,
56474, 57878, 59290, 60636, 62036, 62682, 64460, 64524, 64588, 64716,
64844, 66076, 67466, 67978, 68542, 69064, 69648, 70296, 72010, 72074,
72138, 72202, 72330, 73572, 74936, 75454, 76030, 76566, 77176, 77822,
79582, 79646, 79678, 79742, 79870, 81180, 82536, 83064, 83672, 84242,
84934, 85576, 87384, 87448, 87480, 87544, 87672, 88982, 90340, 90902,
91598, 92182, 92846, 93488, 95246, 95278, 95310, 95374, 95502, 96878,
98266, 98848, 99542, 100234, 100884, 101524, 103320, 103352, 103384, 103416,
103480, 104874, 106222, 106910, 107584, 108258, 108902, 109544, 111366, 111398,
111430, 111462, 111494, 112878, 114320, 114988, 115660, 116310, 116950, 117592
};
static VLC_TYPE table_data[117592][2];
/**
* Generate VLC from codeword lengths.
* @param bits codeword lengths (zeroes are accepted)
* @param size length of input data
* @param vlc output VLC
* @param insyms symbols for input codes (NULL for default ones)
* @param num VLC table number (for static initialization)
*/
static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms,
const int num)
{
int i;
int counts[17] = {0}, codes[17];
uint16_t cw[MAX_VLC_SIZE], syms[MAX_VLC_SIZE];
uint8_t bits2[MAX_VLC_SIZE];
int maxbits = 0, realsize = 0;
for(i = 0; i < size; i++){
if(bits[i]){
bits2[realsize] = bits[i];
syms[realsize] = insyms ? insyms[i] : i;
realsize++;
maxbits = FFMAX(maxbits, bits[i]);
counts[bits[i]]++;
}
}
codes[0] = 0;
for(i = 0; i < 16; i++)
codes[i+1] = (codes[i] + counts[i]) << 1;
for(i = 0; i < realsize; i++)
cw[i] = codes[bits2[i]]++;
vlc->table = &table_data[table_offs[num]];
vlc->table_allocated = table_offs[num + 1] - table_offs[num];
init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
bits2, 1, 1,
cw, 2, 2,
syms, 2, 2, INIT_VLC_USE_NEW_STATIC);
}
/**
* Initialize all tables.
*/
static av_cold void rv34_init_tables(void)
{
int i, j, k;
for(i = 0; i < NUM_INTRA_TABLES; i++){
for(j = 0; j < 2; j++){
rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL, 19*i + 0 + j);
rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL, 19*i + 2 + j);
rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL, 19*i + 4 + j);
for(k = 0; k < 4; k++){
rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code, 19*i + 6 + j*4 + k);
}
}
for(j = 0; j < 4; j++){
rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL, 19*i + 14 + j);
}
rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL, 19*i + 18);
}
for(i = 0; i < NUM_INTER_TABLES; i++){
rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL, i*12 + 95);
for(j = 0; j < 4; j++){
rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code, i*12 + 96 + j);
}
for(j = 0; j < 2; j++){
rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL, i*12 + 100 + j);
rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL, i*12 + 102 + j);
rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL, i*12 + 104 + j);
}
rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL, i*12 + 106);
}
}
/** @} */ // vlc group
/**
* @defgroup transform RV30/40 inverse transform functions
* @{
*/
static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
{
int i;
for(i=0; i<4; i++){
const int z0= 13*(block[i+8*0] + block[i+8*2]);
const int z1= 13*(block[i+8*0] - block[i+8*2]);
const int z2= 7* block[i+8*1] - 17*block[i+8*3];
const int z3= 17* block[i+8*1] + 7*block[i+8*3];
temp[4*i+0]= z0+z3;
temp[4*i+1]= z1+z2;
temp[4*i+2]= z1-z2;
temp[4*i+3]= z0-z3;
}
}
/**
* Real Video 3.0/4.0 inverse transform
* Code is almost the same as in SVQ3, only scaling is different.
*/
static void rv34_inv_transform(DCTELEM *block){
int temp[16];
int i;
rv34_row_transform(temp, block);
for(i=0; i<4; i++){
const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
block[i*8+0]= (z0 + z3)>>10;
block[i*8+1]= (z1 + z2)>>10;
block[i*8+2]= (z1 - z2)>>10;
block[i*8+3]= (z0 - z3)>>10;
}
}
/**
* RealVideo 3.0/4.0 inverse transform for DC block
*
* Code is almost the same as rv34_inv_transform()
* but final coefficients are multiplied by 1.5 and have no rounding.
*/
static void rv34_inv_transform_noround(DCTELEM *block){
int temp[16];
int i;
rv34_row_transform(temp, block);
for(i=0; i<4; i++){
const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
block[i*8+0]= ((z0 + z3)*3)>>11;
block[i*8+1]= ((z1 + z2)*3)>>11;
block[i*8+2]= ((z1 - z2)*3)>>11;
block[i*8+3]= ((z0 - z3)*3)>>11;
}
}
/** @} */ // transform
/**
* @defgroup block RV30/40 4x4 block decoding functions
* @{
*/
/**
* Decode coded block pattern.
*/
static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
{
int pattern, code, cbp=0;
int ones;
static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
static const int shifts[4] = { 0, 2, 8, 10 };
const int *curshift = shifts;
int i, t, mask;
code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
pattern = code & 0xF;
code >>= 4;
ones = rv34_count_ones[pattern];
for(mask = 8; mask; mask >>= 1, curshift++){
if(pattern & mask)
cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
}
for(i = 0; i < 4; i++){
t = modulo_three_table[code][i];
if(t == 1)
cbp |= cbp_masks[get_bits1(gb)] << i;
if(t == 2)
cbp |= cbp_masks[2] << i;
}
return cbp;
}
/**
* Get one coefficient value from the bistream and store it.
*/
static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
{
if(coef){
if(coef == esc){
coef = get_vlc2(gb, vlc->table, 9, 2);
if(coef > 23){
coef -= 23;
coef = 22 + ((1 << coef) | get_bits(gb, coef));
}
coef += esc;
}
if(get_bits1(gb))
coef = -coef;
*dst = coef;
}
}
/**
* Decode 2x2 subblock of coefficients.
*/
static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
{
int coeffs[4];
coeffs[0] = modulo_three_table[code][0];
coeffs[1] = modulo_three_table[code][1];
coeffs[2] = modulo_three_table[code][2];
coeffs[3] = modulo_three_table[code][3];
decode_coeff(dst , coeffs[0], 3, gb, vlc);
if(is_block2){
decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
}else{
decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
}
decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
}
/**
* Decode coefficients for 4x4 block.
*
* This is done by filling 2x2 subblocks with decoded coefficients
* in this order (the same for subblocks and subblock coefficients):
* o--o
* /
* /
* o--o
*/
static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
{
int code, pattern;
code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
pattern = code & 0x7;
code >>= 3;
decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
if(pattern & 4){
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
}
if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
}
if(pattern & 1){
code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
}
}
/**
* Dequantize ordinary 4x4 block.
* @todo optimize
*/
static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
{
int i, j;
block[0] = (block[0] * Qdc + 8) >> 4;
for(i = 0; i < 4; i++)
for(j = !i; j < 4; j++)
block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
}
/**
* Dequantize 4x4 block of DC values for 16x16 macroblock.
* @todo optimize
*/
static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
{
int i;
for(i = 0; i < 3; i++)
block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
for(; i < 16; i++)
block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
}
/** @} */ //block functions
/**
* @defgroup rv3040_bitstream RV30/40 bitstream parsing
* @{
*/
/**
* Decode starting slice position.
* @todo Maybe replace with ff_h263_decode_mba() ?
*/
int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
{
int i;
for(i = 0; i < 5; i++)
if(rv34_mb_max_sizes[i] >= mb_size - 1)
break;
return rv34_mb_bits_sizes[i];
}
/**
* Select VLC set for decoding from current quantizer, modifier and frame type.
*/
static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
{
if(mod == 2 && quant < 19) quant += 10;
else if(mod && quant < 26) quant += 5;
return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
: &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
}
/**
* Decode quantizer difference and return modified quantizer.
*/
static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
{
if(get_bits1(gb))
return rv34_dquant_tab[get_bits1(gb)][quant];
else
return get_bits(gb, 5);
}
/** @} */ //bitstream functions
/**
* @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
* @{
*/
/** macroblock partition width in 8x8 blocks */
static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
/** macroblock partition height in 8x8 blocks */
static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
/** availability index for subblocks */
static const uint8_t avail_indexes[4] = { 6, 7, 10, 11 };
/**
* motion vector prediction
*
* Motion prediction performed for the block by using median prediction of
* motion vectors from the left, top and right top blocks but in corner cases
* some other vectors may be used instead.
*/
static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
{
MpegEncContext *s = &r->s;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2] = {0}, B[2], C[2];
int i, j;
int mx, my;
int avail_index = avail_indexes[subblock_no];
int c_off = part_sizes_w[block_type];
mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
if(subblock_no == 3)
c_off = -1;
if(r->avail_cache[avail_index - 1]){
A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
}
if(r->avail_cache[avail_index - 4]){
B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
}else{
B[0] = A[0];
B[1] = A[1];
}
if(!r->avail_cache[avail_index - 4 + c_off]){
if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
}else{
C[0] = A[0];
C[1] = A[1];
}
}else{
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
}
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
mx += r->dmv[dmv_no][0];
my += r->dmv[dmv_no][1];
for(j = 0; j < part_sizes_h[block_type]; j++){
for(i = 0; i < part_sizes_w[block_type]; i++){
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
}
}
}
#define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
/**
* Calculate motion vector component that should be added for direct blocks.
*/
static int calc_add_mv(RV34DecContext *r, int dir, int val)
{
int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
int mul;
if(!refdist) return 0;
mul = (dist << 14) / refdist;
return (val * mul + 0x2000) >> 14;
}
/**
* Predict motion vector for B-frame macroblock.
*/
static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
int A_avail, int B_avail, int C_avail,
int *mx, int *my)
{
if(A_avail + B_avail + C_avail != 3){
*mx = A[0] + B[0] + C[0];
*my = A[1] + B[1] + C[1];
if(A_avail + B_avail + C_avail == 2){
*mx /= 2;
*my /= 2;
}
}else{
*mx = mid_pred(A[0], B[0], C[0]);
*my = mid_pred(A[1], B[1], C[1]);
}
}
/**
* motion vector prediction for B-frames
*/
static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
{
MpegEncContext *s = &r->s;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2], B[2], C[2];
int has_A = 0, has_B = 0, has_C = 0;
int mx, my;
int i, j;
Picture *cur_pic = s->current_picture_ptr;
const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
int type = cur_pic->mb_type[mb_pos];
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
memset(C, 0, sizeof(C));
if((r->avail_cache[6-1] & type) & mask){
A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
has_A = 1;
}
if((r->avail_cache[6-4] & type) & mask){
B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
has_B = 1;
}
if(r->avail_cache[6-4] && (r->avail_cache[6-2] & type) & mask){
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
has_C = 1;
}else if((s->mb_x+1) == s->mb_width && (r->avail_cache[6-5] & type) & mask){
C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
has_C = 1;
}
rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
mx += r->dmv[dir][0];
my += r->dmv[dir][1];
for(j = 0; j < 2; j++){
for(i = 0; i < 2; i++){
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
}
}
if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD){
ZERO8x2(cur_pic->motion_val[!dir][mv_pos], s->b8_stride);
}
}
/**
* motion vector prediction - RV3 version
*/
static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
{
MpegEncContext *s = &r->s;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int A[2] = {0}, B[2], C[2];
int i, j, k;
int mx, my;
int avail_index = avail_indexes[0];
if(r->avail_cache[avail_index - 1]){
A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
}
if(r->avail_cache[avail_index - 4]){
B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
}else{
B[0] = A[0];
B[1] = A[1];
}
if(!r->avail_cache[avail_index - 4 + 2]){
if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
}else{
C[0] = A[0];
C[1] = A[1];
}
}else{
C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][0];
C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][1];
}
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
mx += r->dmv[0][0];
my += r->dmv[0][1];
for(j = 0; j < 2; j++){
for(i = 0; i < 2; i++){
for(k = 0; k < 2; k++){
s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
}
}
}
}
static const int chroma_coeffs[3] = { 0, 3, 5 };
/**
* generic motion compensation function
*
* @param r decoder context
* @param block_type type of the current block
* @param xoff horizontal offset from the start of the current block
* @param yoff vertical offset from the start of the current block
* @param mv_off offset to the motion vector information
* @param width width of the current partition in 8x8 blocks
* @param height height of the current partition in 8x8 blocks
* @param dir motion compensation direction (i.e. from the last or the next reference frame)
* @param thirdpel motion vectors are specified in 1/3 of pixel
* @param qpel_mc a set of functions used to perform luma motion compensation
* @param chroma_mc a set of functions used to perform chroma motion compensation
*/
static inline void rv34_mc(RV34DecContext *r, const int block_type,
const int xoff, const int yoff, int mv_off,
const int width, const int height, int dir,
const int thirdpel,
qpel_mc_func (*qpel_mc)[16],
h264_chroma_mc_func (*chroma_mc))
{
MpegEncContext *s = &r->s;
uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
int is16x16 = 1;
if(thirdpel){
int chroma_mx, chroma_my;
mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
chroma_mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + 1) >> 1;
chroma_my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + 1) >> 1;
umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
}else{
int cx, cy;
mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
umx = cx >> 2;
umy = cy >> 2;
uvmx = (cx & 3) << 1;
uvmy = (cy & 3) << 1;
//due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
if(uvmx == 6 && uvmy == 6)
uvmx = uvmy = 4;
}
dxy = ly*4 + lx;
srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
src_x = s->mb_x * 16 + xoff + mx;
src_y = s->mb_y * 16 + yoff + my;
uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
|| (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
uint8_t *uvbuf= s->edge_emu_buffer + 22 * s->linesize;
srcY -= 2 + 2*s->linesize;
s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
}
Y = s->dest[0] + xoff + yoff *s->linesize;
U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
if(block_type == RV34_MB_P_16x8){
qpel_mc[1][dxy](Y, srcY, s->linesize);
Y += 8;
srcY += 8;
}else if(block_type == RV34_MB_P_8x16){
qpel_mc[1][dxy](Y, srcY, s->linesize);
Y += 8 * s->linesize;
srcY += 8 * s->linesize;
}
is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
}
static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
const int xoff, const int yoff, int mv_off,
const int width, const int height, int dir)
{
rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
: r->s.dsp.put_rv40_qpel_pixels_tab,
r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
: r->s.dsp.put_rv40_chroma_pixels_tab);
}
static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
{
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
: r->s.dsp.put_rv40_qpel_pixels_tab,
r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
: r->s.dsp.put_rv40_chroma_pixels_tab);
rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
: r->s.dsp.avg_rv40_qpel_pixels_tab,
r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
: r->s.dsp.avg_rv40_chroma_pixels_tab);
}
static void rv34_mc_2mv_skip(RV34DecContext *r)
{
int i, j;
for(j = 0; j < 2; j++)
for(i = 0; i < 2; i++){
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
: r->s.dsp.put_rv40_qpel_pixels_tab,
r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
: r->s.dsp.put_rv40_chroma_pixels_tab);
rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
: r->s.dsp.avg_rv40_qpel_pixels_tab,
r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
: r->s.dsp.avg_rv40_chroma_pixels_tab);
}
}
/** number of motion vectors in each macroblock type */
static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
/**
* Decode motion vector differences
* and perform motion vector reconstruction and motion compensation.
*/
static int rv34_decode_mv(RV34DecContext *r, int block_type)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int i, j, k, l;
int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int next_bt;
memset(r->dmv, 0, sizeof(r->dmv));
for(i = 0; i < num_mvs[block_type]; i++){
r->dmv[i][0] = svq3_get_se_golomb(gb);
r->dmv[i][1] = svq3_get_se_golomb(gb);
}
switch(block_type){
case RV34_MB_TYPE_INTRA:
case RV34_MB_TYPE_INTRA16x16:
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
return 0;
case RV34_MB_SKIP:
if(s->pict_type == AV_PICTURE_TYPE_P){
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
break;
}
case RV34_MB_B_DIRECT:
//surprisingly, it uses motion scheme from next reference frame
next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
ZERO8x2(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
}else
for(j = 0; j < 2; j++)
for(i = 0; i < 2; i++)
for(k = 0; k < 2; k++)
for(l = 0; l < 2; l++)
s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
rv34_mc_2mv(r, block_type);
else
rv34_mc_2mv_skip(r);
ZERO8x2(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], s->b8_stride);
break;
case RV34_MB_P_16x16:
case RV34_MB_P_MIX16x16:
rv34_pred_mv(r, block_type, 0, 0);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
break;
case RV34_MB_B_FORWARD:
case RV34_MB_B_BACKWARD:
r->dmv[1][0] = r->dmv[0][0];
r->dmv[1][1] = r->dmv[0][1];
if(r->rv30)
rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
else
rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
break;
case RV34_MB_P_16x8:
case RV34_MB_P_8x16:
rv34_pred_mv(r, block_type, 0, 0);
rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
if(block_type == RV34_MB_P_16x8){
rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
}
if(block_type == RV34_MB_P_8x16){
rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
}
break;
case RV34_MB_B_BIDIR:
rv34_pred_mv_b (r, block_type, 0);
rv34_pred_mv_b (r, block_type, 1);
rv34_mc_2mv (r, block_type);
break;
case RV34_MB_P_8x8:
for(i=0;i< 4;i++){
rv34_pred_mv(r, block_type, i, i);
rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
}
break;
}
return 0;
}
/** @} */ // mv group
/**
* @defgroup recons Macroblock reconstruction functions
* @{
*/
/** mapping of RV30/40 intra prediction types to standard H.264 types */
static const int ittrans[9] = {
DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
};
/** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
static const int ittrans16[4] = {
DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
};
/**
* Perform 4x4 intra prediction.
*/
static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
{
uint8_t *prev = dst - stride + 4;
uint32_t topleft;
if(!up && !left)
itype = DC_128_PRED;
else if(!up){
if(itype == VERT_PRED) itype = HOR_PRED;
if(itype == DC_PRED) itype = LEFT_DC_PRED;
}else if(!left){
if(itype == HOR_PRED) itype = VERT_PRED;
if(itype == DC_PRED) itype = TOP_DC_PRED;
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
}
if(!down){
if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
}
if(!right && up){
topleft = dst[-stride + 3] * 0x01010101;
prev = (uint8_t*)&topleft;
}
r->h.pred4x4[itype](dst, prev, stride);
}
/** add_pixels_clamped for 4x4 block */
static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
{
int x, y;
for(y = 0; y < 4; y++)
for(x = 0; x < 4; x++)
dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
}
static inline int adjust_pred16(int itype, int up, int left)
{
if(!up && !left)
itype = DC_128_PRED8x8;
else if(!up){
if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
}else if(!left){
if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
}
return itype;
}
static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
{
MpegEncContext *s = &r->s;
DSPContext *dsp = &s->dsp;
int i, j;
uint8_t *Y, *U, *V;
int itype;
int avail[6*8] = {0};
int idx;
// Set neighbour information.
if(r->avail_cache[1])
avail[0] = 1;
if(r->avail_cache[2])
avail[1] = avail[2] = 1;
if(r->avail_cache[3])
avail[3] = avail[4] = 1;
if(r->avail_cache[4])
avail[5] = 1;
if(r->avail_cache[5])
avail[8] = avail[16] = 1;
if(r->avail_cache[9])
avail[24] = avail[32] = 1;
Y = s->dest[0];
U = s->dest[1];
V = s->dest[2];
if(!is16){
for(j = 0; j < 4; j++){
idx = 9 + j*8;
for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
avail[idx] = 1;
if(cbp & 1)
rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
}
Y += s->linesize * 4 - 4*4;
intra_types += r->intra_types_stride;
}
intra_types -= r->intra_types_stride * 4;
fill_rectangle(r->avail_cache + 6, 2, 2, 4, 0, 4);
for(j = 0; j < 2; j++){
idx = 6 + j*4;
for(i = 0; i < 2; i++, cbp >>= 1, idx++){
rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*r->intra_types_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
r->avail_cache[idx] = 1;
if(cbp & 0x01)
rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
if(cbp & 0x10)
rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
}
}
}else{
itype = ittrans16[intra_types[0]];
itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
r->h.pred16x16[itype](Y, s->linesize);
dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
Y += s->linesize * 8;
dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
itype = ittrans16[intra_types[0]];
if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
itype = adjust_pred16(itype, r->avail_cache[6-4], r->avail_cache[6-1]);
r->h.pred8x8[itype](U, s->uvlinesize);
dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
r->h.pred8x8[itype](V, s->uvlinesize);
dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
}
}
/** @} */ // recons group
/**
* @addtogroup bitstream
* Decode macroblock header and return CBP in case of success, -1 otherwise.
*/
static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int i, t;
if(!r->si.type){
r->is16 = get_bits1(gb);
if(!r->is16 && !r->rv30){
if(!get_bits1(gb))
av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
}
s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
}else{
r->block_type = r->decode_mb_info(r);
if(r->block_type == -1)
return -1;
s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
r->mb_type[mb_pos] = r->block_type;
if(r->block_type == RV34_MB_SKIP){
if(s->pict_type == AV_PICTURE_TYPE_P)
r->mb_type[mb_pos] = RV34_MB_P_16x16;
if(s->pict_type == AV_PICTURE_TYPE_B)
r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
}
r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
rv34_decode_mv(r, r->block_type);
if(r->block_type == RV34_MB_SKIP){
fill_rectangle(intra_types, 4, 4, r->intra_types_stride, 0, sizeof(intra_types[0]));
return 0;
}
r->chroma_vlc = 1;
r->luma_vlc = 0;
}
if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
if(r->is16){
t = get_bits(gb, 2);
fill_rectangle(intra_types, 4, 4, r->intra_types_stride, t, sizeof(intra_types[0]));
r->luma_vlc = 2;
}else{
if(r->decode_intra_types(r, gb, intra_types) < 0)
return -1;
r->luma_vlc = 1;
}
r->chroma_vlc = 0;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
}else{
for(i = 0; i < 16; i++)
intra_types[(i & 3) + (i>>2) * r->intra_types_stride] = 0;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
r->is16 = 1;
r->chroma_vlc = 1;
r->luma_vlc = 2;
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
}
}
return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
}
/**
* @addtogroup recons
* @{
*/
/**
* mask for retrieving all bits in coded block pattern
* corresponding to one 8x8 block
*/
#define LUMA_CBP_BLOCK_MASK 0x33
#define U_CBP_MASK 0x0F0000
#define V_CBP_MASK 0xF00000
static void rv34_apply_differences(RV34DecContext *r, int cbp)
{
static const int shifts[4] = { 0, 2, 8, 10 };
MpegEncContext *s = &r->s;
int i;
for(i = 0; i < 4; i++)
if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
if(cbp & U_CBP_MASK)
s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
if(cbp & V_CBP_MASK)
s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
}
static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
{
int d;
d = motion_val[0][0] - motion_val[-step][0];
if(d < -3 || d > 3)
return 1;
d = motion_val[0][1] - motion_val[-step][1];
if(d < -3 || d > 3)
return 1;
return 0;
}
static int rv34_set_deblock_coef(RV34DecContext *r)
{
MpegEncContext *s = &r->s;
int hmvmask = 0, vmvmask = 0, i, j;
int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
int16_t (*motion_val)[2] = &s->current_picture_ptr->motion_val[0][midx];
for(j = 0; j < 16; j += 8){
for(i = 0; i < 2; i++){
if(is_mv_diff_gt_3(motion_val + i, 1))
vmvmask |= 0x11 << (j + i*2);
if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
hmvmask |= 0x03 << (j + i*2);
}
motion_val += s->b8_stride;
}
if(s->first_slice_line)
hmvmask &= ~0x000F;
if(!s->mb_x)
vmvmask &= ~0x1111;
if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
vmvmask |= (vmvmask & 0x4444) >> 1;
hmvmask |= (hmvmask & 0x0F00) >> 4;
if(s->mb_x)
r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
if(!s->first_slice_line)
r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
}
return hmvmask | vmvmask;
}
static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int cbp, cbp2;
int i, blknum, blkoff;
DCTELEM block16[64];
int luma_dc_quant;
int dist;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
// Calculate which neighbours are available. Maybe it's worth optimizing too.
memset(r->avail_cache, 0, sizeof(r->avail_cache));
fill_rectangle(r->avail_cache + 6, 2, 2, 4, 1, 4);
dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
if(s->mb_x && dist)
r->avail_cache[5] =
r->avail_cache[9] = s->current_picture_ptr->mb_type[mb_pos - 1];
if(dist >= s->mb_width)
r->avail_cache[2] =
r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
r->avail_cache[4] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
if(s->mb_x && dist > s->mb_width)
r->avail_cache[1] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
s->qscale = r->si.quant;
cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
r->cbp_luma [mb_pos] = cbp;
r->cbp_chroma[mb_pos] = cbp >> 16;
if(s->pict_type == AV_PICTURE_TYPE_I)
r->deblock_coefs[mb_pos] = 0xFFFF;
else
r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
if(cbp == -1)
return -1;
luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
if(r->is16){
memset(block16, 0, sizeof(block16));
rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
rv34_inv_transform_noround(block16);
}
for(i = 0; i < 16; i++, cbp >>= 1){
if(!r->is16 && !(cbp & 1)) continue;
blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
blkoff = ((i & 1) << 2) + ((i & 4) << 3);
if(cbp & 1)
rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
if(r->is16) //FIXME: optimize
s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
rv34_inv_transform(s->block[blknum] + blkoff);
}
if(r->block_type == RV34_MB_P_MIX16x16)
r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
for(; i < 24; i++, cbp >>= 1){
if(!(cbp & 1)) continue;
blknum = ((i & 4) >> 2) + 4;
blkoff = ((i & 1) << 2) + ((i & 2) << 4);
rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
rv34_inv_transform(s->block[blknum] + blkoff);
}
if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos]))
rv34_output_macroblock(r, intra_types, cbp2, r->is16);
else
rv34_apply_differences(r, cbp2);
return 0;
}
static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
{
int bits;
if(s->mb_y >= s->mb_height)
return 1;
if(!s->mb_num_left)
return 1;
if(r->s.mb_skip_run > 1)
return 0;
bits = r->bits - get_bits_count(&s->gb);
if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
return 1;
return 0;
}
static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
{
return si1->type != si2->type ||
si1->start >= si2->start ||
si1->width != si2->width ||
si1->height != si2->height||
si1->pts != si2->pts;
}
static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
{
MpegEncContext *s = &r->s;
GetBitContext *gb = &s->gb;
int mb_pos;
int res;
init_get_bits(&r->s.gb, buf, buf_size*8);
res = r->parse_slice_header(r, gb, &r->si);
if(res < 0){
av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
return -1;
}
if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
if(s->width != r->si.width || s->height != r->si.height){
av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
MPV_common_end(s);
s->width = r->si.width;
s->height = r->si.height;
avcodec_set_dimensions(s->avctx, s->width, s->height);
if(MPV_common_init(s) < 0)
return -1;
r->intra_types_stride = s->mb_width*4 + 4;
r->intra_types_hist = av_realloc(r->intra_types_hist, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
}
s->pict_type = r->si.type ? r->si.type : AV_PICTURE_TYPE_I;
if(MPV_frame_start(s, s->avctx) < 0)
return -1;
ff_er_frame_start(s);
r->cur_pts = r->si.pts;
if(s->pict_type != AV_PICTURE_TYPE_B){
r->last_pts = r->next_pts;
r->next_pts = r->cur_pts;
}
s->mb_x = s->mb_y = 0;
}
r->si.end = end;
s->qscale = r->si.quant;
r->bits = buf_size*8;
s->mb_num_left = r->si.end - r->si.start;
r->s.mb_skip_run = 0;
mb_pos = s->mb_x + s->mb_y * s->mb_width;
if(r->si.start != mb_pos){
av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
s->mb_x = r->si.start % s->mb_width;
s->mb_y = r->si.start / s->mb_width;
}
memset(r->intra_types_hist, -1, r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
s->first_slice_line = 1;
s->resync_mb_x= s->mb_x;
s->resync_mb_y= s->mb_y;
ff_init_block_index(s);
while(!check_slice_end(r, s)) {
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 4) < 0){
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
return -1;
}
if (++s->mb_x == s->mb_width) {
s->mb_x = 0;
s->mb_y++;
ff_init_block_index(s);
memmove(r->intra_types_hist, r->intra_types, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
memset(r->intra_types, -1, r->intra_types_stride * 4 * sizeof(*r->intra_types_hist));
if(r->loop_filter && s->mb_y >= 2)
r->loop_filter(r, s->mb_y - 2);
}
if(s->mb_x == s->resync_mb_x)
s->first_slice_line=0;
s->mb_num_left--;
}
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
return s->mb_y == s->mb_height;
}
/** @} */ // recons group end
/**
* Initialize decoder.
*/
av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
{
RV34DecContext *r = avctx->priv_data;
MpegEncContext *s = &r->s;
MPV_decode_defaults(s);
s->avctx= avctx;
s->out_format = FMT_H263;
s->codec_id= avctx->codec_id;
s->width = avctx->width;
s->height = avctx->height;
r->s.avctx = avctx;
avctx->flags |= CODEC_FLAG_EMU_EDGE;
r->s.flags |= CODEC_FLAG_EMU_EDGE;
avctx->pix_fmt = PIX_FMT_YUV420P;
avctx->has_b_frames = 1;
s->low_delay = 0;
if (MPV_common_init(s) < 0)
return -1;
ff_h264_pred_init(&r->h, CODEC_ID_RV40, 8);
r->intra_types_stride = 4*s->mb_stride + 4;
r->intra_types_hist = av_malloc(r->intra_types_stride * 4 * 2 * sizeof(*r->intra_types_hist));
r->intra_types = r->intra_types_hist + r->intra_types_stride * 4;
r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
if(!intra_vlcs[0].cbppattern[0].bits)
rv34_init_tables();
return 0;
}
static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
{
if(avctx->slice_count) return avctx->slice_offset[n];
else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
}
int ff_rv34_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
RV34DecContext *r = avctx->priv_data;
MpegEncContext *s = &r->s;
AVFrame *pict = data;
SliceInfo si;
int i;
int slice_count;
const uint8_t *slices_hdr = NULL;
int last = 0;
/* no supplementary picture */
if (buf_size == 0) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
*pict= *(AVFrame*)s->next_picture_ptr;
s->next_picture_ptr= NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
if(!avctx->slice_count){
slice_count = (*buf++) + 1;
slices_hdr = buf + 4;
buf += 8 * slice_count;
}else
slice_count = avctx->slice_count;
//parse first slice header to check whether this frame can be decoded
if(get_slice_offset(avctx, slices_hdr, 0) > buf_size){
av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
return -1;
}
init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), buf_size-get_slice_offset(avctx, slices_hdr, 0));
if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
return -1;
}
if((!s->last_picture_ptr || !s->last_picture_ptr->data[0]) && si.type == AV_PICTURE_TYPE_B)
return -1;
if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==AV_PICTURE_TYPE_B)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=AV_PICTURE_TYPE_I)
|| avctx->skip_frame >= AVDISCARD_ALL)
return buf_size;
for(i=0; i<slice_count; i++){
int offset= get_slice_offset(avctx, slices_hdr, i);
int size;
if(i+1 == slice_count)
size= buf_size - offset;
else
size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
if(offset > buf_size){
av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
break;
}
r->si.end = s->mb_width * s->mb_height;
if(i+1 < slice_count){
init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
if(i+2 < slice_count)
size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
else
size = buf_size - offset;
}else
r->si.end = si.start;
}
last = rv34_decode_slice(r, r->si.end, buf + offset, size);
s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
if(last)
break;
}
if(last){
if(r->loop_filter)
r->loop_filter(r, s->mb_height - 1);
ff_er_frame_end(s);
MPV_frame_end(s);
if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
*pict= *(AVFrame*)s->current_picture_ptr;
} else if (s->last_picture_ptr != NULL) {
*pict= *(AVFrame*)s->last_picture_ptr;
}
if(s->last_picture_ptr || s->low_delay){
*data_size = sizeof(AVFrame);
ff_print_debug_info(s, pict);
}
s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
}
return buf_size;
}
av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
{
RV34DecContext *r = avctx->priv_data;
MPV_common_end(&r->s);
av_freep(&r->intra_types_hist);
r->intra_types = NULL;
av_freep(&r->mb_type);
av_freep(&r->cbp_luma);
av_freep(&r->cbp_chroma);
av_freep(&r->deblock_coefs);
return 0;
}