mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-11-26 19:01:44 +02:00
0f4334df45
This commit adds the ability for a profile to set the default options, as well as for the user to override such options by simply stating them in the command line while still keeping the same profile, as long as those options are still permitted by the profile. Example: setting the profile to aac_low (the default) will turn PNS and IS on. They can be disabled by -aac_pns 0 and -aac_is 0, respectively. Turning on -aac_pred 1 will cause the profile to be elevated to aac_main, as long as no options forbidding aac_main have been entered (like AAC-LTP, which will be pushed soon). A useful feature is that by setting the profile to mpeg2_aac_low, all MPEG4 features will be disabled and if the user tries to enable them then the program will exit with an error. This profile is signalled with the same bitstream as aac_low (MPEG4) but some devices and decoders will fail if any MPEG4 features have been enabled.
704 lines
31 KiB
C
704 lines
31 KiB
C
/*
|
|
* AAC encoder twoloop coder
|
|
* Copyright (C) 2008-2009 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* AAC encoder twoloop coder
|
|
* @author Konstantin Shishkov, Claudio Freire
|
|
*/
|
|
|
|
/**
|
|
* This file contains a template for the twoloop coder function.
|
|
* It needs to be provided, externally, as an already included declaration,
|
|
* the following functions from aacenc_quantization/util.h. They're not included
|
|
* explicitly here to make it possible to provide alternative implementations:
|
|
* - quantize_band_cost
|
|
* - abs_pow34_v
|
|
* - find_max_val
|
|
* - find_min_book
|
|
* - find_form_factor
|
|
*/
|
|
|
|
#ifndef AVCODEC_AACCODER_TWOLOOP_H
|
|
#define AVCODEC_AACCODER_TWOLOOP_H
|
|
|
|
#include <float.h>
|
|
#include "libavutil/mathematics.h"
|
|
#include "mathops.h"
|
|
#include "avcodec.h"
|
|
#include "put_bits.h"
|
|
#include "aac.h"
|
|
#include "aacenc.h"
|
|
#include "aactab.h"
|
|
#include "aacenctab.h"
|
|
#include "aac_tablegen_decl.h"
|
|
|
|
/** Frequency in Hz for lower limit of noise substitution **/
|
|
#define NOISE_LOW_LIMIT 4000
|
|
|
|
#define sclip(x) av_clip(x,60,218)
|
|
|
|
/* Reflects the cost to change codebooks */
|
|
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
|
|
{
|
|
return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
|
|
}
|
|
|
|
/**
|
|
* two-loop quantizers search taken from ISO 13818-7 Appendix C
|
|
*/
|
|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
|
|
AACEncContext *s,
|
|
SingleChannelElement *sce,
|
|
const float lambda)
|
|
{
|
|
int start = 0, i, w, w2, g, recomprd;
|
|
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
|
|
/ ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
|
|
* (lambda / 120.f);
|
|
int refbits = destbits;
|
|
int toomanybits, toofewbits;
|
|
char nzs[128];
|
|
int maxsf[128];
|
|
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
|
|
float maxvals[128], spread_thr_r[128];
|
|
float min_spread_thr_r, max_spread_thr_r;
|
|
|
|
/**
|
|
* rdlambda controls the maximum tolerated distortion. Twoloop
|
|
* will keep iterating until it fails to lower it or it reaches
|
|
* ulimit * rdlambda. Keeping it low increases quality on difficult
|
|
* signals, but lower it too much, and bits will be taken from weak
|
|
* signals, creating "holes". A balance is necesary.
|
|
* rdmax and rdmin specify the relative deviation from rdlambda
|
|
* allowed for tonality compensation
|
|
*/
|
|
float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
|
|
const float nzslope = 1.5f;
|
|
float rdmin = 0.03125f;
|
|
float rdmax = 1.0f;
|
|
|
|
/**
|
|
* sfoffs controls an offset of optmium allocation that will be
|
|
* applied based on lambda. Keep it real and modest, the loop
|
|
* will take care of the rest, this just accelerates convergence
|
|
*/
|
|
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
|
|
|
|
int fflag, minscaler, maxscaler, nminscaler, minrdsf;
|
|
int its = 0;
|
|
int maxits = 30;
|
|
int allz = 0;
|
|
int tbits;
|
|
int cutoff = 1024;
|
|
int pns_start_pos;
|
|
int prev;
|
|
|
|
/**
|
|
* zeroscale controls a multiplier of the threshold, if band energy
|
|
* is below this, a zero is forced. Keep it lower than 1, unless
|
|
* low lambda is used, because energy < threshold doesn't mean there's
|
|
* no audible signal outright, it's just energy. Also make it rise
|
|
* slower than rdlambda, as rdscale has due compensation with
|
|
* noisy band depriorization below, whereas zeroing logic is rather dumb
|
|
*/
|
|
float zeroscale;
|
|
if (lambda > 120.f) {
|
|
zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
|
|
} else {
|
|
zeroscale = 1.f;
|
|
}
|
|
|
|
if (s->psy.bitres.alloc >= 0) {
|
|
/**
|
|
* Psy granted us extra bits to use, from the reservoire
|
|
* adjust for lambda except what psy already did
|
|
*/
|
|
destbits = s->psy.bitres.alloc
|
|
* (lambda / (avctx->global_quality ? avctx->global_quality : 120));
|
|
}
|
|
|
|
if (avctx->flags & CODEC_FLAG_QSCALE) {
|
|
/**
|
|
* Constant Q-scale doesn't compensate MS coding on its own
|
|
* No need to be overly precise, this only controls RD
|
|
* adjustment CB limits when going overboard
|
|
*/
|
|
if (s->options.mid_side && s->cur_type == TYPE_CPE)
|
|
destbits *= 2;
|
|
|
|
/**
|
|
* When using a constant Q-scale, don't adjust bits, just use RD
|
|
* Don't let it go overboard, though... 8x psy target is enough
|
|
*/
|
|
toomanybits = 5800;
|
|
toofewbits = destbits / 16;
|
|
|
|
/** Don't offset scalers, just RD */
|
|
sfoffs = sce->ics.num_windows - 1;
|
|
rdlambda = sqrtf(rdlambda);
|
|
|
|
/** search further */
|
|
maxits *= 2;
|
|
} else {
|
|
/** When using ABR, be strict */
|
|
toomanybits = destbits + destbits/16;
|
|
toofewbits = destbits - destbits/4;
|
|
|
|
sfoffs = 0;
|
|
rdlambda = sqrtf(rdlambda);
|
|
}
|
|
|
|
/** and zero out above cutoff frequency */
|
|
{
|
|
int wlen = 1024 / sce->ics.num_windows;
|
|
int bandwidth;
|
|
|
|
/**
|
|
* Scale, psy gives us constant quality, this LP only scales
|
|
* bitrate by lambda, so we save bits on subjectively unimportant HF
|
|
* rather than increase quantization noise. Adjust nominal bitrate
|
|
* to effective bitrate according to encoding parameters,
|
|
* AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
|
|
*/
|
|
float rate_bandwidth_multiplier = 1.5f;
|
|
int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
|
|
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
|
|
: (avctx->bit_rate / avctx->channels);
|
|
|
|
/** Compensate for extensions that increase efficiency */
|
|
if (s->options.pns || s->options.intensity_stereo)
|
|
frame_bit_rate *= 1.15f;
|
|
|
|
if (avctx->cutoff > 0) {
|
|
bandwidth = avctx->cutoff;
|
|
} else {
|
|
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
|
|
}
|
|
|
|
cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
|
|
pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
|
|
}
|
|
|
|
/**
|
|
* for values above this the decoder might end up in an endless loop
|
|
* due to always having more bits than what can be encoded.
|
|
*/
|
|
destbits = FFMIN(destbits, 5800);
|
|
toomanybits = FFMIN(toomanybits, 5800);
|
|
toofewbits = FFMIN(toofewbits, 5800);
|
|
/**
|
|
* XXX: some heuristic to determine initial quantizers will reduce search time
|
|
* determine zero bands and upper distortion limits
|
|
*/
|
|
min_spread_thr_r = -1;
|
|
max_spread_thr_r = -1;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
|
|
int nz = 0;
|
|
float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
|
|
sce->zeroes[(w+w2)*16+g] = 1;
|
|
continue;
|
|
}
|
|
nz = 1;
|
|
}
|
|
if (!nz) {
|
|
uplim = 0.0f;
|
|
} else {
|
|
nz = 0;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
|
|
if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
|
|
continue;
|
|
uplim += band->threshold;
|
|
energy += band->energy;
|
|
spread += band->spread;
|
|
nz++;
|
|
}
|
|
}
|
|
uplims[w*16+g] = uplim;
|
|
energies[w*16+g] = energy;
|
|
nzs[w*16+g] = nz;
|
|
sce->zeroes[w*16+g] = !nz;
|
|
allz |= nz;
|
|
if (nz) {
|
|
spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
|
|
if (min_spread_thr_r < 0) {
|
|
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
|
|
} else {
|
|
min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
|
|
max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Compute initial scalers */
|
|
minscaler = 65535;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (sce->zeroes[w*16+g]) {
|
|
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
|
|
continue;
|
|
}
|
|
/**
|
|
* log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
|
|
* But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
|
|
* so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
|
|
* more robust.
|
|
*/
|
|
sce->sf_idx[w*16+g] = av_clip(
|
|
SCALE_ONE_POS
|
|
+ 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
|
|
+ sfoffs,
|
|
60, SCALE_MAX_POS);
|
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
|
|
/** Clip */
|
|
minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
|
|
for (g = 0; g < sce->ics.num_swb; g++)
|
|
if (!sce->zeroes[w*16+g])
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
|
|
|
|
if (!allz)
|
|
return;
|
|
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
|
|
ff_quantize_band_cost_cache_init(s);
|
|
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *scaled = s->scoefs + start;
|
|
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Scale uplims to match rate distortion to quality
|
|
* bu applying noisy band depriorization and tonal band priorization.
|
|
* Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
|
|
* If maxval^2 ~ energy, then that band is mostly noise, and we can relax
|
|
* rate distortion requirements.
|
|
*/
|
|
memcpy(euplims, uplims, sizeof(euplims));
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
/** psy already priorizes transients to some extent */
|
|
float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (nzs[g] > 0) {
|
|
float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
|
|
float energy2uplim = find_form_factor(
|
|
sce->ics.group_len[w], sce->ics.swb_sizes[g],
|
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
|
|
sce->coeffs + start,
|
|
nzslope * cleanup_factor);
|
|
energy2uplim *= de_psy_factor;
|
|
if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
|
|
/** In ABR, we need to priorize less and let rate control do its thing */
|
|
energy2uplim = sqrtf(energy2uplim);
|
|
}
|
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
|
|
uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
|
|
* sce->ics.group_len[w];
|
|
|
|
energy2uplim = find_form_factor(
|
|
sce->ics.group_len[w], sce->ics.swb_sizes[g],
|
|
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
|
|
sce->coeffs + start,
|
|
2.0f);
|
|
energy2uplim *= de_psy_factor;
|
|
if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
|
|
/** In ABR, we need to priorize less and let rate control do its thing */
|
|
energy2uplim = sqrtf(energy2uplim);
|
|
}
|
|
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
|
|
euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
|
|
0.5f, 1.0f);
|
|
}
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
|
|
maxsf[i] = SCALE_MAX_POS;
|
|
|
|
//perform two-loop search
|
|
//outer loop - improve quality
|
|
do {
|
|
//inner loop - quantize spectrum to fit into given number of bits
|
|
int overdist;
|
|
int qstep = its ? 1 : 32;
|
|
do {
|
|
int changed = 0;
|
|
prev = -1;
|
|
recomprd = 0;
|
|
tbits = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = &sce->coeffs[start];
|
|
const float *scaled = &s->scoefs[start];
|
|
int bits = 0;
|
|
int cb;
|
|
float dist = 0.0f;
|
|
float qenergy = 0.0f;
|
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
|
start += sce->ics.swb_sizes[g];
|
|
if (sce->can_pns[w*16+g]) {
|
|
/** PNS isn't free */
|
|
tbits += ff_pns_bits(sce, w, g);
|
|
}
|
|
continue;
|
|
}
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
float sqenergy;
|
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g],
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b, &sqenergy,
|
|
0);
|
|
bits += b;
|
|
qenergy += sqenergy;
|
|
}
|
|
dists[w*16+g] = dist - bits;
|
|
qenergies[w*16+g] = qenergy;
|
|
if (prev != -1) {
|
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
|
|
bits += ff_aac_scalefactor_bits[sfdiff];
|
|
}
|
|
tbits += bits;
|
|
start += sce->ics.swb_sizes[g];
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
if (tbits > toomanybits) {
|
|
recomprd = 1;
|
|
for (i = 0; i < 128; i++) {
|
|
if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
|
|
int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
|
|
int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
|
|
if (new_sf != sce->sf_idx[i]) {
|
|
sce->sf_idx[i] = new_sf;
|
|
changed = 1;
|
|
}
|
|
}
|
|
}
|
|
} else if (tbits < toofewbits) {
|
|
recomprd = 1;
|
|
for (i = 0; i < 128; i++) {
|
|
if (sce->sf_idx[i] > SCALE_ONE_POS) {
|
|
int new_sf = FFMAX(SCALE_ONE_POS, sce->sf_idx[i] - qstep);
|
|
if (new_sf != sce->sf_idx[i]) {
|
|
sce->sf_idx[i] = new_sf;
|
|
changed = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
qstep >>= 1;
|
|
if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
|
|
qstep = 1;
|
|
} while (qstep);
|
|
|
|
overdist = 1;
|
|
for (i = 0; i < 2 && (overdist || recomprd); ++i) {
|
|
if (recomprd) {
|
|
/** Must recompute distortion */
|
|
prev = -1;
|
|
tbits = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
start = w*128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
int bits = 0;
|
|
int cb;
|
|
float dist = 0.0f;
|
|
float qenergy = 0.0f;
|
|
|
|
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
|
|
start += sce->ics.swb_sizes[g];
|
|
if (sce->can_pns[w*16+g]) {
|
|
/** PNS isn't free */
|
|
tbits += ff_pns_bits(sce, w, g);
|
|
}
|
|
continue;
|
|
}
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
float sqenergy;
|
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g],
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b, &sqenergy,
|
|
0);
|
|
bits += b;
|
|
qenergy += sqenergy;
|
|
}
|
|
dists[w*16+g] = dist - bits;
|
|
qenergies[w*16+g] = qenergy;
|
|
if (prev != -1) {
|
|
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
|
|
bits += ff_aac_scalefactor_bits[sfdiff];
|
|
}
|
|
tbits += bits;
|
|
start += sce->ics.swb_sizes[g];
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
}
|
|
if (!i && s->options.pns && its > maxits/2) {
|
|
float maxoverdist = 0.0f;
|
|
overdist = recomprd = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
float ovrfactor = 2.f+(maxits-its)*16.f/maxits;
|
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
|
|
if (!sce->zeroes[w*16+g] && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
|
|
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
|
|
maxoverdist = FFMAX(maxoverdist, ovrdist);
|
|
overdist++;
|
|
}
|
|
}
|
|
}
|
|
if (overdist) {
|
|
/* We have overdistorted bands, trade for zeroes (that can be noise)
|
|
* Zero the bands in the lowest 1.25% spread-energy-threshold ranking
|
|
*/
|
|
float minspread = max_spread_thr_r;
|
|
float maxspread = min_spread_thr_r;
|
|
float zspread;
|
|
int zeroable = 0;
|
|
int zeroed = 0;
|
|
int maxzeroed;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
|
|
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
|
|
minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
|
|
maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
|
|
zeroable++;
|
|
}
|
|
}
|
|
}
|
|
zspread = (maxspread-minspread) * 0.0125f + minspread;
|
|
zspread = FFMIN(maxoverdist, zspread);
|
|
maxzeroed = zeroable * its / (2 * maxits);
|
|
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
|
|
if (sce->ics.swb_offset[g] < pns_start_pos)
|
|
continue;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
sce->band_type[w*16+g] = 0;
|
|
zeroed++;
|
|
}
|
|
}
|
|
}
|
|
if (zeroed)
|
|
recomprd = 1;
|
|
} else {
|
|
overdist = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
minscaler = SCALE_MAX_POS;
|
|
maxscaler = 0;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
if (!sce->zeroes[w*16+g]) {
|
|
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
|
|
maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
}
|
|
|
|
fflag = 0;
|
|
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
|
|
minrdsf = FFMAX3(60, minscaler - 1, maxscaler - SCALE_MAX_DIFF - 1);
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
/** Start with big steps, end up fine-tunning */
|
|
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
|
|
int edepth = depth+2;
|
|
float uplmax = its / (maxits*0.25f) + 1.0f;
|
|
uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
|
|
start = w * 128;
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
int prevsc = sce->sf_idx[w*16+g];
|
|
int minrdsfboost = (sce->ics.num_windows > 1) ? av_clip(g-4, -2, 0) : av_clip(g-16, -4, 0);
|
|
if (!sce->zeroes[w*16+g]) {
|
|
const float *coefs = sce->coeffs + start;
|
|
const float *scaled = s->scoefs + start;
|
|
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > minrdsf) {
|
|
/* Try to make sure there is some energy in every nonzero band
|
|
* NOTE: This algorithm must be forcibly imbalanced, pushing harder
|
|
* on holes or more distorted bands at first, otherwise there's
|
|
* no net gain (since the next iteration will offset all bands
|
|
* on the opposite direction to compensate for extra bits)
|
|
*/
|
|
for (i = 0; i < edepth; ++i) {
|
|
int cb, bits;
|
|
float dist, qenergy;
|
|
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
dist = qenergy = 0.f;
|
|
bits = 0;
|
|
if (!cb) {
|
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
|
|
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
|
|
break;
|
|
}
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
float sqenergy;
|
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g]-1,
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b, &sqenergy,
|
|
0);
|
|
bits += b;
|
|
qenergy += sqenergy;
|
|
}
|
|
sce->sf_idx[w*16+g]--;
|
|
dists[w*16+g] = dist - bits;
|
|
qenergies[w*16+g] = qenergy;
|
|
if (mb && (sce->sf_idx[w*16+g] < (minrdsf+minrdsfboost) || (
|
|
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
|
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
|
|
) )) {
|
|
break;
|
|
}
|
|
}
|
|
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < maxscaler
|
|
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
|
|
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
|
|
) {
|
|
/** Um... over target. Save bits for more important stuff. */
|
|
for (i = 0; i < depth; ++i) {
|
|
int cb, bits;
|
|
float dist, qenergy;
|
|
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
|
|
if (cb > 0) {
|
|
dist = qenergy = 0.f;
|
|
bits = 0;
|
|
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
|
|
int b;
|
|
float sqenergy;
|
|
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
|
|
scaled + w2*128,
|
|
sce->ics.swb_sizes[g],
|
|
sce->sf_idx[w*16+g]+1,
|
|
cb,
|
|
1.0f,
|
|
INFINITY,
|
|
&b, &sqenergy,
|
|
0);
|
|
bits += b;
|
|
qenergy += sqenergy;
|
|
}
|
|
dist -= bits;
|
|
if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
|
|
sce->sf_idx[w*16+g]++;
|
|
dists[w*16+g] = dist;
|
|
qenergies[w*16+g] = qenergy;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minrdsf, minscaler + SCALE_MAX_DIFF);
|
|
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], SCALE_MAX_POS - SCALE_DIV_512);
|
|
if (sce->sf_idx[w*16+g] != prevsc)
|
|
fflag = 1;
|
|
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
start += sce->ics.swb_sizes[g];
|
|
}
|
|
}
|
|
if (nminscaler < minscaler || sce->ics.num_windows > 1) {
|
|
/** SF difference limit violation risk. Must re-clamp. */
|
|
minscaler = nminscaler;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
for (g = 0; g < sce->ics.num_swb; g++) {
|
|
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
}
|
|
}
|
|
}
|
|
its++;
|
|
} while (fflag && its < maxits);
|
|
|
|
prev = -1;
|
|
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
|
|
/** Make sure proper codebooks are set */
|
|
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
|
|
if (!sce->zeroes[w*16+g]) {
|
|
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
|
|
if (sce->band_type[w*16+g] <= 0) {
|
|
sce->zeroes[w*16+g] = 1;
|
|
sce->band_type[w*16+g] = 0;
|
|
}
|
|
} else {
|
|
sce->band_type[w*16+g] = 0;
|
|
}
|
|
/** Check that there's no SF delta range violations */
|
|
if (!sce->zeroes[w*16+g]) {
|
|
if (prev != -1) {
|
|
int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
|
|
av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
|
|
}
|
|
prev = sce->sf_idx[w*16+g];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* AVCODEC_AACCODER_TWOLOOP_H */
|