1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-23 12:43:46 +02:00
FFmpeg/libavcodec/iff.c
Luca Barbato 7d65e960c7 iff: Do not read over the source buffer
Reported-by: Mateusz "j00ru" Jurczyk and Gynvael Coldwind
CC: libav-stable@libav.org
2013-07-10 15:24:42 +02:00

393 lines
14 KiB
C

/*
* IFF PBM/ILBM bitmap decoder
* Copyright (c) 2010 Peter Ross <pross@xvid.org>
* Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* IFF PBM/ILBM bitmap decoder
*/
#include "libavutil/imgutils.h"
#include "bytestream.h"
#include "avcodec.h"
#include "get_bits.h"
#include "internal.h"
typedef struct {
AVFrame frame;
int planesize;
uint8_t * planebuf;
int init; // 1 if buffer and palette data already initialized, 0 otherwise
} IffContext;
#define LUT8_PART(plane, v) \
AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane
#define LUT8(plane) { \
LUT8_PART(plane, 0x0000000), \
LUT8_PART(plane, 0x1000000), \
LUT8_PART(plane, 0x0010000), \
LUT8_PART(plane, 0x1010000), \
LUT8_PART(plane, 0x0000100), \
LUT8_PART(plane, 0x1000100), \
LUT8_PART(plane, 0x0010100), \
LUT8_PART(plane, 0x1010100), \
LUT8_PART(plane, 0x0000001), \
LUT8_PART(plane, 0x1000001), \
LUT8_PART(plane, 0x0010001), \
LUT8_PART(plane, 0x1010001), \
LUT8_PART(plane, 0x0000101), \
LUT8_PART(plane, 0x1000101), \
LUT8_PART(plane, 0x0010101), \
LUT8_PART(plane, 0x1010101), \
}
// 8 planes * 8-bit mask
static const uint64_t plane8_lut[8][256] = {
LUT8(0), LUT8(1), LUT8(2), LUT8(3),
LUT8(4), LUT8(5), LUT8(6), LUT8(7),
};
#define LUT32(plane) { \
0, 0, 0, 0, \
0, 0, 0, 1 << plane, \
0, 0, 1 << plane, 0, \
0, 0, 1 << plane, 1 << plane, \
0, 1 << plane, 0, 0, \
0, 1 << plane, 0, 1 << plane, \
0, 1 << plane, 1 << plane, 0, \
0, 1 << plane, 1 << plane, 1 << plane, \
1 << plane, 0, 0, 0, \
1 << plane, 0, 0, 1 << plane, \
1 << plane, 0, 1 << plane, 0, \
1 << plane, 0, 1 << plane, 1 << plane, \
1 << plane, 1 << plane, 0, 0, \
1 << plane, 1 << plane, 0, 1 << plane, \
1 << plane, 1 << plane, 1 << plane, 0, \
1 << plane, 1 << plane, 1 << plane, 1 << plane, \
}
// 32 planes * 4-bit mask * 4 lookup tables each
static const uint32_t plane32_lut[32][16*4] = {
LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3),
LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7),
LUT32( 8), LUT32( 9), LUT32(10), LUT32(11),
LUT32(12), LUT32(13), LUT32(14), LUT32(15),
LUT32(16), LUT32(17), LUT32(18), LUT32(19),
LUT32(20), LUT32(21), LUT32(22), LUT32(23),
LUT32(24), LUT32(25), LUT32(26), LUT32(27),
LUT32(28), LUT32(29), LUT32(30), LUT32(31),
};
// Gray to RGB, required for palette table of grayscale images with bpp < 8
static av_always_inline uint32_t gray2rgb(const uint32_t x) {
return x << 16 | x << 8 | x;
}
/**
* Convert CMAP buffer (stored in extradata) to lavc palette format
*/
static int cmap_read_palette(AVCodecContext *avctx, uint32_t *pal)
{
int count, i;
if (avctx->bits_per_coded_sample > 8) {
av_log(avctx, AV_LOG_ERROR, "bit_per_coded_sample > 8 not supported\n");
return AVERROR_INVALIDDATA;
}
count = 1 << avctx->bits_per_coded_sample;
// If extradata is smaller than actually needed, fill the remaining with black.
count = FFMIN(avctx->extradata_size / 3, count);
if (count) {
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | AV_RB24(avctx->extradata + i * 3);
} else { // Create gray-scale color palette for bps < 8
count = 1 << avctx->bits_per_coded_sample;
for (i = 0; i < count; i++)
pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample);
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
int err;
if (avctx->bits_per_coded_sample <= 8) {
avctx->pix_fmt = (avctx->bits_per_coded_sample < 8 ||
avctx->extradata_size) ? AV_PIX_FMT_PAL8
: AV_PIX_FMT_GRAY8;
} else if (avctx->bits_per_coded_sample <= 32) {
avctx->pix_fmt = AV_PIX_FMT_BGR32;
} else {
return AVERROR_INVALIDDATA;
}
if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx)))
return err;
s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary
s->planebuf = av_malloc(s->planesize + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->planebuf)
return AVERROR(ENOMEM);
avcodec_get_frame_defaults(&s->frame);
return 0;
}
/**
* Decode interleaved plane buffer up to 8bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint64_t *lut = plane8_lut[plane];
do {
uint64_t v = AV_RN64A(dst) | lut[*buf++];
AV_WN64A(dst, v);
dst += 8;
} while (--buf_size);
}
/**
* Decode interleaved plane buffer up to 24bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint32_t *lut = plane32_lut[plane];
do {
unsigned mask = (*buf >> 2) & ~3;
dst[0] |= lut[mask++];
dst[1] |= lut[mask++];
dst[2] |= lut[mask++];
dst[3] |= lut[mask];
mask = (*buf++ << 2) & 0x3F;
dst[4] |= lut[mask++];
dst[5] |= lut[mask++];
dst[6] |= lut[mask++];
dst[7] |= lut[mask];
dst += 8;
} while (--buf_size);
}
/**
* Decode one complete byterun1 encoded line.
*
* @param dst the destination buffer where to store decompressed bitstream
* @param dst_size the destination plane size in bytes
* @param buf the source byterun1 compressed bitstream
* @param buf_end the EOF of source byterun1 compressed bitstream
* @return number of consumed bytes in byterun1 compressed bitstream
*/
static int decode_byterun(uint8_t *dst, int dst_size,
const uint8_t *buf, const uint8_t *const buf_end)
{
const uint8_t *const buf_start = buf;
unsigned x;
for (x = 0; x < dst_size && buf < buf_end;) {
unsigned length;
const int8_t value = *buf++;
if (value >= 0) {
length = value + 1;
memcpy(dst + x, buf, FFMIN3(length, dst_size - x, buf_end - buf));
buf += length;
} else if (value > -128) {
length = -value + 1;
memset(dst + x, *buf++, FFMIN(length, dst_size - x));
} else { // noop
continue;
}
x += length;
}
return buf - buf_start;
}
static int decode_frame_ilbm(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
int y, plane, res;
if ((res = ff_reget_buffer(avctx, &s->frame)) < 0)
return res;
if (!s->init && avctx->bits_per_coded_sample <= 8 &&
avctx->pix_fmt != AV_PIX_FMT_GRAY8) {
if ((res = cmap_read_palette(avctx, (uint32_t *)s->frame.data[1])) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(row, 0, avctx->width);
for (plane = 0; plane < avctx->bits_per_coded_sample && buf < buf_end;
plane++) {
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else { // AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < avctx->bits_per_coded_sample && buf < buf_end;
plane++) {
decodeplane32((uint32_t *)row, buf,
FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
}
} else if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) { // IFF-PBM
for (y = 0; y < avctx->height && buf < buf_end; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memcpy(row, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width % 2); // padding if odd
}
}
if ((res = av_frame_ref(data, &s->frame)) < 0)
return res;
*got_frame = 1;
return buf_size;
}
static int decode_frame_byterun1(AVCodecContext *avctx,
void *data, int *got_frame,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
int y, plane, res;
if ((res = ff_reget_buffer(avctx, &s->frame)) < 0)
return res;
if (!s->init && avctx->bits_per_coded_sample <= 8 &&
avctx->pix_fmt != AV_PIX_FMT_GRAY8) {
if ((res = cmap_read_palette(avctx, (uint32_t *)s->frame.data[1])) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('I', 'L', 'B', 'M')) { // interleaved
if (avctx->pix_fmt == AV_PIX_FMT_PAL8 || avctx->pix_fmt == AV_PIX_FMT_GRAY8) {
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(row, 0, avctx->width);
for (plane = 0; plane < avctx->bits_per_coded_sample; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane8(row, s->planebuf, s->planesize, plane);
}
}
} else { // AV_PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < avctx->bits_per_coded_sample; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane32((uint32_t *)row, s->planebuf, s->planesize, plane);
}
}
}
} else {
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
buf += decode_byterun(row, avctx->width, buf, buf_end);
}
}
if ((res = av_frame_ref(data, &s->frame)) < 0)
return res;
*got_frame = 1;
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
av_frame_unref(&s->frame);
av_freep(&s->planebuf);
return 0;
}
AVCodec ff_iff_ilbm_decoder = {
.name = "iff_ilbm",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_IFF_ILBM,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_ilbm,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ILBM"),
};
AVCodec ff_iff_byterun1_decoder = {
.name = "iff_byterun1",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_IFF_BYTERUN1,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_byterun1,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ByteRun1"),
};