mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-28 20:53:54 +02:00
af1bf96138
The floating point dsp code does not use MMX registers
since 2718a3be1f
.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
394 lines
13 KiB
C
394 lines
13 KiB
C
/*
|
|
* Copyright (c) 2017 Paul B Mahol
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/tx.h"
|
|
#include "avfilter.h"
|
|
#include "internal.h"
|
|
#include "audio.h"
|
|
|
|
#undef ctype
|
|
#undef ftype
|
|
#undef SQRT
|
|
#undef HYPOT
|
|
#undef SAMPLE_FORMAT
|
|
#undef TX_TYPE
|
|
#if DEPTH == 32
|
|
#define SAMPLE_FORMAT float
|
|
#define SQRT sqrtf
|
|
#define HYPOT hypotf
|
|
#define ctype AVComplexFloat
|
|
#define ftype float
|
|
#define TX_TYPE AV_TX_FLOAT_RDFT
|
|
#else
|
|
#define SAMPLE_FORMAT double
|
|
#define SQRT sqrt
|
|
#define HYPOT hypot
|
|
#define ctype AVComplexDouble
|
|
#define ftype double
|
|
#define TX_TYPE AV_TX_DOUBLE_RDFT
|
|
#endif
|
|
|
|
#define fn3(a,b) a##_##b
|
|
#define fn2(a,b) fn3(a,b)
|
|
#define fn(a) fn2(a, SAMPLE_FORMAT)
|
|
|
|
static void fn(draw_response)(AVFilterContext *ctx, AVFrame *out)
|
|
{
|
|
AudioFIRContext *s = ctx->priv;
|
|
ftype *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
|
|
ftype min_delay = FLT_MAX, max_delay = FLT_MIN;
|
|
int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
|
|
char text[32];
|
|
int channel, i, x;
|
|
|
|
for (int y = 0; y < s->h; y++)
|
|
memset(out->data[0] + y * out->linesize[0], 0, s->w * 4);
|
|
|
|
phase = av_malloc_array(s->w, sizeof(*phase));
|
|
mag = av_malloc_array(s->w, sizeof(*mag));
|
|
delay = av_malloc_array(s->w, sizeof(*delay));
|
|
if (!mag || !phase || !delay)
|
|
goto end;
|
|
|
|
channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->ch_layout.nb_channels - 1);
|
|
for (i = 0; i < s->w; i++) {
|
|
const ftype *src = (const ftype *)s->ir[s->selir]->extended_data[channel];
|
|
double w = i * M_PI / (s->w - 1);
|
|
double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
|
|
|
|
for (x = 0; x < s->nb_taps[s->selir]; x++) {
|
|
real += cos(-x * w) * src[x];
|
|
imag += sin(-x * w) * src[x];
|
|
real_num += cos(-x * w) * src[x] * x;
|
|
imag_num += sin(-x * w) * src[x] * x;
|
|
}
|
|
|
|
mag[i] = hypot(real, imag);
|
|
phase[i] = atan2(imag, real);
|
|
div = real * real + imag * imag;
|
|
delay[i] = (real_num * real + imag_num * imag) / div;
|
|
min = fminf(min, mag[i]);
|
|
max = fmaxf(max, mag[i]);
|
|
min_delay = fminf(min_delay, delay[i]);
|
|
max_delay = fmaxf(max_delay, delay[i]);
|
|
}
|
|
|
|
for (i = 0; i < s->w; i++) {
|
|
int ymag = mag[i] / max * (s->h - 1);
|
|
int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
|
|
int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
|
|
|
|
ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
|
|
yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
|
|
ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
|
|
|
|
if (prev_ymag < 0)
|
|
prev_ymag = ymag;
|
|
if (prev_yphase < 0)
|
|
prev_yphase = yphase;
|
|
if (prev_ydelay < 0)
|
|
prev_ydelay = ydelay;
|
|
|
|
draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
|
|
draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
|
|
draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
|
|
|
|
prev_ymag = ymag;
|
|
prev_yphase = yphase;
|
|
prev_ydelay = ydelay;
|
|
}
|
|
|
|
if (s->w > 400 && s->h > 100) {
|
|
drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", max);
|
|
drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", min);
|
|
drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", max_delay);
|
|
drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
|
|
|
|
drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
|
|
snprintf(text, sizeof(text), "%.2f", min_delay);
|
|
drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
|
|
}
|
|
|
|
end:
|
|
av_free(delay);
|
|
av_free(phase);
|
|
av_free(mag);
|
|
}
|
|
|
|
static int fn(get_power)(AVFilterContext *ctx, AudioFIRContext *s,
|
|
int cur_nb_taps, int ch,
|
|
ftype *time)
|
|
{
|
|
ftype ch_gain = 1;
|
|
|
|
switch (s->gtype) {
|
|
case -1:
|
|
ch_gain = 1;
|
|
break;
|
|
case 0:
|
|
{
|
|
ftype sum = 0;
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
sum += FFABS(time[i]);
|
|
ch_gain = 1. / sum;
|
|
}
|
|
break;
|
|
case 1:
|
|
{
|
|
ftype sum = 0;
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
sum += time[i];
|
|
ch_gain = 1. / sum;
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
ftype sum = 0;
|
|
|
|
for (int i = 0; i < cur_nb_taps; i++)
|
|
sum += time[i] * time[i];
|
|
ch_gain = 1. / SQRT(sum);
|
|
}
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
{
|
|
ftype *inc, *outc, scale, power;
|
|
AVTXContext *tx;
|
|
av_tx_fn tx_fn;
|
|
int ret, size;
|
|
|
|
size = 1 << av_ceil_log2_c(cur_nb_taps);
|
|
inc = av_calloc(size + 2, sizeof(SAMPLE_FORMAT));
|
|
outc = av_calloc(size + 2, sizeof(SAMPLE_FORMAT));
|
|
if (!inc || !outc) {
|
|
av_free(outc);
|
|
av_free(inc);
|
|
break;
|
|
}
|
|
|
|
scale = 1.;
|
|
ret = av_tx_init(&tx, &tx_fn, TX_TYPE, 0, size, &scale, 0);
|
|
if (ret < 0) {
|
|
av_free(outc);
|
|
av_free(inc);
|
|
break;
|
|
}
|
|
|
|
{
|
|
memcpy(inc, time, cur_nb_taps * sizeof(SAMPLE_FORMAT));
|
|
tx_fn(tx, outc, inc, sizeof(SAMPLE_FORMAT));
|
|
|
|
power = 0;
|
|
if (s->gtype == 3) {
|
|
for (int i = 0; i < size / 2 + 1; i++)
|
|
power = FFMAX(power, HYPOT(outc[i * 2], outc[i * 2 + 1]));
|
|
} else {
|
|
ftype sum = 0;
|
|
for (int i = 0; i < size / 2 + 1; i++)
|
|
sum += HYPOT(outc[i * 2], outc[i * 2 + 1]);
|
|
power = SQRT(sum / (size / 2 + 1));
|
|
}
|
|
|
|
ch_gain = 1. / power;
|
|
}
|
|
|
|
av_tx_uninit(&tx);
|
|
av_free(outc);
|
|
av_free(inc);
|
|
}
|
|
break;
|
|
default:
|
|
return AVERROR_BUG;
|
|
}
|
|
|
|
if (ch_gain != 1. || s->ir_gain != 1.) {
|
|
ftype gain = ch_gain * s->ir_gain;
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "ch%d gain %f\n", ch, gain);
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 8));
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fn(convert_channel)(AVFilterContext *ctx, AudioFIRContext *s, int ch,
|
|
AudioFIRSegment *seg, int coeff_partition, int selir)
|
|
{
|
|
const int coffset = coeff_partition * seg->coeff_size;
|
|
const int nb_taps = s->nb_taps[selir];
|
|
ftype *time = (ftype *)s->norm_ir[selir]->extended_data[ch];
|
|
ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
|
|
ftype *tempout = (ftype *)seg->tempout->extended_data[ch];
|
|
ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
|
|
const int remaining = nb_taps - (seg->input_offset + coeff_partition * seg->part_size);
|
|
const int size = remaining >= seg->part_size ? seg->part_size : remaining;
|
|
|
|
memset(tempin + size, 0, sizeof(*tempin) * (seg->block_size - size));
|
|
memcpy(tempin, time + seg->input_offset + coeff_partition * seg->part_size,
|
|
size * sizeof(*tempin));
|
|
seg->ctx_fn(seg->ctx[ch], tempout, tempin, sizeof(*tempin));
|
|
memcpy(coeff + coffset, tempout, seg->coeff_size * sizeof(*coeff));
|
|
|
|
av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
|
|
av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
|
|
av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
|
|
av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
|
|
av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
|
|
}
|
|
|
|
static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
|
|
{
|
|
if ((nb_samples & 15) == 0 && nb_samples >= 8) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
|
|
#else
|
|
s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
|
|
#endif
|
|
} else {
|
|
for (int n = 0; n < nb_samples; n++)
|
|
dst[n] += src[n];
|
|
}
|
|
}
|
|
|
|
static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int ioffset, int offset, int selir)
|
|
{
|
|
AudioFIRContext *s = ctx->priv;
|
|
const ftype *in = (const ftype *)s->in->extended_data[ch] + ioffset;
|
|
ftype *blockout, *ptr = (ftype *)out->extended_data[ch] + offset;
|
|
const int min_part_size = s->min_part_size;
|
|
const int nb_samples = FFMIN(min_part_size, out->nb_samples - offset);
|
|
const int nb_segments = s->nb_segments[selir];
|
|
const float dry_gain = s->dry_gain;
|
|
const float wet_gain = s->wet_gain;
|
|
|
|
for (int segment = 0; segment < nb_segments; segment++) {
|
|
AudioFIRSegment *seg = &s->seg[selir][segment];
|
|
ftype *src = (ftype *)seg->input->extended_data[ch];
|
|
ftype *dst = (ftype *)seg->output->extended_data[ch];
|
|
ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
|
|
ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
|
|
ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
|
|
ftype *buf = (ftype *)seg->buffer->extended_data[ch];
|
|
int *output_offset = &seg->output_offset[ch];
|
|
const int nb_partitions = seg->nb_partitions;
|
|
const int input_offset = seg->input_offset;
|
|
const int part_size = seg->part_size;
|
|
int j;
|
|
|
|
seg->part_index[ch] = seg->part_index[ch] % nb_partitions;
|
|
if (dry_gain == 1.f) {
|
|
memcpy(src + input_offset, in, nb_samples * sizeof(*src));
|
|
} else if (min_part_size >= 8) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 8));
|
|
#endif
|
|
} else {
|
|
ftype *src2 = src + input_offset;
|
|
for (int n = 0; n < nb_samples; n++)
|
|
src2[n] = in[n] * dry_gain;
|
|
}
|
|
|
|
output_offset[0] += min_part_size;
|
|
if (output_offset[0] >= part_size) {
|
|
output_offset[0] = 0;
|
|
} else {
|
|
memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
|
|
|
|
dst += output_offset[0];
|
|
fn(fir_fadd)(s, ptr, dst, nb_samples);
|
|
continue;
|
|
}
|
|
|
|
memset(sumin, 0, sizeof(*sumin) * seg->fft_length);
|
|
|
|
blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
|
|
memset(tempin + part_size, 0, sizeof(*tempin) * (seg->block_size - part_size));
|
|
memcpy(tempin, src, sizeof(*src) * part_size);
|
|
seg->tx_fn(seg->tx[ch], blockout, tempin, sizeof(ftype));
|
|
|
|
j = seg->part_index[ch];
|
|
for (int i = 0; i < nb_partitions; i++) {
|
|
const int input_partition = j;
|
|
const int coeff_partition = i;
|
|
const int coffset = coeff_partition * seg->coeff_size;
|
|
const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + input_partition * seg->block_size;
|
|
const ctype *coeff = ((const ctype *)seg->coeff->extended_data[ch]) + coffset;
|
|
|
|
if (j == 0)
|
|
j = nb_partitions;
|
|
j--;
|
|
|
|
#if DEPTH == 32
|
|
s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
|
|
#else
|
|
s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
|
|
#endif
|
|
}
|
|
|
|
seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ctype));
|
|
|
|
fn(fir_fadd)(s, buf, sumout, part_size);
|
|
memcpy(dst, buf, part_size * sizeof(*dst));
|
|
memcpy(buf, sumout + part_size, part_size * sizeof(*buf));
|
|
|
|
fn(fir_fadd)(s, ptr, dst, nb_samples);
|
|
|
|
if (part_size != min_part_size)
|
|
memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
|
|
|
|
seg->part_index[ch] = (seg->part_index[ch] + 1) % nb_partitions;
|
|
}
|
|
|
|
if (wet_gain == 1.f)
|
|
return 0;
|
|
|
|
if (min_part_size >= 8) {
|
|
#if DEPTH == 32
|
|
s->fdsp->vector_fmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 4));
|
|
#else
|
|
s->fdsp->vector_dmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 8));
|
|
#endif
|
|
} else {
|
|
for (int n = 0; n < nb_samples; n++)
|
|
ptr[n] *= wet_gain;
|
|
}
|
|
|
|
return 0;
|
|
}
|