1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/mss12.c
Michael Niedermayer 1bc9b64cf4 avcodec/mss1: check for overread and forward errors
Fixes: Timeout (106sec -> 14ms)
Fixes: 15576/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_MSS1_fuzzer-5688080461201408

Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg
Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
(cherry picked from commit 43015afd7c)
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2020-01-06 11:30:42 +01:00

695 lines
21 KiB
C

/*
* Copyright (c) 2012 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Common functions for Microsoft Screen 1 and 2
*/
#include <inttypes.h>
#include "libavutil/intfloat.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "mss12.h"
enum SplitMode {
SPLIT_VERT = 0,
SPLIT_HOR,
SPLIT_NONE
};
static const int sec_order_sizes[4] = { 1, 7, 6, 1 };
enum ContextDirection {
TOP_LEFT = 0,
TOP,
TOP_RIGHT,
LEFT
};
static int model_calc_threshold(Model *m)
{
int thr;
thr = 2 * m->weights[m->num_syms] - 1;
thr = ((thr >> 1) + 4 * m->cum_prob[0]) / thr;
return FFMIN(thr, 0x3FFF);
}
static void model_reset(Model *m)
{
int i;
for (i = 0; i <= m->num_syms; i++) {
m->weights[i] = 1;
m->cum_prob[i] = m->num_syms - i;
}
m->weights[0] = 0;
for (i = 0; i < m->num_syms; i++)
m->idx2sym[i + 1] = i;
}
static av_cold void model_init(Model *m, int num_syms, int thr_weight)
{
m->num_syms = num_syms;
m->thr_weight = thr_weight;
m->threshold = num_syms * thr_weight;
}
static void model_rescale_weights(Model *m)
{
int i;
int cum_prob;
if (m->thr_weight == THRESH_ADAPTIVE)
m->threshold = model_calc_threshold(m);
while (m->cum_prob[0] > m->threshold) {
cum_prob = 0;
for (i = m->num_syms; i >= 0; i--) {
m->cum_prob[i] = cum_prob;
m->weights[i] = (m->weights[i] + 1) >> 1;
cum_prob += m->weights[i];
}
}
}
void ff_mss12_model_update(Model *m, int val)
{
int i;
if (m->weights[val] == m->weights[val - 1]) {
for (i = val; m->weights[i - 1] == m->weights[val]; i--);
if (i != val) {
int sym1, sym2;
sym1 = m->idx2sym[val];
sym2 = m->idx2sym[i];
m->idx2sym[val] = sym2;
m->idx2sym[i] = sym1;
val = i;
}
}
m->weights[val]++;
for (i = val - 1; i >= 0; i--)
m->cum_prob[i]++;
model_rescale_weights(m);
}
static void pixctx_reset(PixContext *ctx)
{
int i, j;
if (!ctx->special_initial_cache)
for (i = 0; i < ctx->cache_size; i++)
ctx->cache[i] = i;
else {
ctx->cache[0] = 1;
ctx->cache[1] = 2;
ctx->cache[2] = 4;
}
model_reset(&ctx->cache_model);
model_reset(&ctx->full_model);
for (i = 0; i < 15; i++)
for (j = 0; j < 4; j++)
model_reset(&ctx->sec_models[i][j]);
}
static av_cold void pixctx_init(PixContext *ctx, int cache_size,
int full_model_syms, int special_initial_cache)
{
int i, j, k, idx;
ctx->cache_size = cache_size + 4;
ctx->num_syms = cache_size;
ctx->special_initial_cache = special_initial_cache;
model_init(&ctx->cache_model, ctx->num_syms + 1, THRESH_LOW);
model_init(&ctx->full_model, full_model_syms, THRESH_HIGH);
for (i = 0, idx = 0; i < 4; i++)
for (j = 0; j < sec_order_sizes[i]; j++, idx++)
for (k = 0; k < 4; k++)
model_init(&ctx->sec_models[idx][k], 2 + i,
i ? THRESH_LOW : THRESH_ADAPTIVE);
}
static av_always_inline int decode_pixel(ArithCoder *acoder, PixContext *pctx,
uint8_t *ngb, int num_ngb, int any_ngb)
{
int i, val, pix;
if (acoder->overread > MAX_OVERREAD)
return AVERROR_INVALIDDATA;
val = acoder->get_model_sym(acoder, &pctx->cache_model);
if (val < pctx->num_syms) {
if (any_ngb) {
int idx, j;
idx = 0;
for (i = 0; i < pctx->cache_size; i++) {
for (j = 0; j < num_ngb; j++)
if (pctx->cache[i] == ngb[j])
break;
if (j == num_ngb) {
if (idx == val)
break;
idx++;
}
}
val = FFMIN(i, pctx->cache_size - 1);
}
pix = pctx->cache[val];
} else {
pix = acoder->get_model_sym(acoder, &pctx->full_model);
for (i = 0; i < pctx->cache_size - 1; i++)
if (pctx->cache[i] == pix)
break;
val = i;
}
if (val) {
for (i = val; i > 0; i--)
pctx->cache[i] = pctx->cache[i - 1];
pctx->cache[0] = pix;
}
return pix;
}
static int decode_pixel_in_context(ArithCoder *acoder, PixContext *pctx,
uint8_t *src, ptrdiff_t stride, int x, int y,
int has_right)
{
uint8_t neighbours[4];
uint8_t ref_pix[4];
int nlen;
int layer = 0, sub;
int pix;
int i, j;
if (!y) {
memset(neighbours, src[-1], 4);
} else {
neighbours[TOP] = src[-stride];
if (!x) {
neighbours[TOP_LEFT] = neighbours[LEFT] = neighbours[TOP];
} else {
neighbours[TOP_LEFT] = src[-stride - 1];
neighbours[ LEFT] = src[-1];
}
if (has_right)
neighbours[TOP_RIGHT] = src[-stride + 1];
else
neighbours[TOP_RIGHT] = neighbours[TOP];
}
sub = 0;
if (x >= 2 && src[-2] == neighbours[LEFT])
sub = 1;
if (y >= 2 && src[-2 * stride] == neighbours[TOP])
sub |= 2;
nlen = 1;
ref_pix[0] = neighbours[0];
for (i = 1; i < 4; i++) {
for (j = 0; j < nlen; j++)
if (ref_pix[j] == neighbours[i])
break;
if (j == nlen)
ref_pix[nlen++] = neighbours[i];
}
switch (nlen) {
case 1:
layer = 0;
break;
case 2:
if (neighbours[TOP] == neighbours[TOP_LEFT]) {
if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
layer = 1;
else if (neighbours[LEFT] == neighbours[TOP_LEFT])
layer = 2;
else
layer = 3;
} else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT]) {
if (neighbours[LEFT] == neighbours[TOP_LEFT])
layer = 4;
else
layer = 5;
} else if (neighbours[LEFT] == neighbours[TOP_LEFT]) {
layer = 6;
} else {
layer = 7;
}
break;
case 3:
if (neighbours[TOP] == neighbours[TOP_LEFT])
layer = 8;
else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
layer = 9;
else if (neighbours[LEFT] == neighbours[TOP_LEFT])
layer = 10;
else if (neighbours[TOP_RIGHT] == neighbours[TOP])
layer = 11;
else if (neighbours[TOP] == neighbours[LEFT])
layer = 12;
else
layer = 13;
break;
case 4:
layer = 14;
break;
}
pix = acoder->get_model_sym(acoder,
&pctx->sec_models[layer][sub]);
if (pix < nlen)
return ref_pix[pix];
else
return decode_pixel(acoder, pctx, ref_pix, nlen, 1);
}
static int decode_region(ArithCoder *acoder, uint8_t *dst, uint8_t *rgb_pic,
int x, int y, int width, int height, ptrdiff_t stride,
ptrdiff_t rgb_stride, PixContext *pctx,
const uint32_t *pal)
{
int i, j, p;
uint8_t *rgb_dst = rgb_pic + x * 3 + y * rgb_stride;
dst += x + y * stride;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (!i && !j)
p = decode_pixel(acoder, pctx, NULL, 0, 0);
else
p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
i, j, width - i - 1);
if (p < 0)
return p;
dst[i] = p;
if (rgb_pic)
AV_WB24(rgb_dst + i * 3, pal[p]);
}
dst += stride;
rgb_dst += rgb_stride;
}
return 0;
}
static void copy_rectangles(MSS12Context const *c,
int x, int y, int width, int height)
{
int j;
if (c->last_rgb_pic)
for (j = y; j < y + height; j++) {
memcpy(c->rgb_pic + j * c->rgb_stride + x * 3,
c->last_rgb_pic + j * c->rgb_stride + x * 3,
width * 3);
memcpy(c->pal_pic + j * c->pal_stride + x,
c->last_pal_pic + j * c->pal_stride + x,
width);
}
}
static int motion_compensation(MSS12Context const *c,
int x, int y, int width, int height)
{
if (x + c->mvX < 0 || x + c->mvX + width > c->avctx->width ||
y + c->mvY < 0 || y + c->mvY + height > c->avctx->height ||
!c->rgb_pic)
return -1;
else {
uint8_t *dst = c->pal_pic + x + y * c->pal_stride;
uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
uint8_t *src;
uint8_t *rgb_src;
int j;
x += c->mvX;
y += c->mvY;
if (c->last_rgb_pic) {
src = c->last_pal_pic + x + y * c->pal_stride;
rgb_src = c->last_rgb_pic + x * 3 + y * c->rgb_stride;
} else {
src = c->pal_pic + x + y * c->pal_stride;
rgb_src = c->rgb_pic + x * 3 + y * c->rgb_stride;
}
for (j = 0; j < height; j++) {
memmove(dst, src, width);
memmove(rgb_dst, rgb_src, width * 3);
dst += c->pal_stride;
src += c->pal_stride;
rgb_dst += c->rgb_stride;
rgb_src += c->rgb_stride;
}
}
return 0;
}
static int decode_region_masked(MSS12Context const *c, ArithCoder *acoder,
uint8_t *dst, ptrdiff_t stride, uint8_t *mask,
ptrdiff_t mask_stride, int x, int y,
int width, int height,
PixContext *pctx)
{
int i, j, p;
uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
dst += x + y * stride;
mask += x + y * mask_stride;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (c->avctx->err_recognition & AV_EF_EXPLODE &&
( c->rgb_pic && mask[i] != 0x01 && mask[i] != 0x02 && mask[i] != 0x04 ||
!c->rgb_pic && mask[i] != 0x80 && mask[i] != 0xFF))
return -1;
if (mask[i] == 0x02) {
copy_rectangles(c, x + i, y + j, 1, 1);
} else if (mask[i] == 0x04) {
if (motion_compensation(c, x + i, y + j, 1, 1))
return -1;
} else if (mask[i] != 0x80) {
if (!i && !j)
p = decode_pixel(acoder, pctx, NULL, 0, 0);
else
p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
i, j, width - i - 1);
if (p < 0)
return p;
dst[i] = p;
if (c->rgb_pic)
AV_WB24(rgb_dst + i * 3, c->pal[p]);
}
}
dst += stride;
mask += mask_stride;
rgb_dst += c->rgb_stride;
}
return 0;
}
static av_cold void slicecontext_init(SliceContext *sc,
int version, int full_model_syms)
{
model_init(&sc->intra_region, 2, THRESH_ADAPTIVE);
model_init(&sc->inter_region, 2, THRESH_ADAPTIVE);
model_init(&sc->split_mode, 3, THRESH_HIGH);
model_init(&sc->edge_mode, 2, THRESH_HIGH);
model_init(&sc->pivot, 3, THRESH_LOW);
pixctx_init(&sc->intra_pix_ctx, 8, full_model_syms, 0);
pixctx_init(&sc->inter_pix_ctx, version ? 3 : 2,
full_model_syms, version ? 1 : 0);
}
void ff_mss12_slicecontext_reset(SliceContext *sc)
{
model_reset(&sc->intra_region);
model_reset(&sc->inter_region);
model_reset(&sc->split_mode);
model_reset(&sc->edge_mode);
model_reset(&sc->pivot);
pixctx_reset(&sc->intra_pix_ctx);
pixctx_reset(&sc->inter_pix_ctx);
}
static int decode_pivot(SliceContext *sc, ArithCoder *acoder, int base)
{
int val, inv;
inv = acoder->get_model_sym(acoder, &sc->edge_mode);
val = acoder->get_model_sym(acoder, &sc->pivot) + 1;
if (val > 2) {
if ((base + 1) / 2 - 2 <= 0)
return -1;
val = acoder->get_number(acoder, (base + 1) / 2 - 2) + 3;
}
if ((unsigned)val >= base)
return -1;
return inv ? base - val : val;
}
static int decode_region_intra(SliceContext *sc, ArithCoder *acoder,
int x, int y, int width, int height)
{
MSS12Context const *c = sc->c;
int mode;
mode = acoder->get_model_sym(acoder, &sc->intra_region);
if (!mode) {
int i, j, pix, rgb_pix;
ptrdiff_t stride = c->pal_stride;
ptrdiff_t rgb_stride = c->rgb_stride;
uint8_t *dst = c->pal_pic + x + y * stride;
uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * rgb_stride;
pix = decode_pixel(acoder, &sc->intra_pix_ctx, NULL, 0, 0);
if (pix < 0)
return pix;
rgb_pix = c->pal[pix];
for (i = 0; i < height; i++, dst += stride, rgb_dst += rgb_stride) {
memset(dst, pix, width);
if (c->rgb_pic)
for (j = 0; j < width * 3; j += 3)
AV_WB24(rgb_dst + j, rgb_pix);
}
} else {
return decode_region(acoder, c->pal_pic, c->rgb_pic,
x, y, width, height, c->pal_stride, c->rgb_stride,
&sc->intra_pix_ctx, &c->pal[0]);
}
return 0;
}
static int decode_region_inter(SliceContext *sc, ArithCoder *acoder,
int x, int y, int width, int height)
{
MSS12Context const *c = sc->c;
int mode;
mode = acoder->get_model_sym(acoder, &sc->inter_region);
if (!mode) {
mode = decode_pixel(acoder, &sc->inter_pix_ctx, NULL, 0, 0);
if (mode < 0)
return mode;
if (c->avctx->err_recognition & AV_EF_EXPLODE &&
( c->rgb_pic && mode != 0x01 && mode != 0x02 && mode != 0x04 ||
!c->rgb_pic && mode != 0x80 && mode != 0xFF))
return -1;
if (mode == 0x02)
copy_rectangles(c, x, y, width, height);
else if (mode == 0x04)
return motion_compensation(c, x, y, width, height);
else if (mode != 0x80)
return decode_region_intra(sc, acoder, x, y, width, height);
} else {
if (decode_region(acoder, c->mask, NULL,
x, y, width, height, c->mask_stride, 0,
&sc->inter_pix_ctx, &c->pal[0]) < 0)
return -1;
return decode_region_masked(c, acoder, c->pal_pic,
c->pal_stride, c->mask,
c->mask_stride,
x, y, width, height,
&sc->intra_pix_ctx);
}
return 0;
}
int ff_mss12_decode_rect(SliceContext *sc, ArithCoder *acoder,
int x, int y, int width, int height)
{
int mode, pivot;
if (acoder->overread > MAX_OVERREAD)
return AVERROR_INVALIDDATA;
mode = acoder->get_model_sym(acoder, &sc->split_mode);
switch (mode) {
case SPLIT_VERT:
if ((pivot = decode_pivot(sc, acoder, height)) < 1)
return -1;
if (ff_mss12_decode_rect(sc, acoder, x, y, width, pivot))
return -1;
if (ff_mss12_decode_rect(sc, acoder, x, y + pivot, width, height - pivot))
return -1;
break;
case SPLIT_HOR:
if ((pivot = decode_pivot(sc, acoder, width)) < 1)
return -1;
if (ff_mss12_decode_rect(sc, acoder, x, y, pivot, height))
return -1;
if (ff_mss12_decode_rect(sc, acoder, x + pivot, y, width - pivot, height))
return -1;
break;
case SPLIT_NONE:
if (sc->c->keyframe)
return decode_region_intra(sc, acoder, x, y, width, height);
else
return decode_region_inter(sc, acoder, x, y, width, height);
default:
return -1;
}
return 0;
}
av_cold int ff_mss12_decode_init(MSS12Context *c, int version,
SliceContext* sc1, SliceContext *sc2)
{
AVCodecContext *avctx = c->avctx;
int i;
if (avctx->extradata_size < 52 + 256 * 3) {
av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
if (AV_RB32(avctx->extradata) < avctx->extradata_size) {
av_log(avctx, AV_LOG_ERROR,
"Insufficient extradata size: expected %"PRIu32" got %d\n",
AV_RB32(avctx->extradata),
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
avctx->coded_width = FFMAX(AV_RB32(avctx->extradata + 20), avctx->width);
avctx->coded_height = FFMAX(AV_RB32(avctx->extradata + 24), avctx->height);
if (avctx->coded_width > 4096 || avctx->coded_height > 4096) {
av_log(avctx, AV_LOG_ERROR, "Frame dimensions %dx%d too large",
avctx->coded_width, avctx->coded_height);
return AVERROR_INVALIDDATA;
}
if (avctx->coded_width < 1 || avctx->coded_height < 1) {
av_log(avctx, AV_LOG_ERROR, "Frame dimensions %dx%d too small",
avctx->coded_width, avctx->coded_height);
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "Encoder version %"PRIu32".%"PRIu32"\n",
AV_RB32(avctx->extradata + 4), AV_RB32(avctx->extradata + 8));
if (version != AV_RB32(avctx->extradata + 4) > 1) {
av_log(avctx, AV_LOG_ERROR,
"Header version doesn't match codec tag\n");
return -1;
}
c->free_colours = AV_RB32(avctx->extradata + 48);
if ((unsigned)c->free_colours > 256) {
av_log(avctx, AV_LOG_ERROR,
"Incorrect number of changeable palette entries: %d\n",
c->free_colours);
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "%d free colour(s)\n", c->free_colours);
av_log(avctx, AV_LOG_DEBUG, "Display dimensions %"PRIu32"x%"PRIu32"\n",
AV_RB32(avctx->extradata + 12), AV_RB32(avctx->extradata + 16));
av_log(avctx, AV_LOG_DEBUG, "Coded dimensions %dx%d\n",
avctx->coded_width, avctx->coded_height);
av_log(avctx, AV_LOG_DEBUG, "%g frames per second\n",
av_int2float(AV_RB32(avctx->extradata + 28)));
av_log(avctx, AV_LOG_DEBUG, "Bitrate %"PRIu32" bps\n",
AV_RB32(avctx->extradata + 32));
av_log(avctx, AV_LOG_DEBUG, "Max. lead time %g ms\n",
av_int2float(AV_RB32(avctx->extradata + 36)));
av_log(avctx, AV_LOG_DEBUG, "Max. lag time %g ms\n",
av_int2float(AV_RB32(avctx->extradata + 40)));
av_log(avctx, AV_LOG_DEBUG, "Max. seek time %g ms\n",
av_int2float(AV_RB32(avctx->extradata + 44)));
if (version) {
if (avctx->extradata_size < 60 + 256 * 3) {
av_log(avctx, AV_LOG_ERROR,
"Insufficient extradata size %d for v2\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
c->slice_split = AV_RB32(avctx->extradata + 52);
av_log(avctx, AV_LOG_DEBUG, "Slice split %d\n", c->slice_split);
c->full_model_syms = AV_RB32(avctx->extradata + 56);
if (c->full_model_syms < 2 || c->full_model_syms > 256) {
av_log(avctx, AV_LOG_ERROR,
"Incorrect number of used colours %d\n",
c->full_model_syms);
return AVERROR_INVALIDDATA;
}
av_log(avctx, AV_LOG_DEBUG, "Used colours %d\n",
c->full_model_syms);
} else {
c->slice_split = 0;
c->full_model_syms = 256;
}
for (i = 0; i < 256; i++)
c->pal[i] = 0xFFU << 24 | AV_RB24(avctx->extradata + 52 +
(version ? 8 : 0) + i * 3);
c->mask_stride = FFALIGN(avctx->width, 16);
c->mask = av_malloc_array(c->mask_stride, avctx->height);
if (!c->mask) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate mask plane\n");
return AVERROR(ENOMEM);
}
sc1->c = c;
slicecontext_init(sc1, version, c->full_model_syms);
if (c->slice_split) {
sc2->c = c;
slicecontext_init(sc2, version, c->full_model_syms);
}
c->corrupted = 1;
return 0;
}
av_cold int ff_mss12_decode_end(MSS12Context *c)
{
av_freep(&c->mask);
return 0;
}