1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/truemotion2.c
Michael Niedermayer 1729101c44 avcodec/truemotion2: Move skip computation after checks
Fixes: runtime error: signed integer overflow: 630067357 * 4 cannot be represented in type 'int'
Fixes: 2233/clusterfuzz-testcase-minimized-5943031318446080

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
(cherry picked from commit 3c716682a8)
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2017-07-19 15:26:37 +02:00

1037 lines
30 KiB
C

/*
* Duck/ON2 TrueMotion 2 Decoder
* Copyright (c) 2005 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Duck TrueMotion2 decoder.
*/
#include <inttypes.h>
#include "avcodec.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#define TM2_ESCAPE 0x80000000
#define TM2_DELTAS 64
/* Huffman-coded streams of different types of blocks */
enum TM2_STREAMS {
TM2_C_HI = 0,
TM2_C_LO,
TM2_L_HI,
TM2_L_LO,
TM2_UPD,
TM2_MOT,
TM2_TYPE,
TM2_NUM_STREAMS
};
/* Block types */
enum TM2_BLOCKS {
TM2_HI_RES = 0,
TM2_MED_RES,
TM2_LOW_RES,
TM2_NULL_RES,
TM2_UPDATE,
TM2_STILL,
TM2_MOTION
};
typedef struct TM2Context {
AVCodecContext *avctx;
AVFrame *pic;
GetBitContext gb;
BswapDSPContext bdsp;
uint8_t *buffer;
int buffer_size;
/* TM2 streams */
int *tokens[TM2_NUM_STREAMS];
int tok_lens[TM2_NUM_STREAMS];
int tok_ptrs[TM2_NUM_STREAMS];
int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
/* for blocks decoding */
int D[4];
int CD[4];
int *last;
int *clast;
/* data for current and previous frame */
int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
int *Y1, *U1, *V1, *Y2, *U2, *V2;
int y_stride, uv_stride;
int cur;
} TM2Context;
/**
* Huffman codes for each of streams
*/
typedef struct TM2Codes {
VLC vlc; ///< table for FFmpeg bitstream reader
int bits;
int *recode; ///< table for converting from code indexes to values
int length;
} TM2Codes;
/**
* structure for gathering Huffman codes information
*/
typedef struct TM2Huff {
int val_bits; ///< length of literal
int max_bits; ///< maximum length of code
int min_bits; ///< minimum length of code
int nodes; ///< total number of nodes in tree
int num; ///< current number filled
int max_num; ///< total number of codes
int *nums; ///< literals
uint32_t *bits; ///< codes
int *lens; ///< codelengths
} TM2Huff;
static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
{
int ret;
if (length > huff->max_bits) {
av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n",
huff->max_bits);
return AVERROR_INVALIDDATA;
}
if (!get_bits1(&ctx->gb)) { /* literal */
if (length == 0) {
length = 1;
}
if (huff->num >= huff->max_num) {
av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
return AVERROR_INVALIDDATA;
}
huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
huff->bits[huff->num] = prefix;
huff->lens[huff->num] = length;
huff->num++;
return 0;
} else { /* non-terminal node */
if ((ret = tm2_read_tree(ctx, prefix << 1, length + 1, huff)) < 0)
return ret;
if ((ret = tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff)) < 0)
return ret;
}
return 0;
}
static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
{
TM2Huff huff;
int res = 0;
huff.val_bits = get_bits(&ctx->gb, 5);
huff.max_bits = get_bits(&ctx->gb, 5);
huff.min_bits = get_bits(&ctx->gb, 5);
huff.nodes = get_bits_long(&ctx->gb, 17);
huff.num = 0;
/* check for correct codes parameters */
if ((huff.val_bits < 1) || (huff.val_bits > 32) ||
(huff.max_bits < 0) || (huff.max_bits > 25)) {
av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal "
"length: %i, max code length: %i\n", huff.val_bits, huff.max_bits);
return AVERROR_INVALIDDATA;
}
if ((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree "
"nodes: %i\n", huff.nodes);
return AVERROR_INVALIDDATA;
}
/* one-node tree */
if (huff.max_bits == 0)
huff.max_bits = 1;
/* allocate space for codes - it is exactly ceil(nodes / 2) entries */
huff.max_num = (huff.nodes + 1) >> 1;
huff.nums = av_calloc(huff.max_num, sizeof(int));
huff.bits = av_calloc(huff.max_num, sizeof(uint32_t));
huff.lens = av_calloc(huff.max_num, sizeof(int));
if (!huff.nums || !huff.bits || !huff.lens) {
res = AVERROR(ENOMEM);
goto out;
}
res = tm2_read_tree(ctx, 0, 0, &huff);
if (huff.num != huff.max_num) {
av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
huff.num, huff.max_num);
res = AVERROR_INVALIDDATA;
}
/* convert codes to vlc_table */
if (res >= 0) {
int i;
res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
huff.lens, sizeof(int), sizeof(int),
huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
if (res < 0)
av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
else {
code->bits = huff.max_bits;
code->length = huff.max_num;
code->recode = av_malloc_array(code->length, sizeof(int));
if (!code->recode) {
res = AVERROR(ENOMEM);
goto out;
}
for (i = 0; i < code->length; i++)
code->recode[i] = huff.nums[i];
}
}
out:
/* free allocated memory */
av_free(huff.nums);
av_free(huff.bits);
av_free(huff.lens);
return res;
}
static void tm2_free_codes(TM2Codes *code)
{
av_free(code->recode);
if (code->vlc.table)
ff_free_vlc(&code->vlc);
}
static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
{
int val;
val = get_vlc2(gb, code->vlc.table, code->bits, 1);
if(val<0)
return -1;
return code->recode[val];
}
#define TM2_OLD_HEADER_MAGIC 0x00000100
#define TM2_NEW_HEADER_MAGIC 0x00000101
static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
{
uint32_t magic = AV_RL32(buf);
switch (magic) {
case TM2_OLD_HEADER_MAGIC:
avpriv_request_sample(ctx->avctx, "Old TM2 header");
return 0;
case TM2_NEW_HEADER_MAGIC:
return 0;
default:
av_log(ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08"PRIX32"\n",
magic);
return AVERROR_INVALIDDATA;
}
}
static int tm2_read_deltas(TM2Context *ctx, int stream_id)
{
int d, mb;
int i, v;
d = get_bits(&ctx->gb, 9);
mb = get_bits(&ctx->gb, 5);
av_assert2(mb < 32);
if ((d < 1) || (d > TM2_DELTAS) || (mb < 1)) {
av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
return AVERROR_INVALIDDATA;
}
for (i = 0; i < d; i++) {
v = get_bits_long(&ctx->gb, mb);
if (v & (1 << (mb - 1)))
ctx->deltas[stream_id][i] = v - (1U << mb);
else
ctx->deltas[stream_id][i] = v;
}
for (; i < TM2_DELTAS; i++)
ctx->deltas[stream_id][i] = 0;
return 0;
}
static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
{
int i, ret;
int skip = 0;
int len, toks, pos;
TM2Codes codes;
GetByteContext gb;
if (buf_size < 4) {
av_log(ctx->avctx, AV_LOG_ERROR, "not enough space for len left\n");
return AVERROR_INVALIDDATA;
}
/* get stream length in dwords */
bytestream2_init(&gb, buf, buf_size);
len = bytestream2_get_be32(&gb);
if (len == 0)
return 4;
if (len >= INT_MAX / 4 - 1 || len < 0 || len * 4 + 4 > buf_size) {
av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
return AVERROR_INVALIDDATA;
}
skip = len * 4 + 4;
toks = bytestream2_get_be32(&gb);
if (toks & 1) {
len = bytestream2_get_be32(&gb);
if (len == TM2_ESCAPE) {
len = bytestream2_get_be32(&gb);
}
if (len > 0) {
pos = bytestream2_tell(&gb);
if (skip <= pos)
return AVERROR_INVALIDDATA;
init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
if ((ret = tm2_read_deltas(ctx, stream_id)) < 0)
return ret;
bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
}
}
/* skip unused fields */
len = bytestream2_get_be32(&gb);
if (len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
bytestream2_skip(&gb, 8); /* unused by decoder */
} else {
bytestream2_skip(&gb, 4); /* unused by decoder */
}
pos = bytestream2_tell(&gb);
if (skip <= pos)
return AVERROR_INVALIDDATA;
init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
if ((ret = tm2_build_huff_table(ctx, &codes)) < 0)
return ret;
bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
toks >>= 1;
/* check if we have sane number of tokens */
if ((toks < 0) || (toks > 0xFFFFFF)) {
av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
ret = AVERROR_INVALIDDATA;
goto end;
}
ret = av_reallocp_array(&ctx->tokens[stream_id], toks, sizeof(int));
if (ret < 0) {
ctx->tok_lens[stream_id] = 0;
goto end;
}
ctx->tok_lens[stream_id] = toks;
len = bytestream2_get_be32(&gb);
if (len > 0) {
pos = bytestream2_tell(&gb);
if (skip <= pos) {
ret = AVERROR_INVALIDDATA;
goto end;
}
init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
for (i = 0; i < toks; i++) {
if (get_bits_left(&ctx->gb) <= 0) {
av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
ret = AVERROR_INVALIDDATA;
goto end;
}
ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS || ctx->tokens[stream_id][i]<0) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
ctx->tokens[stream_id][i], stream_id, i);
ret = AVERROR_INVALIDDATA;
goto end;
}
}
} else {
for (i = 0; i < toks; i++) {
ctx->tokens[stream_id][i] = codes.recode[0];
if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
ctx->tokens[stream_id][i], stream_id, i);
ret = AVERROR_INVALIDDATA;
goto end;
}
}
}
ret = skip;
end:
tm2_free_codes(&codes);
return ret;
}
static inline int GET_TOK(TM2Context *ctx,int type)
{
if (ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
return 0;
}
if (type <= TM2_MOT) {
if (ctx->tokens[type][ctx->tok_ptrs[type]] >= TM2_DELTAS) {
av_log(ctx->avctx, AV_LOG_ERROR, "token %d is too large\n", ctx->tokens[type][ctx->tok_ptrs[type]]);
return 0;
}
return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
}
return ctx->tokens[type][ctx->tok_ptrs[type]++];
}
/* blocks decoding routines */
/* common Y, U, V pointers initialisation */
#define TM2_INIT_POINTERS() \
int *last, *clast; \
int *Y, *U, *V;\
int Ystride, Ustride, Vstride;\
\
Ystride = ctx->y_stride;\
Vstride = ctx->uv_stride;\
Ustride = ctx->uv_stride;\
Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
last = ctx->last + bx * 4;\
clast = ctx->clast + bx * 4;
#define TM2_INIT_POINTERS_2() \
int *Yo, *Uo, *Vo;\
int oYstride, oUstride, oVstride;\
\
TM2_INIT_POINTERS();\
oYstride = Ystride;\
oVstride = Vstride;\
oUstride = Ustride;\
Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
/* recalculate last and delta values for next blocks */
#define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
CD[0] = CHR[1] - last[1];\
CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
last[0] = (int)CHR[stride + 0];\
last[1] = (int)CHR[stride + 1];}
/* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
{
int ct, d;
int i, j;
for (j = 0; j < 4; j++){
ct = ctx->D[j];
for (i = 0; i < 4; i++){
d = deltas[i + j * 4];
ct += d;
last[i] += ct;
Y[i] = av_clip_uint8(last[i]);
}
Y += stride;
ctx->D[j] = ct;
}
}
static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
{
int i, j;
for (j = 0; j < 2; j++) {
for (i = 0; i < 2; i++) {
CD[j] += deltas[i + j * 2];
last[i] += CD[j];
data[i] = last[i];
}
data += stride;
}
}
static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
{
int t;
int l;
int prev;
if (bx > 0)
prev = clast[-3];
else
prev = 0;
t = (CD[0] + CD[1]) >> 1;
l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
CD[1] = CD[0] + CD[1] - t;
CD[0] = t;
clast[0] = l;
tm2_high_chroma(data, stride, clast, CD, deltas);
}
static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i;
int deltas[16];
TM2_INIT_POINTERS();
/* hi-res chroma */
for (i = 0; i < 4; i++) {
deltas[i] = GET_TOK(ctx, TM2_C_HI);
deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
}
tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
/* hi-res luma */
for (i = 0; i < 16; i++)
deltas[i] = GET_TOK(ctx, TM2_L_HI);
tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
}
static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i;
int deltas[16];
TM2_INIT_POINTERS();
/* low-res chroma */
deltas[0] = GET_TOK(ctx, TM2_C_LO);
deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
deltas[0] = GET_TOK(ctx, TM2_C_LO);
deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
/* hi-res luma */
for (i = 0; i < 16; i++)
deltas[i] = GET_TOK(ctx, TM2_L_HI);
tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
}
static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i;
int t1, t2;
int deltas[16];
TM2_INIT_POINTERS();
/* low-res chroma */
deltas[0] = GET_TOK(ctx, TM2_C_LO);
deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
deltas[0] = GET_TOK(ctx, TM2_C_LO);
deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
/* low-res luma */
for (i = 0; i < 16; i++)
deltas[i] = 0;
deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
deltas[10] = GET_TOK(ctx, TM2_L_LO);
if (bx > 0)
last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
else
last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
last[2] = (last[1] + last[3]) >> 1;
t1 = ctx->D[0] + ctx->D[1];
ctx->D[0] = t1 >> 1;
ctx->D[1] = t1 - (t1 >> 1);
t2 = ctx->D[2] + ctx->D[3];
ctx->D[2] = t2 >> 1;
ctx->D[3] = t2 - (t2 >> 1);
tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
}
static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i;
int ct;
int left, right, diff;
int deltas[16];
TM2_INIT_POINTERS();
/* null chroma */
deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
/* null luma */
for (i = 0; i < 16; i++)
deltas[i] = 0;
ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
if (bx > 0)
left = last[-1] - ct;
else
left = 0;
right = last[3];
diff = right - left;
last[0] = left + (diff >> 2);
last[1] = left + (diff >> 1);
last[2] = right - (diff >> 2);
last[3] = right;
{
int tp = left;
ctx->D[0] = (tp + (ct >> 2)) - left;
left += ctx->D[0];
ctx->D[1] = (tp + (ct >> 1)) - left;
left += ctx->D[1];
ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
left += ctx->D[2];
ctx->D[3] = (tp + ct) - left;
}
tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
}
static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i, j;
TM2_INIT_POINTERS_2();
/* update chroma */
for (j = 0; j < 2; j++) {
for (i = 0; i < 2; i++){
U[i] = Uo[i];
V[i] = Vo[i];
}
U += Ustride; V += Vstride;
Uo += oUstride; Vo += oVstride;
}
U -= Ustride * 2;
V -= Vstride * 2;
TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
/* update deltas */
ctx->D[0] = Yo[3] - last[3];
ctx->D[1] = Yo[3 + oYstride] - Yo[3];
ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
for (j = 0; j < 4; j++) {
for (i = 0; i < 4; i++) {
Y[i] = Yo[i];
last[i] = Yo[i];
}
Y += Ystride;
Yo += oYstride;
}
}
static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i, j;
int d;
TM2_INIT_POINTERS_2();
/* update chroma */
for (j = 0; j < 2; j++) {
for (i = 0; i < 2; i++) {
U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
}
U += Ustride;
V += Vstride;
Uo += oUstride;
Vo += oVstride;
}
U -= Ustride * 2;
V -= Vstride * 2;
TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
/* update deltas */
ctx->D[0] = Yo[3] - last[3];
ctx->D[1] = Yo[3 + oYstride] - Yo[3];
ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
for (j = 0; j < 4; j++) {
d = last[3];
for (i = 0; i < 4; i++) {
Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
last[i] = Y[i];
}
ctx->D[j] = last[3] - d;
Y += Ystride;
Yo += oYstride;
}
}
static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
{
int i, j;
int mx, my;
TM2_INIT_POINTERS_2();
mx = GET_TOK(ctx, TM2_MOT);
my = GET_TOK(ctx, TM2_MOT);
mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
if (4*bx+mx<0 || 4*by+my<0 || 4*bx+mx+4 > ctx->avctx->width || 4*by+my+4 > ctx->avctx->height) {
av_log(ctx->avctx, AV_LOG_ERROR, "MV out of picture\n");
return;
}
Yo += my * oYstride + mx;
Uo += (my >> 1) * oUstride + (mx >> 1);
Vo += (my >> 1) * oVstride + (mx >> 1);
/* copy chroma */
for (j = 0; j < 2; j++) {
for (i = 0; i < 2; i++) {
U[i] = Uo[i];
V[i] = Vo[i];
}
U += Ustride;
V += Vstride;
Uo += oUstride;
Vo += oVstride;
}
U -= Ustride * 2;
V -= Vstride * 2;
TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
/* copy luma */
for (j = 0; j < 4; j++) {
for (i = 0; i < 4; i++) {
Y[i] = Yo[i];
}
Y += Ystride;
Yo += oYstride;
}
/* calculate deltas */
Y -= Ystride * 4;
ctx->D[0] = Y[3] - last[3];
ctx->D[1] = Y[3 + Ystride] - Y[3];
ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
for (i = 0; i < 4; i++)
last[i] = Y[i + Ystride * 3];
}
static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
{
int i, j;
int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
int type;
int keyframe = 1;
int *Y, *U, *V;
uint8_t *dst;
for (i = 0; i < TM2_NUM_STREAMS; i++)
ctx->tok_ptrs[i] = 0;
if (ctx->tok_lens[TM2_TYPE]<bw*bh) {
av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
return AVERROR_INVALIDDATA;
}
memset(ctx->last, 0, 4 * bw * sizeof(int));
memset(ctx->clast, 0, 4 * bw * sizeof(int));
for (j = 0; j < bh; j++) {
memset(ctx->D, 0, 4 * sizeof(int));
memset(ctx->CD, 0, 4 * sizeof(int));
for (i = 0; i < bw; i++) {
type = GET_TOK(ctx, TM2_TYPE);
switch(type) {
case TM2_HI_RES:
tm2_hi_res_block(ctx, p, i, j);
break;
case TM2_MED_RES:
tm2_med_res_block(ctx, p, i, j);
break;
case TM2_LOW_RES:
tm2_low_res_block(ctx, p, i, j);
break;
case TM2_NULL_RES:
tm2_null_res_block(ctx, p, i, j);
break;
case TM2_UPDATE:
tm2_update_block(ctx, p, i, j);
keyframe = 0;
break;
case TM2_STILL:
tm2_still_block(ctx, p, i, j);
keyframe = 0;
break;
case TM2_MOTION:
tm2_motion_block(ctx, p, i, j);
keyframe = 0;
break;
default:
av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
}
}
}
/* copy data from our buffer to AVFrame */
Y = (ctx->cur?ctx->Y2:ctx->Y1);
U = (ctx->cur?ctx->U2:ctx->U1);
V = (ctx->cur?ctx->V2:ctx->V1);
dst = p->data[0];
for (j = 0; j < h; j++) {
for (i = 0; i < w; i++) {
int y = Y[i], u = U[i >> 1], v = V[i >> 1];
dst[3*i+0] = av_clip_uint8(y + v);
dst[3*i+1] = av_clip_uint8(y);
dst[3*i+2] = av_clip_uint8(y + u);
}
/* horizontal edge extension */
Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
/* vertical edge extension */
if (j == 0) {
memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
} else if (j == h - 1) {
memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
}
Y += ctx->y_stride;
if (j & 1) {
/* horizontal edge extension */
U[-2] = U[-1] = U[0];
V[-2] = V[-1] = V[0];
U[cw + 1] = U[cw] = U[cw - 1];
V[cw + 1] = V[cw] = V[cw - 1];
/* vertical edge extension */
if (j == 1) {
memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
} else if (j == h - 1) {
memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
}
U += ctx->uv_stride;
V += ctx->uv_stride;
}
dst += p->linesize[0];
}
return keyframe;
}
static const int tm2_stream_order[TM2_NUM_STREAMS] = {
TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
};
#define TM2_HEADER_SIZE 40
static int decode_frame(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
TM2Context * const l = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size & ~3;
AVFrame * const p = l->pic;
int offset = TM2_HEADER_SIZE;
int i, t, ret;
av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
if (!l->buffer) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
return AVERROR(ENOMEM);
}
if ((ret = ff_reget_buffer(avctx, p)) < 0)
return ret;
l->bdsp.bswap_buf((uint32_t *) l->buffer, (const uint32_t *) buf,
buf_size >> 2);
if ((ret = tm2_read_header(l, l->buffer)) < 0) {
return ret;
}
for (i = 0; i < TM2_NUM_STREAMS; i++) {
if (offset >= buf_size) {
av_log(avctx, AV_LOG_ERROR, "no space for tm2_read_stream\n");
return AVERROR_INVALIDDATA;
}
t = tm2_read_stream(l, l->buffer + offset, tm2_stream_order[i],
buf_size - offset);
if (t < 0) {
int j = tm2_stream_order[i];
if (l->tok_lens[j])
memset(l->tokens[j], 0, sizeof(**l->tokens) * l->tok_lens[j]);
return t;
}
offset += t;
}
p->key_frame = tm2_decode_blocks(l, p);
if (p->key_frame)
p->pict_type = AV_PICTURE_TYPE_I;
else
p->pict_type = AV_PICTURE_TYPE_P;
l->cur = !l->cur;
*got_frame = 1;
ret = av_frame_ref(data, l->pic);
return (ret < 0) ? ret : buf_size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
TM2Context * const l = avctx->priv_data;
int i, w = avctx->width, h = avctx->height;
if ((avctx->width & 3) || (avctx->height & 3)) {
av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
return AVERROR(EINVAL);
}
l->avctx = avctx;
avctx->pix_fmt = AV_PIX_FMT_BGR24;
l->pic = av_frame_alloc();
if (!l->pic)
return AVERROR(ENOMEM);
ff_bswapdsp_init(&l->bdsp);
l->last = av_malloc_array(w >> 2, 4 * sizeof(*l->last) );
l->clast = av_malloc_array(w >> 2, 4 * sizeof(*l->clast));
for (i = 0; i < TM2_NUM_STREAMS; i++) {
l->tokens[i] = NULL;
l->tok_lens[i] = 0;
}
w += 8;
h += 8;
l->Y1_base = av_calloc(w * h, sizeof(*l->Y1_base));
l->Y2_base = av_calloc(w * h, sizeof(*l->Y2_base));
l->y_stride = w;
w = (w + 1) >> 1;
h = (h + 1) >> 1;
l->U1_base = av_calloc(w * h, sizeof(*l->U1_base));
l->V1_base = av_calloc(w * h, sizeof(*l->V1_base));
l->U2_base = av_calloc(w * h, sizeof(*l->U2_base));
l->V2_base = av_calloc(w * h, sizeof(*l->V1_base));
l->uv_stride = w;
l->cur = 0;
if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
!l->V1_base || !l->U2_base || !l->V2_base ||
!l->last || !l->clast) {
av_freep(&l->Y1_base);
av_freep(&l->Y2_base);
av_freep(&l->U1_base);
av_freep(&l->U2_base);
av_freep(&l->V1_base);
av_freep(&l->V2_base);
av_freep(&l->last);
av_freep(&l->clast);
av_frame_free(&l->pic);
return AVERROR(ENOMEM);
}
l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
l->U1 = l->U1_base + l->uv_stride * 2 + 2;
l->U2 = l->U2_base + l->uv_stride * 2 + 2;
l->V1 = l->V1_base + l->uv_stride * 2 + 2;
l->V2 = l->V2_base + l->uv_stride * 2 + 2;
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
TM2Context * const l = avctx->priv_data;
int i;
av_free(l->last);
av_free(l->clast);
for (i = 0; i < TM2_NUM_STREAMS; i++)
av_freep(&l->tokens[i]);
if (l->Y1) {
av_freep(&l->Y1_base);
av_freep(&l->U1_base);
av_freep(&l->V1_base);
av_freep(&l->Y2_base);
av_freep(&l->U2_base);
av_freep(&l->V2_base);
}
av_freep(&l->buffer);
l->buffer_size = 0;
av_frame_free(&l->pic);
return 0;
}
AVCodec ff_truemotion2_decoder = {
.name = "truemotion2",
.long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_TRUEMOTION2,
.priv_data_size = sizeof(TM2Context),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1,
};