1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-08 13:22:53 +02:00
FFmpeg/libswscale/x86/input.asm
Mark Reid 52f7026164 swscale/x86/input.asm: add x86-optimized planer rgb2yuv functions
sse2 only operates on 2 lanes per loop for to_y and to_uv functions, due
to the lack of pmulld instruction.  Emulating pmulld with 2 pmuludq and shuffles
proved too costly and made to_uv functions slower then the c implementation.

For to_y on sse2 only float functions are generated,
I was are not able outperform the c implementation on the integer pixel formats.

For to_a on see4 only the float functions are generated.
sse2 and sse4 generated nearly identical performing code on integer pixel formats,
so only sse2/avx2 versions are generated.

planar_gbrp_to_y_512_c: 1197.5
planar_gbrp_to_y_512_sse4: 444.5
planar_gbrp_to_y_512_avx2: 287.5
planar_gbrap_to_y_512_c: 1204.5
planar_gbrap_to_y_512_sse4: 447.5
planar_gbrap_to_y_512_avx2: 289.5
planar_gbrp9be_to_y_512_c: 1380.0
planar_gbrp9be_to_y_512_sse4: 543.5
planar_gbrp9be_to_y_512_avx2: 340.0
planar_gbrp9le_to_y_512_c: 1200.5
planar_gbrp9le_to_y_512_sse4: 442.0
planar_gbrp9le_to_y_512_avx2: 282.0
planar_gbrp10be_to_y_512_c: 1378.5
planar_gbrp10be_to_y_512_sse4: 544.0
planar_gbrp10be_to_y_512_avx2: 337.5
planar_gbrp10le_to_y_512_c: 1200.0
planar_gbrp10le_to_y_512_sse4: 448.0
planar_gbrp10le_to_y_512_avx2: 285.5
planar_gbrap10be_to_y_512_c: 1380.0
planar_gbrap10be_to_y_512_sse4: 542.0
planar_gbrap10be_to_y_512_avx2: 340.5
planar_gbrap10le_to_y_512_c: 1199.0
planar_gbrap10le_to_y_512_sse4: 446.0
planar_gbrap10le_to_y_512_avx2: 289.5
planar_gbrp12be_to_y_512_c: 10563.0
planar_gbrp12be_to_y_512_sse4: 542.5
planar_gbrp12be_to_y_512_avx2: 339.0
planar_gbrp12le_to_y_512_c: 1201.0
planar_gbrp12le_to_y_512_sse4: 440.5
planar_gbrp12le_to_y_512_avx2: 286.0
planar_gbrap12be_to_y_512_c: 1701.5
planar_gbrap12be_to_y_512_sse4: 917.0
planar_gbrap12be_to_y_512_avx2: 338.5
planar_gbrap12le_to_y_512_c: 1201.0
planar_gbrap12le_to_y_512_sse4: 444.5
planar_gbrap12le_to_y_512_avx2: 288.0
planar_gbrp14be_to_y_512_c: 1370.5
planar_gbrp14be_to_y_512_sse4: 545.0
planar_gbrp14be_to_y_512_avx2: 338.5
planar_gbrp14le_to_y_512_c: 1199.0
planar_gbrp14le_to_y_512_sse4: 444.0
planar_gbrp14le_to_y_512_avx2: 279.5
planar_gbrp16be_to_y_512_c: 1364.0
planar_gbrp16be_to_y_512_sse4: 544.5
planar_gbrp16be_to_y_512_avx2: 339.5
planar_gbrp16le_to_y_512_c: 1201.0
planar_gbrp16le_to_y_512_sse4: 445.5
planar_gbrp16le_to_y_512_avx2: 280.5
planar_gbrap16be_to_y_512_c: 1377.0
planar_gbrap16be_to_y_512_sse4: 545.0
planar_gbrap16be_to_y_512_avx2: 338.5
planar_gbrap16le_to_y_512_c: 1201.0
planar_gbrap16le_to_y_512_sse4: 442.0
planar_gbrap16le_to_y_512_avx2: 279.0
planar_gbrpf32be_to_y_512_c: 4113.0
planar_gbrpf32be_to_y_512_sse2: 2438.0
planar_gbrpf32be_to_y_512_sse4: 1068.0
planar_gbrpf32be_to_y_512_avx2: 904.5
planar_gbrpf32le_to_y_512_c: 3818.5
planar_gbrpf32le_to_y_512_sse2: 2024.5
planar_gbrpf32le_to_y_512_sse4: 1241.5
planar_gbrpf32le_to_y_512_avx2: 657.0
planar_gbrapf32be_to_y_512_c: 3707.0
planar_gbrapf32be_to_y_512_sse2: 2444.0
planar_gbrapf32be_to_y_512_sse4: 1077.0
planar_gbrapf32be_to_y_512_avx2: 909.0
planar_gbrapf32le_to_y_512_c: 3822.0
planar_gbrapf32le_to_y_512_sse2: 2024.5
planar_gbrapf32le_to_y_512_sse4: 1176.0
planar_gbrapf32le_to_y_512_avx2: 658.5

planar_gbrp_to_uv_512_c: 2325.8
planar_gbrp_to_uv_512_sse2: 1726.8
planar_gbrp_to_uv_512_sse4: 771.8
planar_gbrp_to_uv_512_avx2: 506.8
planar_gbrap_to_uv_512_c: 2281.8
planar_gbrap_to_uv_512_sse2: 1726.3
planar_gbrap_to_uv_512_sse4: 768.3
planar_gbrap_to_uv_512_avx2: 496.3
planar_gbrp9be_to_uv_512_c: 2336.8
planar_gbrp9be_to_uv_512_sse2: 1924.8
planar_gbrp9be_to_uv_512_sse4: 852.3
planar_gbrp9be_to_uv_512_avx2: 552.8
planar_gbrp9le_to_uv_512_c: 2270.3
planar_gbrp9le_to_uv_512_sse2: 1512.3
planar_gbrp9le_to_uv_512_sse4: 764.3
planar_gbrp9le_to_uv_512_avx2: 491.3
planar_gbrp10be_to_uv_512_c: 2281.8
planar_gbrp10be_to_uv_512_sse2: 1917.8
planar_gbrp10be_to_uv_512_sse4: 855.3
planar_gbrp10be_to_uv_512_avx2: 541.3
planar_gbrp10le_to_uv_512_c: 2269.8
planar_gbrp10le_to_uv_512_sse2: 1515.3
planar_gbrp10le_to_uv_512_sse4: 759.8
planar_gbrp10le_to_uv_512_avx2: 487.8
planar_gbrap10be_to_uv_512_c: 2382.3
planar_gbrap10be_to_uv_512_sse2: 1924.8
planar_gbrap10be_to_uv_512_sse4: 855.3
planar_gbrap10be_to_uv_512_avx2: 540.8
planar_gbrap10le_to_uv_512_c: 2382.3
planar_gbrap10le_to_uv_512_sse2: 1512.3
planar_gbrap10le_to_uv_512_sse4: 759.3
planar_gbrap10le_to_uv_512_avx2: 484.8
planar_gbrp12be_to_uv_512_c: 2283.8
planar_gbrp12be_to_uv_512_sse2: 1936.8
planar_gbrp12be_to_uv_512_sse4: 858.3
planar_gbrp12be_to_uv_512_avx2: 541.3
planar_gbrp12le_to_uv_512_c: 2278.8
planar_gbrp12le_to_uv_512_sse2: 1507.3
planar_gbrp12le_to_uv_512_sse4: 760.3
planar_gbrp12le_to_uv_512_avx2: 485.8
planar_gbrap12be_to_uv_512_c: 2385.3
planar_gbrap12be_to_uv_512_sse2: 1927.8
planar_gbrap12be_to_uv_512_sse4: 855.3
planar_gbrap12be_to_uv_512_avx2: 539.8
planar_gbrap12le_to_uv_512_c: 2377.3
planar_gbrap12le_to_uv_512_sse2: 1516.3
planar_gbrap12le_to_uv_512_sse4: 759.3
planar_gbrap12le_to_uv_512_avx2: 484.8
planar_gbrp14be_to_uv_512_c: 2283.8
planar_gbrp14be_to_uv_512_sse2: 1935.3
planar_gbrp14be_to_uv_512_sse4: 852.3
planar_gbrp14be_to_uv_512_avx2: 540.3
planar_gbrp14le_to_uv_512_c: 2276.8
planar_gbrp14le_to_uv_512_sse2: 1514.8
planar_gbrp14le_to_uv_512_sse4: 762.3
planar_gbrp14le_to_uv_512_avx2: 484.8
planar_gbrp16be_to_uv_512_c: 2383.3
planar_gbrp16be_to_uv_512_sse2: 1881.8
planar_gbrp16be_to_uv_512_sse4: 852.3
planar_gbrp16be_to_uv_512_avx2: 541.8
planar_gbrp16le_to_uv_512_c: 2378.3
planar_gbrp16le_to_uv_512_sse2: 1476.8
planar_gbrp16le_to_uv_512_sse4: 765.3
planar_gbrp16le_to_uv_512_avx2: 485.8
planar_gbrap16be_to_uv_512_c: 2382.3
planar_gbrap16be_to_uv_512_sse2: 1886.3
planar_gbrap16be_to_uv_512_sse4: 853.8
planar_gbrap16be_to_uv_512_avx2: 550.8
planar_gbrap16le_to_uv_512_c: 2381.8
planar_gbrap16le_to_uv_512_sse2: 1488.3
planar_gbrap16le_to_uv_512_sse4: 765.3
planar_gbrap16le_to_uv_512_avx2: 491.8
planar_gbrpf32be_to_uv_512_c: 4863.0
planar_gbrpf32be_to_uv_512_sse2: 3347.5
planar_gbrpf32be_to_uv_512_sse4: 1800.0
planar_gbrpf32be_to_uv_512_avx2: 1199.0
planar_gbrpf32le_to_uv_512_c: 4725.0
planar_gbrpf32le_to_uv_512_sse2: 2753.0
planar_gbrpf32le_to_uv_512_sse4: 1474.5
planar_gbrpf32le_to_uv_512_avx2: 927.5
planar_gbrapf32be_to_uv_512_c: 4859.0
planar_gbrapf32be_to_uv_512_sse2: 3269.0
planar_gbrapf32be_to_uv_512_sse4: 1802.0
planar_gbrapf32be_to_uv_512_avx2: 1201.5
planar_gbrapf32le_to_uv_512_c: 6338.0
planar_gbrapf32le_to_uv_512_sse2: 2756.5
planar_gbrapf32le_to_uv_512_sse4: 1476.0
planar_gbrapf32le_to_uv_512_avx2: 908.5

planar_gbrap_to_a_512_c: 383.3
planar_gbrap_to_a_512_sse2: 66.8
planar_gbrap_to_a_512_avx2: 43.8
planar_gbrap10be_to_a_512_c: 601.8
planar_gbrap10be_to_a_512_sse2: 86.3
planar_gbrap10be_to_a_512_avx2: 34.8
planar_gbrap10le_to_a_512_c: 602.3
planar_gbrap10le_to_a_512_sse2: 48.8
planar_gbrap10le_to_a_512_avx2: 31.3
planar_gbrap12be_to_a_512_c: 601.8
planar_gbrap12be_to_a_512_sse2: 111.8
planar_gbrap12be_to_a_512_avx2: 41.3
planar_gbrap12le_to_a_512_c: 385.8
planar_gbrap12le_to_a_512_sse2: 75.3
planar_gbrap12le_to_a_512_avx2: 39.8
planar_gbrap16be_to_a_512_c: 386.8
planar_gbrap16be_to_a_512_sse2: 79.8
planar_gbrap16be_to_a_512_avx2: 31.3
planar_gbrap16le_to_a_512_c: 600.3
planar_gbrap16le_to_a_512_sse2: 40.3
planar_gbrap16le_to_a_512_avx2: 30.3
planar_gbrapf32be_to_a_512_c: 1148.8
planar_gbrapf32be_to_a_512_sse2: 611.3
planar_gbrapf32be_to_a_512_sse4: 234.8
planar_gbrapf32be_to_a_512_avx2: 183.3
planar_gbrapf32le_to_a_512_c: 851.3
planar_gbrapf32le_to_a_512_sse2: 263.3
planar_gbrapf32le_to_a_512_sse4: 199.3
planar_gbrapf32le_to_a_512_avx2: 156.8

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: James Almer <jamrial@gmail.com>
2022-01-11 16:34:33 -03:00

1223 lines
40 KiB
NASM

;******************************************************************************
;* x86-optimized input routines; does shuffling of packed
;* YUV formats into individual planes, and converts RGB
;* into YUV planes also.
;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
;*
;* This file is part of FFmpeg.
;*
;* FFmpeg is free software; you can redistribute it and/or
;* modify it under the terms of the GNU Lesser General Public
;* License as published by the Free Software Foundation; either
;* version 2.1 of the License, or (at your option) any later version.
;*
;* FFmpeg is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;* Lesser General Public License for more details.
;*
;* You should have received a copy of the GNU Lesser General Public
;* License along with FFmpeg; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;******************************************************************************
%include "libavutil/x86/x86util.asm"
SECTION_RODATA
%define RY 0x20DE
%define GY 0x4087
%define BY 0x0C88
%define RU 0xECFF
%define GU 0xDAC8
%define BU 0x3838
%define RV 0x3838
%define GV 0xD0E3
%define BV 0xF6E4
rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
%define bgr_Ycoeff_12x4 16*4 + 16* 0 + tableq
%define bgr_Ycoeff_3x56 16*4 + 16* 1 + tableq
%define rgb_Ycoeff_12x4 16*4 + 16* 2 + tableq
%define rgb_Ycoeff_3x56 16*4 + 16* 3 + tableq
%define bgr_Ucoeff_12x4 16*4 + 16* 4 + tableq
%define bgr_Ucoeff_3x56 16*4 + 16* 5 + tableq
%define rgb_Ucoeff_12x4 16*4 + 16* 6 + tableq
%define rgb_Ucoeff_3x56 16*4 + 16* 7 + tableq
%define bgr_Vcoeff_12x4 16*4 + 16* 8 + tableq
%define bgr_Vcoeff_3x56 16*4 + 16* 9 + tableq
%define rgb_Vcoeff_12x4 16*4 + 16*10 + tableq
%define rgb_Vcoeff_3x56 16*4 + 16*11 + tableq
%define rgba_Ycoeff_rb 16*4 + 16*12 + tableq
%define rgba_Ycoeff_br 16*4 + 16*13 + tableq
%define rgba_Ycoeff_ga 16*4 + 16*14 + tableq
%define rgba_Ycoeff_ag 16*4 + 16*15 + tableq
%define rgba_Ucoeff_rb 16*4 + 16*16 + tableq
%define rgba_Ucoeff_br 16*4 + 16*17 + tableq
%define rgba_Ucoeff_ga 16*4 + 16*18 + tableq
%define rgba_Ucoeff_ag 16*4 + 16*19 + tableq
%define rgba_Vcoeff_rb 16*4 + 16*20 + tableq
%define rgba_Vcoeff_br 16*4 + 16*21 + tableq
%define rgba_Vcoeff_ga 16*4 + 16*22 + tableq
%define rgba_Vcoeff_ag 16*4 + 16*23 + tableq
; bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
; bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
; rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
; rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
; bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
; bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
; rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
; rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
; bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
; bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
; rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
; rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
; rgba_Ycoeff_rb: times 4 dw RY, BY
; rgba_Ycoeff_br: times 4 dw BY, RY
; rgba_Ycoeff_ga: times 4 dw GY, 0
; rgba_Ycoeff_ag: times 4 dw 0, GY
; rgba_Ucoeff_rb: times 4 dw RU, BU
; rgba_Ucoeff_br: times 4 dw BU, RU
; rgba_Ucoeff_ga: times 4 dw GU, 0
; rgba_Ucoeff_ag: times 4 dw 0, GU
; rgba_Vcoeff_rb: times 4 dw RV, BV
; rgba_Vcoeff_br: times 4 dw BV, RV
; rgba_Vcoeff_ga: times 4 dw GV, 0
; rgba_Vcoeff_ag: times 4 dw 0, GV
shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
pd_65535f: times 8 dd 65535.0
pb_pack_shuffle16le: db 0, 1, 4, 5, \
8, 9, 12, 13, \
-1, -1, -1, -1, \
-1, -1, -1, -1, \
-1, -1, -1, -1, \
-1, -1, -1, -1, \
0, 1, 4, 5, \
8, 9, 12, 13
pb_shuffle32be: db 3, 2, 1, 0, \
7, 6, 5, 4, \
11, 10, 9, 8, \
15, 14, 13, 12, \
3, 2, 1, 0, \
7, 6, 5, 4, \
11, 10, 9, 8, \
15, 14, 13, 12
pb_shuffle16be: db 1, 0, 3, 2, \
5, 4, 7, 6, \
9, 8, 11, 10, \
13, 12, 15, 14, \
1, 0, 3, 2, \
5, 4, 7, 6, \
9, 8, 11, 10, \
13, 12, 15, 14
SECTION .text
;-----------------------------------------------------------------------------
; RGB to Y/UV.
;
; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
; and
; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
; const uint8_t *unused, int w);
;-----------------------------------------------------------------------------
; %1 = nr. of XMM registers
; %2 = rgb or bgr
%macro RGB24_TO_Y_FN 2-3
cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, table
%if mmsize == 8
mova m5, [%2_Ycoeff_12x4]
mova m6, [%2_Ycoeff_3x56]
%define coeff1 m5
%define coeff2 m6
%elif ARCH_X86_64
mova m8, [%2_Ycoeff_12x4]
mova m9, [%2_Ycoeff_3x56]
%define coeff1 m8
%define coeff2 m9
%else ; x86-32 && mmsize == 16
%define coeff1 [%2_Ycoeff_12x4]
%define coeff2 [%2_Ycoeff_3x56]
%endif ; x86-32/64 && mmsize == 8/16
%if (ARCH_X86_64 || mmsize == 8) && %0 == 3
jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
%else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
.body:
%if cpuflag(ssse3)
mova m7, [shuf_rgb_12x4]
%define shuf_rgb1 m7
%if ARCH_X86_64
mova m10, [shuf_rgb_3x56]
%define shuf_rgb2 m10
%else ; x86-32
%define shuf_rgb2 [shuf_rgb_3x56]
%endif ; x86-32/64
%endif ; cpuflag(ssse3)
%if ARCH_X86_64
movsxd wq, wd
%endif
add wq, wq
add dstq, wq
neg wq
%if notcpuflag(ssse3)
pxor m7, m7
%endif ; !cpuflag(ssse3)
mova m4, [rgb_Yrnd]
.loop:
%if cpuflag(ssse3)
movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
%else ; !cpuflag(ssse3)
movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
%if mmsize == 16 ; i.e. sse2
punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
%endif ; mmsize == 16
punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
%endif ; cpuflag(ssse3)
add srcq, 3 * mmsize / 2
pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
psrad m0, 9
psrad m2, 9
packssdw m0, m2 ; (word) { Y[0-7] }
mova [dstq+wq], m0
add wq, mmsize
jl .loop
REP_RET
%endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
%endmacro
; %1 = nr. of XMM registers
; %2 = rgb or bgr
%macro RGB24_TO_UV_FN 2-3
cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
%if ARCH_X86_64
mova m8, [%2_Ucoeff_12x4]
mova m9, [%2_Ucoeff_3x56]
mova m10, [%2_Vcoeff_12x4]
mova m11, [%2_Vcoeff_3x56]
%define coeffU1 m8
%define coeffU2 m9
%define coeffV1 m10
%define coeffV2 m11
%else ; x86-32
%define coeffU1 [%2_Ucoeff_12x4]
%define coeffU2 [%2_Ucoeff_3x56]
%define coeffV1 [%2_Vcoeff_12x4]
%define coeffV2 [%2_Vcoeff_3x56]
%endif ; x86-32/64
%if ARCH_X86_64 && %0 == 3
jmp mangle(private_prefix %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
%else ; ARCH_X86_64 && %0 == 3
.body:
%if cpuflag(ssse3)
mova m7, [shuf_rgb_12x4]
%define shuf_rgb1 m7
%if ARCH_X86_64
mova m12, [shuf_rgb_3x56]
%define shuf_rgb2 m12
%else ; x86-32
%define shuf_rgb2 [shuf_rgb_3x56]
%endif ; x86-32/64
%endif ; cpuflag(ssse3)
%if ARCH_X86_64
movsxd wq, dword r5m
%else ; x86-32
mov wq, r5m
%endif
add wq, wq
add dstUq, wq
add dstVq, wq
neg wq
mova m6, [rgb_UVrnd]
%if notcpuflag(ssse3)
pxor m7, m7
%endif
.loop:
%if cpuflag(ssse3)
movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
%else ; !cpuflag(ssse3)
movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
%if mmsize == 16
punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
%endif ; mmsize == 16
punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
%endif ; cpuflag(ssse3)
pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
%if cpuflag(ssse3)
pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
%else ; !cpuflag(ssse3)
%if mmsize == 16
movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
%endif ; mmsize == 16 && !cpuflag(ssse3)
punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
%endif ; cpuflag(ssse3)
add srcq, 3 * mmsize / 2
pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
psrad m0, 9
psrad m2, 9
psrad m1, 9
psrad m4, 9
packssdw m0, m1 ; (word) { U[0-7] }
packssdw m2, m4 ; (word) { V[0-7] }
%if mmsize == 8
mova [dstUq+wq], m0
mova [dstVq+wq], m2
%else ; mmsize == 16
mova [dstUq+wq], m0
mova [dstVq+wq], m2
%endif ; mmsize == 8/16
add wq, mmsize
jl .loop
REP_RET
%endif ; ARCH_X86_64 && %0 == 3
%endmacro
; %1 = nr. of XMM registers for rgb-to-Y func
; %2 = nr. of XMM registers for rgb-to-UV func
%macro RGB24_FUNCS 2
RGB24_TO_Y_FN %1, rgb
RGB24_TO_Y_FN %1, bgr, rgb
RGB24_TO_UV_FN %2, rgb
RGB24_TO_UV_FN %2, bgr, rgb
%endmacro
%if ARCH_X86_32
INIT_MMX mmx
RGB24_FUNCS 0, 0
%endif
INIT_XMM sse2
RGB24_FUNCS 10, 12
INIT_XMM ssse3
RGB24_FUNCS 11, 13
%if HAVE_AVX_EXTERNAL
INIT_XMM avx
RGB24_FUNCS 11, 13
%endif
; %1 = nr. of XMM registers
; %2-5 = rgba, bgra, argb or abgr (in individual characters)
%macro RGB32_TO_Y_FN 5-6
cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, table
mova m5, [rgba_Ycoeff_%2%4]
mova m6, [rgba_Ycoeff_%3%5]
%if %0 == 6
jmp mangle(private_prefix %+ _ %+ %6 %+ ToY %+ SUFFIX).body
%else ; %0 == 6
.body:
%if ARCH_X86_64
movsxd wq, wd
%endif
add wq, wq
sub wq, mmsize - 1
lea srcq, [srcq+wq*2]
add dstq, wq
neg wq
mova m4, [rgb_Yrnd]
pcmpeqb m7, m7
psrlw m7, 8 ; (word) { 0x00ff } x4
.loop:
; FIXME check alignment and use mova
movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7]
pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7]
paddd m0, m4 ; += rgb_Yrnd
paddd m2, m4 ; += rgb_Yrnd
paddd m0, m1 ; (dword) { Y[0-3] }
paddd m2, m3 ; (dword) { Y[4-7] }
psrad m0, 9
psrad m2, 9
packssdw m0, m2 ; (word) { Y[0-7] }
mova [dstq+wq], m0
add wq, mmsize
jl .loop
sub wq, mmsize - 1
jz .end
add srcq, 2*mmsize - 2
add dstq, mmsize - 1
.loop2:
movd m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
paddd m0, m4 ; += rgb_Yrnd
paddd m0, m1 ; (dword) { Y[0-3] }
psrad m0, 9
packssdw m0, m0 ; (word) { Y[0-7] }
movd [dstq+wq], m0
add wq, 2
jl .loop2
.end:
REP_RET
%endif ; %0 == 3
%endmacro
; %1 = nr. of XMM registers
; %2-5 = rgba, bgra, argb or abgr (in individual characters)
%macro RGB32_TO_UV_FN 5-6
cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, table
%if ARCH_X86_64
mova m8, [rgba_Ucoeff_%2%4]
mova m9, [rgba_Ucoeff_%3%5]
mova m10, [rgba_Vcoeff_%2%4]
mova m11, [rgba_Vcoeff_%3%5]
%define coeffU1 m8
%define coeffU2 m9
%define coeffV1 m10
%define coeffV2 m11
%else ; x86-32
%define coeffU1 [rgba_Ucoeff_%2%4]
%define coeffU2 [rgba_Ucoeff_%3%5]
%define coeffV1 [rgba_Vcoeff_%2%4]
%define coeffV2 [rgba_Vcoeff_%3%5]
%endif ; x86-64/32
%if ARCH_X86_64 && %0 == 6
jmp mangle(private_prefix %+ _ %+ %6 %+ ToUV %+ SUFFIX).body
%else ; ARCH_X86_64 && %0 == 6
.body:
%if ARCH_X86_64
movsxd wq, dword r5m
%else ; x86-32
mov wq, r5m
%endif
add wq, wq
sub wq, mmsize - 1
add dstUq, wq
add dstVq, wq
lea srcq, [srcq+wq*2]
neg wq
pcmpeqb m7, m7
psrlw m7, 8 ; (word) { 0x00ff } x4
mova m6, [rgb_UVrnd]
.loop:
; FIXME check alignment and use mova
movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
paddd m3, m6 ; += rgb_UVrnd
paddd m1, m6 ; += rgb_UVrnd
paddd m2, m3 ; (dword) { V[0-3] }
paddd m0, m1 ; (dword) { U[0-3] }
pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7]
pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7]
pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7]
pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7]
paddd m3, m6 ; += rgb_UVrnd
paddd m5, m6 ; += rgb_UVrnd
psrad m0, 9
paddd m1, m3 ; (dword) { V[4-7] }
paddd m4, m5 ; (dword) { U[4-7] }
psrad m2, 9
psrad m4, 9
psrad m1, 9
packssdw m0, m4 ; (word) { U[0-7] }
packssdw m2, m1 ; (word) { V[0-7] }
%if mmsize == 8
mova [dstUq+wq], m0
mova [dstVq+wq], m2
%else ; mmsize == 16
mova [dstUq+wq], m0
mova [dstVq+wq], m2
%endif ; mmsize == 8/16
add wq, mmsize
jl .loop
sub wq, mmsize - 1
jz .end
add srcq , 2*mmsize - 2
add dstUq, mmsize - 1
add dstVq, mmsize - 1
.loop2:
movd m0, [srcq+wq*2] ; (byte) { Bx, Gx, Rx, xx }[0-3]
DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
paddd m3, m6 ; += rgb_UVrnd
paddd m1, m6 ; += rgb_UVrnd
paddd m2, m3 ; (dword) { V[0-3] }
paddd m0, m1 ; (dword) { U[0-3] }
psrad m0, 9
psrad m2, 9
packssdw m0, m0 ; (word) { U[0-7] }
packssdw m2, m2 ; (word) { V[0-7] }
movd [dstUq+wq], m0
movd [dstVq+wq], m2
add wq, 2
jl .loop2
.end:
REP_RET
%endif ; ARCH_X86_64 && %0 == 3
%endmacro
; %1 = nr. of XMM registers for rgb-to-Y func
; %2 = nr. of XMM registers for rgb-to-UV func
%macro RGB32_FUNCS 2
RGB32_TO_Y_FN %1, r, g, b, a
RGB32_TO_Y_FN %1, b, g, r, a, rgba
RGB32_TO_Y_FN %1, a, r, g, b, rgba
RGB32_TO_Y_FN %1, a, b, g, r, rgba
RGB32_TO_UV_FN %2, r, g, b, a
RGB32_TO_UV_FN %2, b, g, r, a, rgba
RGB32_TO_UV_FN %2, a, r, g, b, rgba
RGB32_TO_UV_FN %2, a, b, g, r, rgba
%endmacro
%if ARCH_X86_32
INIT_MMX mmx
RGB32_FUNCS 0, 0
%endif
INIT_XMM sse2
RGB32_FUNCS 8, 12
%if HAVE_AVX_EXTERNAL
INIT_XMM avx
RGB32_FUNCS 8, 12
%endif
;-----------------------------------------------------------------------------
; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
;
; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
; and
; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
; const uint8_t *unused, int w);
;-----------------------------------------------------------------------------
; %1 = a (aligned) or u (unaligned)
; %2 = yuyv or uyvy
%macro LOOP_YUYV_TO_Y 2
.loop_%1:
mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
%ifidn %2, yuyv
pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
%else ; uyvy
psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
%endif ; yuyv/uyvy
packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
mova [dstq+wq], m0
add wq, mmsize
jl .loop_%1
REP_RET
%endmacro
; %1 = nr. of XMM registers
; %2 = yuyv or uyvy
; %3 = if specified, it means that unaligned and aligned code in loop
; will be the same (i.e. YUYV+AVX), and thus we don't need to
; split the loop in an aligned and unaligned case
%macro YUYV_TO_Y_FN 2-3
cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
%if ARCH_X86_64
movsxd wq, wd
%endif
add dstq, wq
%if mmsize == 16
test srcq, 15
%endif
lea srcq, [srcq+wq*2]
%ifidn %2, yuyv
pcmpeqb m2, m2 ; (byte) { 0xff } x 16
psrlw m2, 8 ; (word) { 0x00ff } x 8
%endif ; yuyv
%if mmsize == 16
jnz .loop_u_start
neg wq
LOOP_YUYV_TO_Y a, %2
.loop_u_start:
neg wq
LOOP_YUYV_TO_Y u, %2
%else ; mmsize == 8
neg wq
LOOP_YUYV_TO_Y a, %2
%endif ; mmsize == 8/16
%endmacro
; %1 = a (aligned) or u (unaligned)
; %2 = yuyv or uyvy
%macro LOOP_YUYV_TO_UV 2
.loop_%1:
%ifidn %2, yuyv
mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
%else ; uyvy
%if cpuflag(avx)
vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
%else
mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
%endif
%endif ; yuyv/uyvy
packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
%if mmsize == 16
packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
movh [dstUq+wq], m1
movhps [dstVq+wq], m1
%else ; mmsize == 8
packuswb m1, m1 ; (byte) { U0, ... U3 }
packuswb m0, m0 ; (byte) { V0, ... V3 }
movh [dstUq+wq], m1
movh [dstVq+wq], m0
%endif ; mmsize == 8/16
add wq, mmsize / 2
jl .loop_%1
REP_RET
%endmacro
; %1 = nr. of XMM registers
; %2 = yuyv or uyvy
; %3 = if specified, it means that unaligned and aligned code in loop
; will be the same (i.e. UYVY+AVX), and thus we don't need to
; split the loop in an aligned and unaligned case
%macro YUYV_TO_UV_FN 2-3
cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
%if ARCH_X86_64
movsxd wq, dword r5m
%else ; x86-32
mov wq, r5m
%endif
add dstUq, wq
add dstVq, wq
%if mmsize == 16 && %0 == 2
test srcq, 15
%endif
lea srcq, [srcq+wq*4]
pcmpeqb m2, m2 ; (byte) { 0xff } x 16
psrlw m2, 8 ; (word) { 0x00ff } x 8
; NOTE: if uyvy+avx, u/a are identical
%if mmsize == 16 && %0 == 2
jnz .loop_u_start
neg wq
LOOP_YUYV_TO_UV a, %2
.loop_u_start:
neg wq
LOOP_YUYV_TO_UV u, %2
%else ; mmsize == 8
neg wq
LOOP_YUYV_TO_UV a, %2
%endif ; mmsize == 8/16
%endmacro
; %1 = a (aligned) or u (unaligned)
; %2 = nv12 or nv21
%macro LOOP_NVXX_TO_UV 2
.loop_%1:
mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
packuswb m2, m3 ; (byte) { U0, ..., U15 }
packuswb m0, m1 ; (byte) { V0, ..., V15 }
%ifidn %2, nv12
mova [dstUq+wq], m2
mova [dstVq+wq], m0
%else ; nv21
mova [dstVq+wq], m2
mova [dstUq+wq], m0
%endif ; nv12/21
add wq, mmsize
jl .loop_%1
REP_RET
%endmacro
; %1 = nr. of XMM registers
; %2 = nv12 or nv21
%macro NVXX_TO_UV_FN 2
cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
%if ARCH_X86_64
movsxd wq, dword r5m
%else ; x86-32
mov wq, r5m
%endif
add dstUq, wq
add dstVq, wq
%if mmsize == 16
test srcq, 15
%endif
lea srcq, [srcq+wq*2]
pcmpeqb m5, m5 ; (byte) { 0xff } x 16
psrlw m5, 8 ; (word) { 0x00ff } x 8
%if mmsize == 16
jnz .loop_u_start
neg wq
LOOP_NVXX_TO_UV a, %2
.loop_u_start:
neg wq
LOOP_NVXX_TO_UV u, %2
%else ; mmsize == 8
neg wq
LOOP_NVXX_TO_UV a, %2
%endif ; mmsize == 8/16
%endmacro
%if ARCH_X86_32
INIT_MMX mmx
YUYV_TO_Y_FN 0, yuyv
YUYV_TO_Y_FN 0, uyvy
YUYV_TO_UV_FN 0, yuyv
YUYV_TO_UV_FN 0, uyvy
NVXX_TO_UV_FN 0, nv12
NVXX_TO_UV_FN 0, nv21
%endif
INIT_XMM sse2
YUYV_TO_Y_FN 3, yuyv
YUYV_TO_Y_FN 2, uyvy
YUYV_TO_UV_FN 3, yuyv
YUYV_TO_UV_FN 3, uyvy
NVXX_TO_UV_FN 5, nv12
NVXX_TO_UV_FN 5, nv21
%if HAVE_AVX_EXTERNAL
INIT_XMM avx
; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
; that's not faster in practice
YUYV_TO_UV_FN 3, yuyv
YUYV_TO_UV_FN 3, uyvy, 1
NVXX_TO_UV_FN 5, nv12
NVXX_TO_UV_FN 5, nv21
%endif
%if ARCH_X86_64
%define RY_IDX 0
%define GY_IDX 1
%define BY_IDX 2
%define RU_IDX 3
%define GU_IDX 4
%define BU_IDX 5
%define RV_IDX 6
%define GV_IDX 7
%define BV_IDX 8
%define RGB2YUV_SHIFT 15
%define R m0
%define G m1
%define B m2
%macro SWAP32 1
%if mmsize > 16 || cpuflag(sse4)
pshufb m%1, [pb_shuffle32be]
%else
psrlw xm7, xm%1, 8
psllw xm%1, 8
por xm%1, xm7
pshuflw xm%1, xm%1, (2 << 6 | 3 << 4 | 0 << 2 | 1 << 0)
pshufhw xm%1, xm%1, (2 << 6 | 3 << 4 | 0 << 2 | 1 << 0)
%endif
%endmacro
; 1 - dest
; 2 - source
; 3 - is big endian
; 4 - load only 2 values on sse2
%macro LOADF32 4
%if notcpuflag(sse4) && %4
%if %3 ; big endian
mov tmp1q, %2
bswap tmp1q
movq xm%1, tmp1q
%else
movq m%1, %2
%endif
%else
movu m%1, %2
%if %3
SWAP32 %1
%endif
%endif
maxps m%1, m9 ; 0.0 (nan, -inf) -> 0.0
mulps m%1, m8 ; [pd_65535f]
minps m%1, m8 ; +inf -> 65535
; cvtps2dq rounds to nearest int
; assuming mxcsr register is default rounding
; 0.40 -> 0.0, 0.50 -> 0.0, 0.51 -> 1.0
cvtps2dq m%1, m%1
%if notcpuflag(sse4) && %4
; line up the 2 values in lanes 0,2
%if %3 ; big endian
pshufd m%1, m%1, (3 << 6 | 0 << 4 | 2 << 2 | 1 << 0)
%else
pshufd m%1, m%1, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
%endif
%endif
%endmacro
; 1 - dest
; 2 - source
; 3 - is big endian
%macro LOAD16 3
%if cpuflag(sse4) || mmsize > 16
pmovzxwd m%1, %2
%if %3 ; bigendian
pshufb m%1, m8 ; [pb_shuffle16be]
%endif
%else
%if %3 ; bigendian
mov tmp1d, dword %2
bswap tmp1d
movd xm%1, tmp1d
pshuflw m%1, m%1, (3 << 6 | 0 << 4 | 3 << 2 | 1 << 0)
pshufd m%1, m%1, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
%else
movd xm%1, %2
punpcklwd m%1, m9 ; interleave words with zero
pshufd m%1, m%1, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
%endif
%endif
%endmacro
%macro LOAD8_RGB 0
%if cpuflag(sse4) || mmsize > 16
pmovzxbd R, [srcRq + xq]
pmovzxbd G, [srcGq + xq]
pmovzxbd B, [srcBq + xq]
%else
; thought this would be faster but from my measurments its not
; movd m0, [srcRq + xq + 0]; overeads by 2 bytes
; punpcklbw m0, m9 ; interleave bytes with zero
; punpcklwd m0, m9 ; interleave words with zero
; pshufd m0, m0, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
movzx tmp2q, byte [srcRq + xq + 1]
movzx tmp1q, byte [srcRq + xq + 0]
shl tmp2q, 32
or tmp1q, tmp2q
movq xm0, tmp1q
movzx tmp2q, byte [srcGq + xq + 1]
movzx tmp3q, byte [srcGq + xq + 0]
shl tmp2q, 32
or tmp3q, tmp2q
movq xm1, tmp3q
movzx tmp2q, byte [srcBq + xq + 1]
movzx tmp1q, byte [srcBq + xq + 0]
shl tmp2q, 32
or tmp1q, tmp2q
movq xm2, tmp1q
pshufd m0, m0, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
pshufd m1, m1, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
pshufd m2, m2, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
%endif
%endmacro
; 1 - dest
; 2 - source
; 3 - store only 2 values on sse2
%macro STORE16 3
%if %3 && notcpuflag(sse4)
pshufd m%2, m%2, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
pshuflw m%2, m%2, (3 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
movd %1, m%2
%elif mmsize > 16
pshufb m%2, m7 ; [pb_pack_shuffle16le]
vpermq m%2, m%2, (3 << 6 | 0 << 4 | 3 << 2 | 0 << 0)
movu %1, xm%2
%else
%if cpuflag(sse4)
pshufb m%2, m7 ; [pb_pack_shuffle16le]
%else
pshuflw m%2, m%2, (1 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
pshufhw m%2, m%2, (1 << 6 | 1 << 4 | 2 << 2 | 0 << 0)
pshufd m%2, m%2, (3 << 6 | 3 << 4 | 2 << 2 | 0 << 0)
%endif
movq %1, m%2
%endif
%endmacro
%macro PMUL 3
%if cpuflag(sse4) || mmsize > 16
pmulld %1, %2, %3
%else
pmuludq %1, %2, %3
%endif
%endmacro
; 1 - name
; 2 - depth
; 3 - is big endian
; 4 - is float
; in sse2 mode only 2 values are done per loop, due to lack of pmulld instruction
%macro planar_rgb_to_y_fn 4
%if %2 == 8
%define OFFSET (0x801<<(RGB2YUV_SHIFT-7))
%define RSHIFT (RGB2YUV_SHIFT-6)
%else
%if %2 < 16
%define SHIFT %2
%define BPC %2
%else
%define SHIFT 14
%define BPC 16
%endif
%define OFFSET ((16 << (RGB2YUV_SHIFT + BPC - 8)) + (1 << (RGB2YUV_SHIFT + SHIFT - 15)))
%define RSHIFT (RGB2YUV_SHIFT + SHIFT - 14)
%endif
cglobal planar_%1_to_y, 4, 12, 13, dst, src, w, rgb2yuv, srcR, srcG, srcB, x, tmp1, tmp2, tmp3, tmp4
VBROADCASTSS m10, dword [rgb2yuvq + RY_IDX*4] ; ry
VBROADCASTSS m11, dword [rgb2yuvq + GY_IDX*4] ; gy
VBROADCASTSS m12, dword [rgb2yuvq + BY_IDX*4] ; by
pxor m9, m9
%if %4
movu m8, [pd_65535f]
%endif
%if cpuflag(sse4) || mmsize > 16
movu m7, [pb_pack_shuffle16le]
%if %3 && %2 > 8 && %2 <= 16
movu m8, [pb_shuffle16be]
%endif
%endif
mov xq, OFFSET
movq xm6, xq
VBROADCASTSS m6, xm6
mov srcGq, [srcq + 0]
mov srcBq, [srcq + 8]
mov srcRq, [srcq + 16]
xor xq, xq
%%loop_x:
%if %4
LOADF32 0, [srcRq + xq*4], %3, 1
LOADF32 1, [srcGq + xq*4], %3, 1
LOADF32 2, [srcBq + xq*4], %3, 1
%elif %2 == 8
LOAD8_RGB
%else
LOAD16 0, [srcRq + xq*2], %3
LOAD16 1, [srcGq + xq*2], %3
LOAD16 2, [srcBq + xq*2], %3
%endif
PMUL R, R, m10 ; r*ry
PMUL G, G, m11 ; g*gy
PMUL B, B, m12 ; b*by
paddd m0, m6 ; + OFFSET
paddd B, G
paddd m0, B
psrad m0, RSHIFT
STORE16 [dstq + 2*xq], 0, 1
%if cpuflag(avx2) || cpuflag(sse4)
add xq, mmsize/4
%else
add xd, 2
%endif
cmp xd, wd
jl %%loop_x
RET
%endmacro
; 1 - name
; 2 - depth
; 3 - is big endian
; 4 - is float
; in sse2 mode only 2 values are done per loop, due to lack of pmulld instruction
%macro planar_rgb_to_uv_fn 4
%if %2 == 8
%define OFFSET (0x4001<<(RGB2YUV_SHIFT-7))
%define RSHIFT (RGB2YUV_SHIFT-6)
%else
%if %2 < 16
%define SHIFT %2
%define BPC %2
%else
%define SHIFT 14
%define BPC 16
%endif
%define OFFSET ((128 << (RGB2YUV_SHIFT + BPC - 8)) + (1 << (RGB2YUV_SHIFT + SHIFT - 15)))
%define RSHIFT (RGB2YUV_SHIFT + SHIFT - 14)
%endif
cglobal planar_%1_to_uv, 5, 12, 16, dstU, dstV, src, w, rgb2yuv, srcR, srcG, srcB, x, tmp1, tmp2, tmp3
VBROADCASTSS m10, dword [rgb2yuvq + RU_IDX*4] ; ru
VBROADCASTSS m11, dword [rgb2yuvq + GU_IDX*4] ; gu
VBROADCASTSS m12, dword [rgb2yuvq + BU_IDX*4] ; bu
VBROADCASTSS m13, dword [rgb2yuvq + RV_IDX*4] ; rv
VBROADCASTSS m14, dword [rgb2yuvq + GV_IDX*4] ; gv
VBROADCASTSS m15, dword [rgb2yuvq + BV_IDX*4] ; bv
pxor m9, m9
%if %4
movu m8, [pd_65535f]
%endif
%if cpuflag(sse4) || mmsize > 16
movu m7, [pb_pack_shuffle16le]
%if %3 && %2 > 8 && %2 <= 16
movu m8, [pb_shuffle16be]
%endif
%endif
mov xq, OFFSET
movq xm6, xq
VBROADCASTSS m6, xm6
mov srcGq, [srcq + 0]
mov srcBq, [srcq + 8]
mov srcRq, [srcq + 16]
xor xq, xq
%%loop_x:
%if %4
LOADF32 0, [srcRq + xq*4], %3, 1
LOADF32 1, [srcGq + xq*4], %3, 1
LOADF32 2, [srcBq + xq*4], %3, 1
%elif %2 == 8
LOAD8_RGB
%else
LOAD16 0, [srcRq + xq*2], %3
LOAD16 1, [srcGq + xq*2], %3
LOAD16 2, [srcBq + xq*2], %3
%endif
PMUL m5, R, m10 ; r*ru
PMUL m4, G, m11 ; b*gu
paddd m4, m5
PMUL m5, B, m12 ; b*bu
paddd m4, m6 ; + OFFSET
paddd m4, m5
psrad m4, RSHIFT
STORE16 [dstUq + 2*xq], 4, 1
PMUL R, R, m13 ; r*rv
PMUL G, G, m14 ; g*gv*g
PMUL B, B, m15 ; b*bv
paddd m0, m6 ; + OFFSET
paddd B, G
paddd m0, B
psrad m0, RSHIFT
STORE16 [dstVq + 2*xq], 0, 1
%if cpuflag(avx2) || cpuflag(sse4)
add xd, mmsize/4
%else
add xd, 2
%endif
cmp xd, wd
jl %%loop_x
RET
%endmacro
; 1 - name
; 2 - depth
; 3 - is big endian
; 4 - is float
%macro planar_rgb_to_a_fn 4
cglobal planar_%1_to_a, 4, 6, 10, dst, src, w, rgb2yuv, srcA, x
%if %4 && (cpuflag(sse4) || mmsize > 16)
movu m7, [pb_pack_shuffle16le]
%elif %3 && (cpuflag(sse4) || mmsize > 16)
movu m7, [pb_shuffle16be]
%endif
%if %4
movu m8, [pd_65535f]
%endif
pxor m9, m9
mov srcAq, [srcq + 24]
xor xq, xq
%%loop_x:
%if %4 ; float
LOADF32 0, [srcAq + xq*4], %3, 0
STORE16 [dstq + xq*2], 0, 0
add xq, mmsize/4
%elif %2 == 8
; only need to convert 8bit value to 16bit
%if cpuflag(sse4) || mmsize > 16
pmovzxbw m0, [srcAq + xq]
%else
movsd m0, [srcAq + xq]
punpcklbw m0, m9 ; interleave bytes with zero
%endif
psllw m0, 6
movu [dstq + xq*2], m0
add xq, mmsize/2
%else
; only need to convert 16bit format to 16le
movu m0, [srcAq + xq*2]
%if %3 ; bigendian
%if cpuflag(sse4) || mmsize > 16
pshufb m0, m7 ; [pb_shuffle16be]
%else
psrlw m7, m0, 8
psllw m0, 8
por m0, m7
%endif
%endif
%if %2 < 16
psllw m0, (14 - %2)
%endif
movu [dstq + xq*2], m0
add xq, mmsize/2
%endif
cmp xd, wd
jl %%loop_x
RET
%endmacro
; 1 - name
; 2 - depth
; 3 - is float
%macro planer_rgbxx_y_fn_decl 3
planar_rgb_to_y_fn %1le, %2, 0, %3
planar_rgb_to_y_fn %1be, %2, 1, %3
%endmacro
; 1 - name
; 2 - depth
; 3 - is float
%macro planer_rgbxx_uv_fn_decl 3
planar_rgb_to_uv_fn %1le, %2, 0, %3
planar_rgb_to_uv_fn %1be, %2, 1, %3
%endmacro
; 1 - name
; 2 - depth
; 3 - is float
%macro planer_rgbxx_a_fn_decl 3
planar_rgb_to_a_fn %1le, %2, 0, %3
planar_rgb_to_a_fn %1be, %2, 1, %3
%endmacro
%macro planar_rgb_y_all_fn_decl 0
planar_rgb_to_y_fn rgb, 8, 0, 0
planer_rgbxx_y_fn_decl rgb9, 9, 0
planer_rgbxx_y_fn_decl rgb10, 10, 0
planer_rgbxx_y_fn_decl rgb12, 12, 0
planer_rgbxx_y_fn_decl rgb14, 14, 0
planer_rgbxx_y_fn_decl rgb16, 16, 0
planer_rgbxx_y_fn_decl rgbf32, 32, 1
%endmacro
%macro planar_rgb_uv_all_fn_decl 0
planar_rgb_to_uv_fn rgb, 8, 0, 0
planer_rgbxx_uv_fn_decl rgb9, 9, 0
planer_rgbxx_uv_fn_decl rgb10, 10, 0
planer_rgbxx_uv_fn_decl rgb12, 12, 0
planer_rgbxx_uv_fn_decl rgb14, 14, 0
planer_rgbxx_uv_fn_decl rgb16, 16, 0
planer_rgbxx_uv_fn_decl rgbf32, 32, 1
%endmacro
%macro planar_rgb_a_all_fn_decl 0
planar_rgb_to_a_fn rgb, 8, 0, 0
planer_rgbxx_a_fn_decl rgb10, 10, 0
planer_rgbxx_a_fn_decl rgb12, 12, 0
planer_rgbxx_a_fn_decl rgb16, 16, 0
planer_rgbxx_a_fn_decl rgbf32, 32, 1
%endmacro
; sse2 to_y only matches c speed with current implementation
; except on floating point formats
INIT_XMM sse2
planer_rgbxx_y_fn_decl rgbf32, 32, 1
planar_rgb_uv_all_fn_decl
planar_rgb_a_all_fn_decl
; sse4 to_a conversions are just the sse2 ones
; except on floating point formats
INIT_XMM sse4
planar_rgb_y_all_fn_decl
planar_rgb_uv_all_fn_decl
planer_rgbxx_a_fn_decl rgbf32, 32, 1
%if HAVE_AVX2_EXTERNAL
INIT_YMM avx2
planar_rgb_y_all_fn_decl
planar_rgb_uv_all_fn_decl
planar_rgb_a_all_fn_decl
%endif
%endif ; ARCH_X86_64